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Abstract: Necessary and sufficient conditions for
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I. INTRODUCTION

This paper is presented in “multi-universe fuzzy
propositional logic” approach developed in [29]. This
notation is outlined in Sections II through V with some
new results. Different forms of fuzzy propositions are
given with upper and lower limits. Some lemmas about
distributivity of projection/shadow operations with
respect to AND/OR operations are given. In Section
VI, decomposition of a fuzzy relation as combination
of propositions in subuniverses is discussed. Given
two fuzzy propositions A and B in different universes,
it is always possible to construct a fuzzy relation R in
the common universe through a prescribed combi-
nation. However, the converse is not so obvious, if
possible at all. In other words, given a fuzzy relation
R, how would we know if it really represents a certain
relationship between two fuzzy propositions A and B?
Here the question is whether it is possible to find fuzzy
propositions that conform to the given fuzzy relation,
and if so, how to find them.

II. FUZZY PROPOSITION AND LOGICAL
OPERATIONS

Definition [29]: Consider a set U=(y;} of “statements
about a subject matter” that will be called the
“universe set”. A fuzzy proposition is defined in U, by
a “truth function”, which assigns a “tuth value” in
[0,1] for each element of U (for each statement).

The truth function is shown as u Alu) where A is the
“name of the proposition”, and the letter “u” is used as
a generic element of the universe U (hence is a
statement about the subject matter).

Definition: Given any two fuzzy propositions A, B in
the same universe (statement set) U by their truth
functions p,(u) and pp(u), the fuzzy propositions

“A AND B” shown as (AAB) or as (A-B) is defined as:
Ha A p(0) = min {p,(u) . pg(u)}

“A OR B” shown as (AvB) or as (A+B) is defined as:
By p W) =max {u,(uv), ug)}

“NOT A” shown as (-A) is defined as:

Hoa(u) =1 - pp(u)
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OI. SPECIAL FUZZY PROPOSITIONS AND
THEIR INTERPRETATIONS

A proposition that has all of its truth values > 0.5 is
said to be a “semi-true” proposition.
A proposition that has all of its truth values < 0.5 is
said to be a “semi-false” proposition.

The truth functions of “semi-true” and “semi-false”
propositions are said to be ‘“large truth function” and
“small truth function”, respectively.

Example 3.1 [29):

Let two different universes U and V be defined as
below:
Subject matter of U = temperature of the process
U= {u, uy, u5, uy }
= {low, below normal, above normal, high}

The universe has four elements, each of which is a
statement (predicate) about the subject matter.

u; = temperature is low.

U, = temperature is below normal.

U3 = temperature is above normal.

uy = temperature is high.

Subject matter of V = pressure of the process
V={vy, vy, V3, vy, Vs
={low, below medium, medium, above medium, high)

Let the fuzzy propositions be defined as:

A;={106 04 0} inU
Ay)={006 1 06} inU
A;={0 0 0 1)} inU

B;={0020609 1} inV
B,={006 1 060} inV

Verbal interpretations (linguistic values) for the above
propositions can be made as:

A= temperature cold

B = pressure high

A,= temperature warm

B,= pressure medium

Ajz=temperature definitely hot

Then we have:

_‘Al (=temp notcold) ={0 04 06 1}

—B) (=pressure not high) = {1 0.8 04 0.1 0}
=A; A A; (= temp not cold and warm)={0 0.4 0.6 0.6}
—A; VA, (=temp not cold or warm)={0 0.6 1 1)

Note that

Ay A=A, (=temp cold and not cold)

= {0 0.4 0.4 0} (a semi-false proposition)

B, v =B, (= pressure medium or not medium)
=(10.6 10.6 1} (a semi-true proposition)




"ELECO'99 INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING"

Definition: A proposition, which has a constant truth
value for all elements (has constant truth function) is
said to be a constant proposition.

