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Abstract: Necessary and suffrcient conditions for
decomposition of multi-universe fuzzy truth functions
in terms of one-universe Euth functions arc presentcd.
An algorithm for decomposition is presented.
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I. INTRODUCTION

This paper is presented in "multi-universe fuzzy
propositional logic" approach developed in [29]. This
notation is outlined in Sections II through V with somc
new results. Different forms of fuzzy propositiorui are
given wirh upper and lower limits. Sonrc lcmmas about
disributivity of projection/shadow opcrations with
respect to AND/OR operations are given. In Scction
VI, decomposition of a finzy rclation as combinuion
of propositions in subuniverses is discussed. Given
two fuzzy propositions A and B in differcnt universes,
it is always possible ro consEuct a fiizzy rclation R in
the comrnon universe through a prescribed combi-
nation. However, the converse is not so obvious. if
possible at all. In other words, given a fuzzy relation
R, how would we know if it really reprcsents a cenain
relationship between two fuzzy propositions A and B?
Here the question is whether it is possible to find fuzzy
propositions that conform to the given fuzzy rclation,
and if so, how to find them.

il. WAZY PROPOSTTION AND LOGICAL
OPERATIONS

Definition [29]: Consider a set U={\} of "statements
about a subject matter" that will bc catled the
"universe set". Afuzzy proposition is defined in U, by
a "trnth function", which assigns a '"tuth value" in
[0, 1] for each element of U (for each statcment).

The truth function is shown 6 Fe(u) where A is the
"name of the proposition", and the letter "u" is uscd as
a generic element of the universe U (hence is a
statement about the subject matter),

Definition: Givcn any two fuzzy propositions A, B in
the same univcrsc (statement set) U by their truth
functions Fa(u) and Fs(u), thc fuzzy propositions
"A AND B" shown as (A.nB) or as (A.B) is defincd as:
pa ̂  s(u) = min {p^(u) , ps(u)}

"A on B" shown as (AvB) or as (A+B) is defincd as:
pl, g (u) = max {pA(u) , Fs(u)}
'l.Iot A" shorva as (-A) is dcfincd as:
F-a(u) =l - FA(u)

M. SPECIAL FUAZY PROPOSIIONS AND
THEIR INTERPRETATIONS

A proposition thar has all of is truth values 2 0.5 is
said to be a "semi-true" proposition.
A proposition that has all of its rnrth values S 0.5 is
said to be a "semi-false" proposition.

The truth functions of "semi-true" and ,.semi-false"
propositions are said to be "large trutfi function" and
"small ruth function", respectively.

Examplc 3.1 [29]:

Let two different universes U and V be defined as
below:
Subject matter of U = temperature of the process
U = {u1, u2, u3, ua }

- (low, below normal, above normal, high)

The universe has four elements, each of which is a
statement (predicate) about the subject matter.
ul = temperature is low.
u2 = tempcrature is below normal.
u3 = temperature is above normal.
u4 = temPerature is high.

Subjcct matter of V = pressure of the process
V={v1, v2, v3, va, v5 }
={low, below medium, medium, above medium, high)

lrt the fuzzy propositions be defined as:
A ' 1 = { l  0 . 6 0 . 4  0 }  i n U
,{2 =(0 0.6 I 0.6 ) in U
A 3 = { 0  0  0  I  )  i n U
B1=(0  O .2  0 .6  0 .9  l )  i nV
B2={0 0.6 I  0 .6 0)  inV

Verbal intcrpretations (linguistic values) for the above
propositions can be made as:
Al= temPerature cold
B,= pressure high
A2= temperature warm
82= prcssure medium
A3=temperature definitely hot

Then we have:
rAq (= temp not cold) = ( 0 0.4 0.6 I )
-B1 (=pressurenothigh) - { I 0.8 0.4 O.l 0 }
rA1 a A'2 (= temp not cold and warm)={0 0.4 0.6 0.6}
rAl v A,2 (=tcmp not cold or warm) = {O 0.6 I 1)

Note that
A1 n rA1 (= temp cold and not cold)
= {0 0.4 0.a 0} (a semi-false proposition)
82 v -Bt (= prcssure medium or not mediun)
=( I 0.6 I 0.6 I ) (a semi-true proposition)
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Definition: A proposition, which has a constant truth
value for all elements (has constant uuth function) is
said to be aconstant proposition.