If the constant value of the truth function is a, this
proposition is represented in short as () or as (a)
when the universe is obvious. The constant proposition
(0)y (having truth values all zero) is called the “null
(empty) proposition” and the constant proposition (1)
(having truth values all unity) is called the ‘“unity
proposition”. Interpretation (linguistic value) of the
unity proposition (1) can be stated as “‘any”, “all”, “all
of them true”, “anyone is possible”, and “anyone is
accepted”. Interpretation (linguistic value) of the null
proposition (0) can be stated as “none”, “none of them

true”, “no one is possible”, and “no one is accepted”.

Definition: A proposition (truth function) that gets the
value “1” for only one statement (predicate) say u,
and the value “0" for all other statements is said to be
a crisp proposition and shown as §;. As an example,
for the universe U = {u; u, us .. up }, the crisp
proposition {0 1 0 ... 0} is shown as Q5.

Definition: Given a proposition A in the universe U
defined by the truth function p,(u),

O, = max (A-—A) = 1 - min (A+—A) 3.1

is called the degree of fuzziness of A. Note that the
two expressions on the right hand side of Eq.(3.1) are
equal by De Morgan’s rule.

Note that the degree of fuzziness can take a value
between O and 0.5, and it is a measure of how far it is
from crisp proposition. The degree of fuzziness of a
crisp proposition is zero. If the degree of fuzziness is
closer to 0.5, it is said to be farther away from being
crisp.

The following lemmas regarding the fuzzy proposi-
tions, are important in the sequel.

Lemma 3.1: AND operation of a fuzzy proposition
“A” via a constant proposition (o) limits (clips) the
proposition A from above at value o.

Proof: Obvious.

Lemma 3.2: OR operation of a fuzzy proposition “A”
via a constant proposition (&) limits (clips) the
proposition A from below at value a.

Proof: Obvious.

IV. VARIOUS FORMS OF FUZZY PROPOSITIONS

Definition: The combination of fuzzy propositions via
operations (AND, OR, NEGATION) are called fuzzy
propositional expressions. X=AA(BVC), Y=AA—
Cv(DA—A) are simple examples of fuzzy
propositional expressions.

Note that during conversion and simplification of
fuzzy expressions to different forms, commutative and
distributive laws are applicable with exact equality for
fuzzy case as well. Besides, the well known absorption
rule

A+A-B=A “.1)

is also applicable as exact equality for fuzzy case as
well. However, the following equalities that are valid
as exact equality for non-fuzzy case, are only
approximate for fuzzy case:

A+-AB =< A+B 4.2)
X-(A+-A)=<X 43)
X+(A-—-A)=>X 4.4)

The signs “=<" and “=>" are used for meaning
“truth function is smaller or equal, and also
approximate™ and “truth function greater or equal and
also approximate”, respectively. This sign becomes
equality for non-fuzzy case.

As well known for non-fuzzy case, a propositional
expression can be expressed in different forms [13],
two of which are important:

1. Full Disjunctive Normal Form (FDNF) “OR
combination of all AND terms”.

2. Full Conjunctive Normal Form (FCNF)
combination of all OR terms”.

Note that the different forms of propositional
expressions are equal for non-fuzzy case, while are not
equal for fuzzy case, but only approximate [13].

“AND

As an example note that the expression

X=AB+-A-C+—-A —-B 4.5)
can be expressed in Full Disjunctive Normal Form in
three variables as

X => A'B-(C+—C)+—A-C:(B+—B)+—A-—B-(C+—-C)
= A'-B-C+ A-B-—-C+—A-C-B+—A-C-—B

+-A-—B-C+—A-—B-—C = Xppnp (4.6)

Right hand side (FDNF) is obviously smaller since
each terms of X are combined with some terms by
AND (minimum) operation. The same term can be
expressed in Full Conjunctive Normal Form as

Xpong = (A+—B+C)(—A+B+C)-(mA+B+—C) (4.7)
Again, note the technique for converting FCNF to
simplified form:

Xpeng = (A+—B+C) - (mA+B+C) * (—-A+B+-C)
=(A'B +—A-C +—A ' —B)+(A-—A+B-—~B+C-—C)

= X + semi-false termn (small truth function) >= X
Lemma 4.1: All expressions obtained from each other
by the above rules have FDNF and FCNF as upper and
lower limits: Xppng =€ X =< Xpeng

Proof: Obvious from equations (4.1) to (4.4) and the
conversion rules to / from FDNF and FCNF.

FDNF and FCNF in three variables of the propositions
(1) and (0) can be obtained as

(1)ppNF = AB-C+A-B-—C+A-—B-C+A-—B-—C
+—A'B-C+—A-B-—~C+—A-—-B-C+-A-—B-—C
(O)FDNF =(0)

(O)penr = (A+B+0) - (A+B+—C) - (A+—B+C)

- (A+—B+C) - (mA+B+C) - (mA+B+—C)

‘(—A+B+C) - (-A+-B+C)

(I)FCNF =(1)
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Note that

(0.5) S (DppnE = (1ide. (Dppr 1S 2 semi-true propo-
sition close to (1)

(0.5) 2 (O)pcpr = (0), ie. (Q)pewr is a semi-false propo-
sition close to (0)

V. FUZZY OPERATIONS WITH MULTI-
UNIVERSE REPRESENTATIONS

5.1 MULTI-UNIVERSE FUZZY RELATION

Definition: Let U and V be two universes (sets of
statements about their subject matters). The “two-
universe fuzzy proposition” (fuzzy relation) is defined
in the universe UxV by assigning a truth value for
each pair of statements (Zadeh [3]).

The truth function of a two-universe fuzzy proposition
1s represented as pg(u,v).

A finite, discrete two-universe fuzzy proposition can
be shown in matrix form as:

02 03 1 04
A= 101 06 0 03
0.7 0 0.9 0

where the (i,j)'th element shows the truth value of the
(i,j)’th statement pair.

Multi-universe fuzzy relation is similarly defined as
the fuzzy proposition in the universe U;xUyx..xU, by
the truth function pg(u;,u,,..,u).

5.2 REPRESENTATION OF A FUZZY PROPOSI-
TION IN A HIGHER UNIVERSE

Definition: Consider a fuzzy proposition A defined in
the universe U by the truth function p Au). The fuzzy
proposition defined in the Cartesian product universe
UxV by the truth function p gxr(a} (V) = py(u) is
called the “Extension of the fuzzy proposition A into
the higher universe UxV” or the “Representation of
the fuzzy proposition in the higher universe UxV” and
is shown in short as {A}yyy , as Exty,y{A}y or as
Ext{A} when the universes are obvious.

In matrix representation (of finite, discrete case), the
known values of the column/row of the fuzzy
proposition are copied as the values of the newly
added dimension.

Example 5.1:

For the universes

U={ujupuyu), V={v, Vs, V3, V4, Vs)
let the fuzzy propositions defined as:
A={(10604 0} inU
Bi={00206 091} inV

Then we obtain the extensions as:

() L S L. |
0.6 0.6 0.6 0.6 0.6
04 04 04 04 04
0 0 0 0 0

EXtva(Al} = (AI}UXV =

0 020609 1
Extyuy{By) = {BjJyxy = | 0 02 0.6 09 1|
0 020609 I
0 020609 |

5.3 PROJECTION AND SHADOW OPERATIONS
ON A FUZZY PROPOSITION

Assume that a two-universe proposition R defined by
the truth function pgp (u,v) is given, but we only
consider one of the universes as important, say the
universe U. By “projection” and “shadow” operations
we obtain one-universe propositions from two-
universe proposition R.

Definition: Given a fuzzy proposition “R” on UxV
defined by the truth function up (uv), the fuzzy
proposition “A” defined on U by the truth function
Ha(u) = max {up(u,v)}

vEV
is called the projection of R on U (Zadeh [5)), and
also shown as A = Projy{R}yxy-

Definition: Given a fuzzy proposition “R” on UxV
defined by the truth function ug(u,v), the fuzzy
proposition “A” defined on U by the truth function
Ha(W) = min {pp(u,v)}

vEV
is called the shadow of R on U and also shown as
A = Shad{R } .y

Note that the projsction operation gives emphasis on
higher truth values, while the shadow operation gives
emphasis on lower truth values. In other words, by
projection operation information are collected about
“what is true” and lower truth values are disregarded.
The result of the shadow operation gives information
about “what is false” and the higher truth values are
disregarded. We believe that both are equally
important, hence the two results should be considered
together.