If the constant va.lue of the tn'rth function is cr, thrs
proposition is represented in short as (cr)g or as (a)
when the universe is obvious. Thc constant proposition
(0)u (having truth values all zero) is called the "null
(empty) proposition" and the constant proposition (l)u
(having truth values all uniry) is called the "unity
proposition". lnterpretation (linguistic value) of the
unity proposition (l) can be stated as "any", "all", "all
of them true", "anyone is possible", and "anyone is
accepted". Interpretation (linguistic value) of the null
proposition (0) can be stated as "none", "none of them

true", "no one is possible", and "no one is accepted".

Definition: A proposition (truth function) that gets the
value "1" for only one statement (predicate) say q,
and the value "0" for all other statements is said to be

a crisp proposition and shown as 0,. As an example,

for the universe U = {ul u2 u3, ... uo }, the crisp
proposition {0 I 0 ... 0} is shown as 02.

Definition: Given a proposition A in the universe U
defined by the tnrth function pa(u),

dA = max (A'-A) = I - min (A+-A) (3. l)

is called the degree of fuuiness of A. Note that the

two expressions on the right hand side of Eq.(3.1) are
equal by De Morgan's rule-

Note that the degree of fuzziness can take a value
between 0 and 0.5, and it is a measure of how far it is
from crisp proposition. The degree of fuzziness of a
crisp proposition is zero. If the degree of fuzziness is
closer to 0.5, it is said to be farther away from being
cnsp.

The following lemmas regarding the fuzzy proposi-

tions, are important in the sequel.

Izmma 3.r.' AND operation of a fuzzy proposition

"A" via a constant proposition (cr) limits (clips) the

proposition A from above at value cr.

Prool: Obvious.

lzmmt 3.2.. OR operation of. a fitzzy proposition "A"

via a constant proposition (a) limits (clips) the

proposition A from below at value s.
Proof'Obvious.

IV. VARIOUS FORMS OF FUALY PROFOSITIONS

Definition: The combination of fuzzy propositions via

operations (AND, OR, NEGATION) are called fuzg
propositional expressions. X = An (B vC), Y=A,rr

Cv(D^.-A) are simple examples of fuzzy
propositional expressions.

Note that during conversion and simplification of
fuzzy expressions to different forms, commutative and
distributive laws are applicable with exact equdity for
fuzzy case as well. Besides, the well known absorption

rule

A + A ' B  =  A (4.1)

is also applicable as exact equaliry for fuzzy case as
well. However, the following equalities that are valid
as exact equality for non-fuzzy case, are only
approximate for fuzzy case:

A + a A ' B  = S  A + B

X ' ( A + r A ) = < 1

X + ( A ' - A ) = >  1

(4.2)
(4.3)
(4.4)

The signs 'ES' and "=" are used for meaning
"truth function is smaller or equal, and also
approximate" and "uuth function greater or equal and
also approximate", respectively. This sign becomes
equality for non-fuzzy case.

As well known for non-fuzzy case, a propositional
expression can be expressed in different forms [3],
two of which are important:
l. Full Disjunctive Normal Form (FDND "OR
combination of all AND terms".
2. Full Conjunctive Normal Form (FCNF) 'AND

combination of all OR terms".

Note that the different forms of propositional
expressions are equal for non-fuzzy case, while are not
equal for fuzzy case, but only approximate [3].

As an example note that the expression

X = A.B +:A.C + -A' -B (4.s)
can be cxpressed in Full Disjunctive Normal Form rn
three variables as

X => A'8.(C+-C)+-A.C' (B+-B)+rA'-B' (C+-C)

= A'B'C+ A.B.-C+-A'C'B+-A'C'-B

+rA.-B.C+-A.-8.-C = XFDNF (4.6)

Right hand side (FDNF) is obviously smaller since
each terms of X are combined with some terms by
AND (minimum) operation. The same term can be
expresscd in Full Conjunctive Normal Form as

XFcr.rF = (A+-B+C)'(-A+B+C)'(-A+B+-C) (4.7)

Again, note the technique for converting FCNF to
simplified form:

XFcNr = (A+--B+C)' (-A+B+C)' (-rA+B+rC)

= (A.B +rA.C +rA'-B)+(A'-A+B'-B+C'iC)
= X + semi-false tern (small truth function) >= X

Lzmma 4.J.' All expressions obtained from each other
by the above rules have FDNF and FCNF as upper and

lower limits: XFDNF =S X =< XrcNF.
Proof Obvious from equations (4.1) to (4.4) and the
conversion nrles to / from FDNF and FCNF.

FDNF and FCNF in three variables of the propositions
(l) and (0) can be obtained as

( I  hor.rr = A'B'C+A'B'-C+A'-B'C+A'rB'-C

+rA. B'C+-A. B.-C+-A' -B'C+-A'-B'-€
(o)roxr = (o)
(ohcm = (A+B+c). (A+B+-c) - (Ar-B-rc)
- (A+aB.r-{) . (-A+B+CI . (-A+B€)
.(-A{-B+C) (-A+-B{-{)
(l)psNF = (l)

r72
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0.4
0.3
0

A =

Note that

(0.5) < (l)roxr= (l),i.e. (l)ppsp is a semi-rue prope
sition close to (l)

(0.5) > (O)F.NF= (0), i.e. (O)o.,,Jp is a semi-false propo-
sition close to (0)

V. FVZZY OPERATIONS WITH MULTI.
UNTVERSE REPRESENTATIONS

5.1 MALTI-UNIVERSE FI]ZZY REIATION

Definition: Let U and V be two universes (sets of
statements about their subject matters). The ,,two-
universe fuzg proposition" (fuzzy relation) is define.d
in the universe UxV by assigning a truth value for
each pair of statements lzzdeh [3]).

The truth function of a two-universe finzy proposition
is represented as pp(u,v).

A finite, discrete two-universe fuzzy proposition can
be shown in matrix form as:

0.2 0.3 I
0.1 0.6 0
0.7 0 0.9

where the (ij)'th element shows the trr.rth value of the
(ij)'th statement pair.

Muhi-universe fuzzy relation is similarly defined as
rhe fuzzy proposition in the universe UrxUrx,.xUn by
the tnrth function Fp(u1,u2,..,un)

5,2 REPRESENTATION OF A FA?zY PROPOSL
TION IN A HIGNER T]NIVENSE

Definition: Consider a fuzzy proposition A defined in
the universe U by the truth function pa(u). The fuzzy
proposition defined in the Cartesian product universe
UxV by the tuth function 1.r exrtnr (u,v) - pa(u) is
called the "Exrension of the fuzzy p:.roposition A into
the higher universe UxV" or the "Representation of
the fuzzy proposition in the higher universe UxV" and
is shown in short as {A}uxv , as ExtUry{A}U or as
Ext{A} when the universes are obvious.

In matix representation (of finite, discrete case), the
known values of the column/row of the fuzzy
proposition are copied as the values of the newly
added dimension.

Example 5.1:
For the universes

I 
= { ot,u2, u3, u4), V = { v1, v2, v3, v4, v5)

let the fuzzy propositions defined as:
A 1 = { l  0 . 6 0 . 4  0 }  i n U
81= (0 0.2 0.6 0.9 l )  in  V

Then we obtain the extensions as:

ExtU 'y {B1)=  {81}g"y  =
0 0.2 0.6 0.9
0 0.2 0.6 0.9
0 0.2 0.6 0.9
0 0.2 0.6 0.9

5.3 PROJECTION AND SHADOW OPERATIONS
ON A FAZZY PROPOSITION

Assume that a two-universe proposition R defined by
the truth function Fn (u,v) is given, but we only
consider one of the universes as important, say the
universe U. By "projection" and ..shadow" operations
we obtain one-universe propositions from two_
universe proposition R.

Definitbn: Given a fuzzy proposition ..R" on UxV
defined by the truth function Fp (u,v), the fuzzy
proposition "A" defined on U by ttrC truttr function
[e(u) = max {gp(u,v)}

v e V
is called the projection of R on lJ (7deh t5l), ana
also shown as A = P1s.ir1Rlurv.