5.4 LOGICAL OPERATIONS ON TWO FUZZY
PROPOSITIONS IN DIFFERENT UNIVERSES

“A and B” (A A B or shortly A-B) of the fuzzy
proposition A (defined by p,(u) in the universe U)
and the fuzzy proposition B (defined by ug(v) in the
universe V) is defined by AND operation in their
extended universe representation as:

{Aly- (Bly={A}yxy ' {Blyxy
Note that this is equivalent to
Ha.g (Uv) = min{pA(u) » (W)}

which is the same as “cross product” operation defined
by Zadeh. (Zadeh and Mamdani, also interpreted the
cross product operation as AND operation).

“OR" operation of two fuzzy propositions in different
universes is similarly defined by extending to the
higher common universe, and performing  the
operation in this universe.
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Example 5.2:

Consider the same universes in Example 5.1, with the
fuzzy propositions:

A={1 06 0 0}

A,=1{0 02 0.8 1}

B,=(1 0.8 0.1 0 0}

B,=(0 0 0.1 08 1}

Then, from the definition of “AND” operation
A,AB=(0 02 08 ljya{l 08 0.1 0 O}y

SRS I s g ¢ 1 080100
=/02 02 02 02 02|A| 1 08 01 0 O
08 0.8 0.8 0.8 08 1 080100
I IS T e 1 08 01 0 O
0 "0 0.ur .9
=]0:2 02 03} 0 0
08B 0801 0 O
1 0801 0 O

Lemma 5.1: [29] For any fuzzy propositions A;, A,
in the same universe U,

ExtUXV (A] P AZ}U = Extva {Al }U v Extuxv {Az}u
Extyxy (A} + Ag)y = Extyuy {Aq}y + Extyey (Agdy
Extyyy (A }y = Extyey (Arly

In words, “performing Boolean operations and then
taking extension into the higher universe” is equivalent
to “first taking extension and then performing the
Boolean operation in the extended universe”.

Proof: Obvious by definition.

Extension of a fuzzy proposition into a higher universe
will have the same physical interpretation with the
original proposition. In fact, in Example 5.1,
Extyyxy{A,} can be interpreted as “temperature is
cold, pressure is any” hence has been also shown as
{Al} UxV-

Equivalence axioms can be proved between a fuzzy
proposition in the universe U and its extensions in the
higher universes. It should be noted that since the
“projection” and “shadow” of the “extension fuzzy
proposition” into the “‘original lower universe” is equal
to the original proposition, projection or shadow
operation can be accepted as the inverse procedure of
the extension operation.

Both one-universe and two-universe models can
represent the same system equivalently. Even after the
one-universe model has been chosen and calculations
(by using AND, OR, NOT operations and their
combinations) have been made on this system,
whenever this model becomes insufficient, one can
just add a new universe and continue. Since all
calculations that were made up to that time are valid in
the higher universe, after this step calculations can
continue in the higher universe.

The representation of a proposition “A” afier the
extension into the higher universe UxV will also be
called with the same name “A” assuming that all
definitions and calculations that were made up to that

time were made in this higher universe. The original
proposition in the original universe U will then be
represented as {A}y. If representations, of both one-
universe, and two-universe fuzzy propositions should
be shown in one equation, as in “extension”,
projection”, "shadow" operations, the following
notation will be used [29):

Ext yy{A}y extension into UxV of the fuzzy
proposition A in U.

Projy{A}yxy  projection into U of the fuzzy
proposition A in UxV.
Shady{A}y,y shadow
proposition A in UxV.

into U of the fuzzy

5.5 LOGIC OF COMPOSITION OPERATION

Definition: Let U=(u; u, uj...u) and V=(v| v,
V3 ... V) be two universes. Consider the fuzzy
relation (two-universe fuzzy proposition) R given in
UxV in matrix form, and a fuzzy proposition A in U
given in vector form. Composition of R and A is
defined by Zadeh [13-16] as:

I Iy2 Tin a
ReA=| 1y 22 T | 7] @
Tml Tm2 Tma al;
max {( r;1Aa)), (F12A2a2), ... ,(F1aA2,)}
= | max {( r21A2a)), (T22A82), ... ,(T2aA,) }
max {{ rm1Aay), (Tm2A2), ---+(TmaA20)}

The result is an m-vector (proposition in the universe
V). Due to similarity of this operation to matrix
multiplication, this operation is called as “max-min”
matrix operation.