Deftnition: Given a fuzzy proposition ,.R" on UxV
defined by the ruth function Fp(u,v), the fuzzy
proposition "A" defined on U by the trurh function

Fr(u) = min {pp(u,v)}
v e V

is called the shadow of R on U and also shown as
A = Shadg(Rlur(y

Note that the projection operation gives emphasis on
higher ruth values, while the shadow operation gives
emphasis on lowcr truth values. In other words, by
projection operation information are co[ecrcd abour
"what is true" and lower truth values are disregarded.
The result of the shadow operation gives information
about "what is false" and the higher tuth values are
disregarded. We believe that both are equally
important, hence the two results should be considered
together.

5.4 LOGICAL OPERATIONS ON TWO FAZZY
PROPOSITIONS IN DIF FERENT UNr/ERSES

"A and B" (A a B or shortly A.B) of the fuzzy
proposition A (defined by pn(u) in the universe U)
and the tuzzy proposition B (defined by g"(v) in the
universe V) is defined by AND operation in their
extended universc representatlon as:

{A}u '  {B}v  =  {A}u"v  .  {B}u , .v
Note that this is equivalent to
p.q.s (u,v) = min{pa(u) , ps(v))

which is the same as "cross product" operation defined
by 7aAsy1. (7adeh and Mamdani, also interpreted the
cross product operation as AND operation).

t l l l
0.6 0.6 0.6 0.6
o.4 0.4 0.4 0.4
0  0 0 0

ExtU)<y(A1 l  = (Ar )Urv =
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Examph 5.2:
Consider the same universes in Example 5.1' with the
fuzzy propositions:
A , = { l  0 . 6  0  0 }
A2=  (0  0 .2  0 .8  l )
8 1 =  { l  0 . 8  0 . 1  0  0 }
8 2 = ( 0  0  0 . 1  0 . 8  l l

Then, from the definition of 'AND" oPeration
r  0 . 8  0 . 1  g  o l v

time were made in this higher universe. The original
proposition in the original universe U will then be
represented as (Alu.If representations, of both one-
universe, and two-universe fuzzy propositions should
be shown in one equation, as in "extension",
projection", "shadow" operations, the following
notation will be used [29]:

Extuxv{A}u extension into UxV of the fuzzy
proposition A in U.

r  0 . 8 0 . 1  0 0
1 0 . 8 0 . 1  0 0
1 0 . 8 0 . 1  0 0
1 0 . 8 0 . 1  0 0

lnlo

lnto

Lamma 5.1: l29l For any fuzzy propositions A1, A2
in the same universe U,

Extg,.y (A1 '  ,{2)u = Extgry (Ar )u'Extury {.{2}u
Exturu (A1 + A2)U = Extg"y {A1 }u + Extu)<y (A2}U

Extg*u {-Al }u = - Extgry {A1}U

In words, "performing Boolean opcrations and thcn
taking extension into the higher universc" is equivalent
to "first takiitg extension and then performing the

Boolean operation in the extended universe".
Prool' Obvious by deFrnition.

Extension of a finzy proposition into a higher universe
will have the same physical intcrprctation with thc
original proposition. In fac\ in Example 5.1'
Extury{A1 } can be intcrpreted as "tcmPcrahre is

cold, pressure is any" hence has been also shown as

{Ar }u'v.

Equivalence axioms can be proved between a fiizzy
proposition in the universc U and its extensions in the

higher universes. It should be noted that since the
"projection" and "shadow" of the "extension fuzzy
proposition" into the "original lower universe" is equal
to the original proposidon, projection or shadow
operation can be accepted as the inverse procedure of

the extension operation.

Both one-universe and two-univerce models can
represent the same system equivalently. Even after the

one-universe model has been chosen and calculations
(by using AND, OR, NOT operations and their

combinations) have been made on this system,
whenever this model becomes insufficient, one can
just add a new universe and continue. Sincc all
calculations that wcre made up to that time are valid in
the higher universe, after this step calculations can

continue in the higher universe.