As Zadeh also stated, this operation is equivalent to
“AND operation followed by projection operation”.
For this reason we prefer to use the representation
Projy(RAA}yy instead of the representation R°A.
This is more meaningful, because it explicitly states
the logic of composition operation as “AND operation
in the higher universe and projection into the
requested universe.”

5.6 CONTRACTION AFTER EXTENSION

As stated above, if a proposition is first extended to a
higher universe, and then projection/ shadow is taken

back into the original universe, the original
proposition is obtained. Hence:

Projy{ Ext ey (Alyl=A s.1)
Shady;{ Ext yuy {Alyl=A 5.2)

What is obtained if the proposition A in the universe U
is extended into the higher universe UxV and
projection/shadow is taken into the other universe V?
The result is given below [29]:
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Lemma 5.2:

a) Projy {Ext g,y {A}y } = (0g)y (5.3)
b) Shady {Ext .y {A}y } = (EQv (5.4)
where @,,€, are the maximum and the minimum
values of the proposition A, and (Q)y.(€,)y are
constant propositions in the universe V having values
Oy, €4, respectively.

Proof: Consider that the proposition A in U has been
extended into UxV by copying the proposition A to all
columns. If the maximum element (say the k’th
element) of A is 04, then the k’th row of the matrix is
all o, while the other columns are smaller. Projection
into V gives the proposition (€, )y . Part-b is proved
similarly.

Equations (5.1) and (5.2) are called “returning back
into the original universe”, while (5.3) and (5.4) can
be called as “indirect projection (indirect shadow)
from a one-universe into another one-universe"”.

Cartesian product (AND operation) of two fuzzy
propositions A,B in different universes U,V gives the
result in the universe UxV. Is it possible to obtain the
original propositions A , B by taking the projection
back into the original universes? The reply is given in
the following lemmas [29]:

Lemma 5.3: Consider the fuzzy propositions A and
B in the universes U and V respectively. If the
maximum truth value of the proposition B is less than
“1”, say0lg, then the projection Projy{A-B}yyy is
different from the proposition A such that the
truth values above Oy are decreased to the value
Og (clipped from above by Otg). The counterpart is
also applicable.

Proof: Let the maximum element (say the k'th
element) of B is 0g. In the extended universe
representation of B into the universe UxV (copying
the row vector B into all rows) the k’th column of the
extended matrix is all Ol (this column is constant
fuzzy proposition (Qg)y;), while the other columns are
smaller. Extension of the fuzzy proposition A into
UxV makes all columns copies of the column vector
A. AND operation of these two extension matrices
makes the k’th column A-(0g)(; (A limited from above
by 0g) while the other columns are smaller. Projection
into U gives A-(0lg)y. Hence the result.

Lemma 5.4: Consider the fuzzy propositions A and
B in the universes U and V respectively. If the
minimum truth value of the proposition B is greater
than “0", say €g, then the shadow Shady{A+B}y;,.y
is different from the proposition A such that the
truth values below €p are increased to the value g
(clipped from below by €g). The counterpart is also
applicable.

Proof : Can be made
Lemma 5.3,

similar to the proof of

5.7  DISTRIBUTIVITY PROPERTIES
PROJECTION / SHADOW OPERATIONS

Consider projection / shadow operation into a one-
universe of a multi-universe propositional expression
as:

Projy; (A+A- =B + —A-B}

ShadU {AB+ -B + —1A}

OF

where A,B are propositions in the universe U,V
respectively. Is it possible to use distributive law so
that projections and shadows can be taken separately?
The answer is given in the following lemmas:

Lemma 5.5: Projection operation is distributive with
respect to OR operation.

Lemma 5.6: Shadow operation is distributive with
respect to AND operation.

Proofs of the above lemmas are obvious since both
projection and OR operations are performed by
maximum operations, and since both shadow and
AND operations are performed by minimum
operations.

Projection operation is in general not distributive with
respect to AND operation.  Similarly, shadow
operation is in general not distributive with respect to
OR operation. However, the following lemmas give
important sufficient conditions for distributivity.

Lemma 5.7: [29] If the AND operation is between
propositions which are extensions of separate,
originally one-universe propositions, then projection
operation is distributive with respect to AND
operation.

ProjU{A-B)va

= Projy{Alyxy - Projy {Blyxy = A (ag)y

Proof of Lemma 5.3 above is also the proof of this
lemma.

Lemma 5.8: [29] If the OR operation is between
propositions which are extensions of separate,
originally one-universe propositions, then shadow
operation is distributive with respect to OR operation.
Proof can be made as in Lemmas 5.3 and 5.4.

Let A, B be fuzzy propositions in the universes U,V
respectively. Combining these propositions via
AND/OR operations gives the results in the higher
universe UxV. What is obtained if we take
projection/shadow back into the original universes?
The replies are given in Lemma 5.9:

Lemma 5.9:

Pl'ojU {A'B )va

= Projy {A}yxy - Projy {Blyxv = A - (ag)y (5.5)
= A in U limited from above by the maximum value of B.
Projv {A'B )va

= Projy {A}yxy * Projy {Blyxy = (@a)y - B (5.6)
=B in 'V limited from above by the maximum value of A.
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Projy {A+B}yxy
= PrOjU (A}va + PrOjU {B }va =A+ ((I.B)U (5.7)
= A in U limited from below by the maximum value of B.
Projy {A+B }yxy

-_-Projv{A}va + Projv {B}va=(aA)v+B (58)
=B in V limited from below by the maximum value of A.

Shady, {A*B ) yxy

= ShadU {A}va y ShadU {B]va =A- (SB)U (59)
= A in U limited from above by the minimum value of B.

Shady {A-B }yxy

= Shady {A}yxy - Shady {Bly,y = (Ep)y - B (5.10)
=B in V limited from above by the minimum value of A.

Shady; {A+B }yyv
= Shadyy{ A} yxy + Shady{Blyxy = A+Ep)y  (5.1D)
= A in U limited from below by the minimum value of B.

Shadv { A+B }UXV

= Shadv{A}UxV + Shadv(B}va = (EA)V+B (512)
=B in V limited from below by the minimum value of A.

The constants Oi4, O are the maximum values of the
propositions A, B respectively, and the constants E4 ,

€g are the minimum values of the propositions A, B
respectively. These results give simpler proofs and
extensions of Lemmas 5.3 and 5.4.

VL.DECOMPOSITION OF A MULTI-UNIVERSE
PROPOSITION INTO ONE-UNIVERSE
PROPOSITIONS

Given a two-universe fuzzy proposition (fuzzy
relation) R in the universe UxV, is it possible to
find propositions A and B in the universes U and
V satisfying R=AAB or R=AVB ? This property
is called as  “decomposition property”  and
discussed in [33-36] in fuzzy set-theoretic
approach. The decomposition property will be
discussed with multi-universe fuzzy propositional
logic approach, necessary and sufficient conditions
will be given, and an algorithm for decomposition will
be presented.

Lemma 6.1:

a) A necessary and sufficient condition for the relation
R to be expressed as R=AAB is that there will be a
complete row or column consisting of the minimum
element of R, and the remaining matrix R’ obtained by
deleting this row or column should have the same
property (R'= A’ A B’ is satisfied for some A’and B’).
b) A necessary and sufficient condition for the relation
R to be expressed as R=AVB is that there will be a
complete row or column consisting of the maximum
element of R, and the remaining matrix R’ obtained by
deleting this row or column should have the same
property (R'= A’ v B'is satisfied for some A’and BY).