Thc representation of a proposition "A" after the

extension into the higher universe UxV will also be

called with the same name "A" assuming that all

dcfinitions and calculations that were made up to that

5.5 INGICOF COMPOSITION OPEMTION

Dcfinition: Let U=(ul u2 ur ... \) 2nd !=(v1 v2
v3 ... vm) be two universes. Consider the fuzzy
relation (two-universe fuzzy proposition) R given rn
UxV in matrix form, and a fuzzy proposition A in U
given in vector form. Composition of R and A ts
defined by Tadeh [13-15] as:

Proju{A}uxv projection
proposition A in UxV.
Shadu{A}uxv shadow
proposition A in UxV.

r t2

tzz

tn2

U of the fuzzy

U of the fuzzy

r t o

f2t

f .n

i l l

A2

an

l m a x  { (  r l s A a l ) ,  ( r 1 2 n a 2 ) ,  . . .  , ( r s o a a n ) )
=  

lmax { (  rz rnar ) ,  ( r22na2) ,  . . .  , ( r2nnao) }

I
lmax  { (  161Aa1 ) ,  ( r . 2na2 ) ,  . . . , ( r r onao ) }

The result is ^n m-vector (proposition in the universe
V). Due to similarity of this operation to matrix
multiplication, this operation is called as "max-min"
matrix operation.

As Heh dso stated, this operation is equivalent to
"AND operation followed by projection operation".
For this Feason we Prefer to use the representation

Projy{RrA}ury instead of the representation R"A.
This is more meaningful, because it explicitly states
the logic of composition operation as "AND oPeration
in the higher universe ard proiection into the
requested universe."

5.6 CONTRACTION AFTER EXTENSION

As stated above, if a proposition is fust extended to a
higher universe, and th€n projectiory' shadow is takcn
back into the original universc, the original
proposition is obtained. Hencc:

Proju{ Ext u*y (A}u } = A
Shadu( Ext gry {A}u } = A

What is obtained if the proposition A in the univcrse U
is extended into the higher universc UxV and
projcctiory'shadow is taken into the othcr universe V?
The rcsult is givcn below [29]:

t74

(s . l )
(s.2)
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I*mna 5.2:
a) hojy (Ext u)<y {A}u } = (a1)y

b) Shadu {Ext g*y (A}g } = (Ea)y
(5.3)
(5.4)

where o4,€4 af,e the maximum and the minimum
values of the proposition A, and (aa)y,(€a)y are
constant propositions in the universe V having values
On, €e,respectively.
Proof: Consider that the proposition A in U has been
extended into UxV by copying the proposition A to all
columns. If the maximum element (say the k'th
element) of A is cl,n, then the k'th row of the marix is
all cA, while the other columns are smaller. projection
into V gives the proposition (cta)y. Part-b is proved
similarly.

Equations (5.1) and (5.2) are called "returning back
into the original universe", while (5.3) and (5.4) can
be called as "indirect projection (indirect shadow)
from a one-universe into another one-universe".

Cartesian product (AND operation) of two fuzzy
propositions A,B in different universes U,V gives the
result in rhe universe UxV. Is it possible to obtain the
original propositions A , B by taking the projection
back into the original universes? The reply is given in
the following lemmas [29]:

Lemma 5.3.. Consider the htzzy propositions A and
B in the universes U and V respectively. If the
maximum truth value of the proposition B is less than
"1", saycs, then the projection ProjU{A.B}Ury is
different from rhe proposition A such that the
ruth values above Ctg are decreased to the value
aB (clipped from above by cs). The counterpart is
also applicable.
Proof: I*t the maximum element (say the k'th
element) of B is c". In the extended universe
representation of B into the universe UxV (copying
(he row vector B into all rows) the k'th column of the
extended matrix is all ag (this column is constant
fuzzy proposition (ag)g), while the other columns are
smaller. Extension of the fuzzy proposition A into
UxV makes all columns copies of the column vector
A. AND operation of these two extension matices
makes the k'th column A.(ae)u (A limited from above
by Ct") while the other columns are smaller. Projection
into U gives A.(cla)u. Hence the result.

I*mna 5.4..Consider the fuzzy propositions A and
B in the universes U and V respectively. If the
minimum truth value of the proposition B is greater
tlan 0", say ts, then the shadow ShadU{A+B}ur,
is different from the proposition A such thar the
truth values below €g are increased to the value eg
(clipped from below by eil. The counrerpart is also
applicable.
Proof : Can bc made similar to the proof of
Lemrna 5.3.

5.7 DISTRIBATIVITY PROPERTIES OF
PROTECTION / SHN)OW OPENATIONS

Consider projection / shadow operation into a one-
universe of a multi-universe propositional expressron
as:
Proju {A+A. -B + -A.B}
Shadu (A.B+ rB + -A|

where A,B are propositions in the universe U,V
respectively. Is it possible to use distriburive law so
that projections and shadows can be taken separately?
The answer is given in the following lemmas:

Lemna 5.5.. Projection operar.ion is distributive with
respect to OR operation.

Lcmma 5.6: Shadow operation is distributive with
respect to AND operation.

Proofs of the above lemmas are obvious since both
projection and OR operations are performed by
maximum operations, and since both shadow and
AND opcrations are performed by minimum
operations,

Projcction operation is in general not distributive with
respect to AND operation. Similarly, shadow
operation is in general not disfibutive with respect to
OR operation. However, the following lemmas give
important sufficient conditions for disributivity.

Izmma 5.7: [29] If the AND operarion is between
propositions which arc extensions of separate,
originally one-universe proposirions, then projection
opcration is distributive with respect to AND
operation.
Proju{A'B)u,(y
= Proju{A}uxv ' Prcju {B }uxv = A . (as)u
Proof of Lemma 5.3 above is also the proof of this
lemma.

Ltmma 5.E; [29] If the OR operation is between
propositions which dre extensions of separate,
originally one-universe propositions, then shadow
opcration is distributive with respect to OR operation.
Proof can be made as in Lemmas 5.3 and 5.4.

Let A, B be fuzzy propositions in the universes U,V
respectively. Combining rhese propositions via
AM/OR operations gives thc results in rhe higher
universe UxV. What is obtained if we take
projerction/shadow back into the original universes?
The replies are given in Lemma 5.9:

Itmnu5.9:

Proju {A.B}ury
- Proju (Alu"v . Proju {B)r,v = A . (cts)u (5.5)
= A in U limited from above by the maximum value of B.

Projy {A'B}u).y
= 

lojv {A}urv . Projy {B )urv = (cA)v . B (5.5)
= B in V limited from above by tlrc maximum value of A.

l?f,
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koju {A+B}ury
- PrAu {A}urv + Proju {B }urv = A + (ctdu (5.7)
= A in U limited from below by the nraxirnum valrrc of B.

Projy {A+B}ury
= Projv{A}u*y + Projy {B }u'v = (c'a)v + B (5'8)
= B in V limited from below by the maximum value of A.

Shadu {A'B }uyy
= Shadu {A}u'v ' Shadu {B)uxv = A ' (ta)u (5'9)
= A in U timited from above by the minimum value of B.

Shady {A'B}u(y
=Shadv {A}u*v' Shadv {B}uxv = (Ee)v' B (5'10)
= B in V limited fiom above by the minimum value of A

Shadu {A+B}u)<y
= Shadu{A}uxu + Shadu{B}u"u - A+(ts)u (5.1l)
= A in U limited fiom below by the minimum value of B.

Shady {A+B}ury
= Shadv{A}uxy + Shady{B}uxv = (tn)v+B (5'12)
= B in V timited from betow by the minimum value of A'

The constants cn, dg are the maximum values of the

propositions A, B respectively, and the constants ta '

ts are the minimum values of the propositions A' B
respectively. These results give simpler proofs and
extensions of Lemmas 5.3 and 5.4.

VLDECOMPOSITION OF A MULTI.UNWERSE
PROPOSMON INTO ONF-TJNIVERSE

PROFOSITIONS

Given a two-universe fuzzy ProPosition (fuzzy

relation) R in the universe UxV, is it possible to
find propositions A and B in the universes U and

V satisfying R=A,rB or R=AvB ? This property
is called as "decomposition Prcpery" and
discussed in t33-361 in frtzzy sct-theoretic
approach. The decomposition proPerty will be
discussed with multi-universe fuzzy propositional
logic approach necessary and sufficient conditions
will be given, and an algorithm for decomposition will
be presented.

Lcmma 6.1:
a) A necessary and suffrcient condition for the relation

R to be expressed as R=AnB is that there will be a
complete row or column consisting of the minimum
element of R, and the remaining matrix R'obtained by
deleting this row or column should have the same

property (R' = A' n B' is satisfied for some A' and B).
b) A necessary and sufficicnt condition for dre rclation

R to be expressed as R=AvB is that there will be a
complete row or column consisting of the maximum
element of R, and the remaining marix R'obtained by
deleting this row or column should have the same

property (R'= A'v B'is satisfied for some A'and B).