Proof of (a): Necessity of one full row with minimum
value: Let R be decomposable, i.e. for some A, B in U

and V respectively, R={A}yA{B)y is satisfied and
let the minimum element of both A and B be in the
k’th element of A having value E. Extension of A into
UxV will give copies of A to the other columns, hence
the k’th row will be all € Since € is the minimum
value of both A and B, AND operation via extension
of B makes the k'th row all €, while all other elements
greater or equal.

Necessity of decomposability of the remaining matrix:
Without loss of generality assume that the minimum
value row is the last row of R. Then the following
operations in partitioned form is applicable:

R’ A

R= =AAB= AB
® AT
A'AB A'AB
A"AB €)

Hence R’ should also be decomposable as A'AB.

Sufficiency: Without loss of generality assume that the
minimum element line is the last row of R with values
all €, and let R' be the matrix obtained by disregarding
the k'th row of R, satisfying R'=A'AB' for some A’ and
B'. From the above partitioned matrix operation, it is
obvious that R is also decomposable.

Proof of (b). Can be obtained similarly.

The above lemmas give us a very easy algorithm for
obtaining decompositions. Note that by disregarding a
constant row (column), an element of A (B) is found.
In the remaining matrix, a column or row should be
searched. If the row or column with minimum
(maximum) element is not present at any stage, then

decomposition as R=AAB (R=AVB) is not possible.

Example 6.1: Decomposition Algorithm for R=A -B:

A StP
no
09 06 09 03 038 0.9 6
01 01 01 01 0.1 0.1 1
095 06 095 03 08 095 7
07 06 07 03 07 0.7 4

i (PR A S Ve

3 2 5 step no

Step-1: The matrix R has the minimum element of 0.1
in the second row. Hence the second element of A is
0.1.

Step-2: Disregarding the second row of R, the
minimum element is 0.3, in the fourth column. Hence,
the fourth element of B is 0.3.

After step-7, the remaining two elements (shown as x)
can have any value greater than or equal to “the last
used value” 0.95.

The step numbers are given above for reference.
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Example 6.2: Decomposition Algorithm for R=A+B:

A step
no
0 09 01 05 02 x
09 09 09 09 09 09| 2
03 09 03 05 03 03| 4
09 01 05 02 x

0
B 0 09 01 05 02
7 1 6 3 S) step no

Step-1: The matrix R has the maximum element of 0.9
in the second column. Hence, the second element of B
is 0.9.

Step-2: Disregarding the second column of R, the
maximum element is 0.9, in the 2nd row. Hence, the
second element of A is 0.9.

After step-7, the remaining ®vo elements (shown as x)
can have any value less than or equal to “the last used
value” 0, (hence they should be zero).

Note that in Example 6.1 if the terms shown by “x” are
selected as the minimum value (the last used value
0.95), A = Proj{R) and B = Projy{R} are obtained.
Note again that in Example 6.2, if the terms shown by
“x” are selected as the maximum value (last used value
0), A=Shad;{R} and B=Shady{R} are obtained.

The lemmas given below state that these are in fact
always valid [33]:

Lemma 6.2: If the relation R is decomposable as
R=A-B, then among all possible decompositions,
A=Proj,{R} and B,=Projy{R} are the minimum
propositions.

Proof: For any decomposition A and B satisfying
R=A-B, by Eq. (5.5) and (5.6),

A)=Projy{R}= Projy (A-Blyxy

= Projy {A)yxy - Projy {Blyxy = A - (ag)y

which is < A,

B, =Projy{R}= Projy {A-B}yyy

= Projy {A}yxy - Projy {Blyxy =(ap)y - B

which is < B.

and

A;'B) =Proj;{R}- Projy{R}

= (A(ogly) - (B- (aa)y) = (A(oy)y )'(B'(aa)u)

= (A in U limited by the maximum value of A)- (B in
V limited by the maximum value of B)

=A-B=R

Therefore A; (projection in U) and B, (projection in
V) are also decompositions and are smaller than or
equal to any other possible decomposition.

Lemma 6.3: If the relation R is decomposable as
R=A+B, then among all possible decompositions,
A=Shady;{R} and B;=Shady{R} are the maximum
propositions.

Proof: Can be made as in Lemma 6.2.
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