Proof of (a): Necessity of one full row with minimum
value: I-et R be decomposable, i.e. for some A' B in U

and V respectively, R={A}u^{B}v is satisfied and
let the minimum element of both A and B be in the

k'th element of A having value E. Exlension of A into

UxV will give copies of A to the other columns, hence

the k'th row will be dl e. Since t is the minimum
value of both A and B, AND operation via extension

of B makes the k'th row all E, while all other elements
greater or equal.

Necessity of decomposability of the remaining matrix:
Without loss of generdity assume that the minimum
value row is the last row of R. Then the following
operations in partitioned form is applicable:

= A r t B = n BR =
A'

A

R'

(€)

A'nB

A"aB

A'nB

(e)

Hence R'should also be decomposable as A'nB.

Sufficiency: Without loss of gencrality assume that the

minimum element line is the last row of R with values

all t, and let R' be the marix obtained by disregarding

the k'th row of R, satisfying R'=A'nB' for some A' and
B'. From the above partitioned matrix operation, it is
obvious that R is also decomposable.
Proof of (b): Can be obtained similarly.

The above lemrnas give us a very easy algorithm for

obuining decompositions. Note that by disregarding a

constant row (column), an element of A (B) is found.
In the remaining matrix, a column or row should be

searched. If the row or column with minimum
(maximum) element is not present at any stage, then

decomposition as R=AnB (R=AvB) is not possible.

Eranple 6, I : D e c ompos ition Al go rit hm fo r R= A' B :

stcP
no
6

I

4

0.9
0 .1
0.95
0.7

0.6 0.9 0.3 0.8
0 .1  0 .1  0 .1  0 .1
0.6 0.95 0.3 0.8
0.6 0.7 0.3 0.7

x 0.6 .r 0.3 0.8
3 2 5

A
0.9
0.1
0.95
0.7

stcp no

S3ep-l: The matrix R has the minimum element of 0.1
in the second row. Hence the second element of A is
0 .1 .
Step-2: Disregarding the second row of R, the
minimum element is 0.3, in ttre fourth column. Hence,
the for.rth element of B is 0.3.

Aftcr step-?, the remaining two elements (shown as x)
can have any value greater than or cqual to 'the last
uscd value" 0.95.

Thc step numbrs are given above for reference.
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A

x

0.9
0.3
x

step
no

4

0.5 0.2
J ) sleP no

Step-l: The matrix R has the maximum element of 0.9
in the second column. Hence, the second element of B
is 0.9.
Step-2: Disregarding the second column of R, the
maximum element is 0.9, in the 2nd row. Hence, the
second element of A is 0.9.

After step-7, the remaining tko elements (shown as x)
can have any value less than or equal to "the last used
value" 0, (hence they should be zero).

llo{e thst in Example 6.I if the terms shown by ,r" are
selected as the minimum value (the last used value
0.95), A = Proju{R} and B = Projy{R} are obrained.
Note again that in Example 6.2, if the terms shown by'.x" are selected as the maximum value (last used value
0), A=Shadu{R} and B=Shadu{R} are obtained.

The lemmas given below state that these are in fact
always valid [33]:

Lemma 6.2: If the relation R is decomposable as
R=A.B, then among all possibte decompositions,
Ar=Proju{R} and B1=P1oju{R} are the minimum
propositions.
Proof: For any decomposition A and B satistying
R=A.B, by Eq. (5.5) and (5.6),

A1=Proju { R }= Proju ( A.B }uxv
- Proju {A)urv ' Proju {B}g)<y = A . (ailu
which is S A.

Bl=Projv{R}= Projy {A.B }uyy
= Projv {A}urv . Projv {B)uxv = (aa)y . B
which is < B.
and

A1'81 =Proju{R}'  Projy{R}
= (A'(cs)u ) ' (8. (an)v) = (A.(o,\)v 1'@.(cilu)
- (A in U limited by the maximum value of A). (B in
V limited by the maximum value of B)
= A . B = R

Therefore .A1 (projection in U) and 81 (projection in
V) are also decompositions and are smaller than or
equal to any other possible decomposition.

Lcnma 6.i: lf the relation R is decomposable as
R=A+B, then arnong all possible decompositions,
Ar=Shadu{R} and B1=g[a6lu(R] are thc maximum
propositions.
Proof: Can be made as in l,emma 6.2.

0 0.9 0.1
7 1 6
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