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ABSTRACT 
In this study, the theoretical background of a recently 
proposed new algorithm for finding an optimal 
blocking supervisor for discrete event systems is 
proposed. Afterwards an implementation of it is given. 
The recently proposed new algorithm, which tries to 
find an optimal blocking supervisor, depends on a new 
cost function over language and a new numerical 
performance measure. As a result at the end of the 
execution of the algorithm an optimal solution is 
always obtained. 
 

I. INTRODUCTION 
 
From a planning and control perspective, the 
manufacturing systems, which consist of robots, actuators, 
sensors, motors, etc., can be seen as a dynamical system 
whose states evolve according to the occurrence of 
physical events , thus can be classified as event driven 
systems or discrete event systems (DESs). In the past due 
to its simplicity of these systems, the intuitive methods or 
ad-hoc solutions have been adequate. However, the 
increasing complexities of these systems and the detailed 
system requirements have created a need for formal 
approaches for analysis and control of these kinds of 
systems. In this respect the theoretical background of 
discrete event systems and supervisory control theory was 
established. 
 
Generally discrete event systems are modeled as regular 
languages that can be represented by finite state automata. 
Usually the behaviour of the system is not satisfactory and 
must be “modified” by a control. In this perspective, 
supervisory control theory (SCT) gives us the possibility 
to build in the modifications via supervisor as much as 
possible. The supervisory control theory (SCT) was firstly 
introduced by Ramadge and Wonham[10]. The theory 
enables the synthesis of closed loop control for DESs by 
making some assumptions on the system that is to be 
controlled, and on the supervisor that is to control the 
system. Although the SCT has received a wide acceptance 
in academic communities and also some applications of 
SCT have been reported in the literature, it has not been 
accepted in the industry yet. This is mainly due to the 
difficulties arising in physical implementation of SCT. 
The state explosion problem is good example for this 
class.  

When we focus on the industrial examples, all the desired 
strings are not usually marked by the supervisor that is 
built according to nonblocking and controllability 
conditions. The designed supervisor could constitute a 
conservative solution due to preventing all probable 
blockings in the system. So one may be willing to risk 
blocking if there will be serious increase in the marked 
strings. Therefore to obtain the “best” supervisor, a new 
approach has to be improved so a new performance 
measure and optimization procedure is developed.  
 
In the literature several researchers have interested in 
optimization problem for discrete event systems and also 
have proposed optimal control of DES in different 
approaches. The milestones of solving this problem in the 
literature are as follows: Chen and Lafortune were 
interested in blocking in discrete event systems and 
introduced two operators on a set of languages that 
optimizes the performance measure in the sense of set 
inclusion [2]. Passino and Antsaklis proposed a cost 
function on the set of transitions and put a control 
objective for restricting the plant behaviour in such a way 
that optimal control of a discrete event system is 
equivalent to follow a trajectory of optimal cost [9]. Like 
Passino and Antsaklis, Brave and Heymann also 
introduced a cost function on the set of transitions and 
dealed with the optimal control problem as an optimal 
attractor problem. Different from them, the problem was 
formulated not only for a fixed single initial state but for 
any initial states[1]. Kumar and Garg proposed a cost 
function with payoff and control costs and transformed 
the optimal control problem to combinatorial one and 
solved with network flow algorithm. In this work Kumar 
and Garg assumed that a certain state may be visited only 
once, so the corresponding transitions are controlled only 
once [7]. Sengupta and Lafortune also used control and 
event costs to find the optimal nonblocking supervisor and 
solved the problem by dynamic programming [12]. Also 
this study constitutes the cornerstone of the recently done 
works on optimization in discrete event systems. Later 
Surana and Ray constructed a signed measure over 
discrete event systems and the measure is defined on state 
transitions. Also Fu and Ray used this signed measure for 
formulating an unconstrained optimal control policy. The 
policy is obtained by selectively disabling controllable 
events to maximize the measure [3].  These strategies 
have addressed performance enhancement of discrete 



event systems but none of them were interested in finding 
the optimal blocking supervisor with a unique numerical 
performance measure.  
 
This paper introduces the recently proposed an 
optimization algorithm to find the optimal blocking 
supervisor also gives an implementation of it. The paper is 
organized in 4 sections. Section 2 briefly gives the 
preliminaries. Section 3 describes the motivation, 
algorithm and implementation of it through an example. 
The paper is summarized and concluded in section 4. 
 

II. PRELIMINARIES 
 
When the literature is investigated, it can be easily seen 
that there are more than one description for discrete event 
systems but the mostly accepted one is as follows: 
Discrete event systems (DES) are dynamical systems 
which evolve in time by the occurrence of events at 
possibly irregular time intervals.  
 
Generally the system to be controlled is modelled with a 
Deterministic Finite State Machine (DFSM) defined by a 
6-tuple ( )0, , , , , mG X f x X= ∑ Γ  where X  is the set of 

states, ∑  is the finite set of events, :f X X×∑ →  is the 

state transition function, : 2X ∑Γ →  is the active event 
set, 0x  is the initial state and mX X⊆ is the set of 
marked states representing a completion of a given task or 
operation. Then the behaviour of the system G is 
described by a prefix-closed language ( )L G , which is 

defined as ( ) ( ){ }* *
0 ,L G s f x s X= ∈∑ ∈  where *∑  

denotes the set of all finite concatenations of events that 
belong to ∑ , including the zero length string ε ; the state 
transition function is extended to: * *:f X X×∑ → . 

( )L G  can be considered as the uncontrolled behaviour of 
the system. In this paper it is assumed that the 
uncontrolled behaviour of the system ( )L G  is finite. 

Similarly the language ( )mL G  corresponds to the marked 
behaviour of the DFSM G. 
 
For a string *s∈∑ , s  denotes the prefixes of s. 
Extending this definition to languages, prefix closure of a 
language L denoted as L is obtained. When a language L 
satisfies the condition L L=  then it is called prefix 
closed. In the literature the length of a string or Myhill 
congruence index of a language is symbolized with .& & . 
Also p  is a projection function defined on string where 

( )jp s  represents the prefix of string s  of length j [12]. 

If ( ) ( )mL G L G≠  then the DFSM G is said to be blocking. 
Two types of blocking can occur; these are deadlock and 

livelock. At deadlock, G can reach a state ix , where 

( )ixΓ = ∅ ( )i mx X∉  and at livelock; the DFSM can 
reach a set of unmarked states that form a strongly 
connected group of states, but with no transition out of 
this set [8]. In this work, it is assumed that all the possible 
blockings are deadlock. 
 
Some of the events in ∑  are uncontrollable i.e. their 
occurrence cannot be prevented by a controller. A sensor 
output at a manufacturing system is a good example of 
this class. In this regard, ∑  is partitioned 
as ( )c uc c uc∑ = ∑ ∑ ∑ ∑ = ∅∪ ∩ , where c∑  and uc∑  
represent the set of controllable events and the set of 
uncontrollable events respectively. Likewise the control 
action can be applied on a system that is partially 
observable, but in this work it is assumed that all the 
events are observable. 
 
The control of DES was for the first time explicitly 
introduced in the work of Wonham and Ramadge [11]. In 
this work, the aim of the supervisor is to generate a given 
language while restricting the system behaviour 
minimally. Here the supervisor’s role is characterized 
such that at any given system’s state, it determines a set of 
controllable events to be disabled so that the plant evolves 
over events without violating the specifications. In this 
perspective the existence of a supervisor is guaranteed if 
the desired language K satisfies Controllability Condition 
defined as ( )ucK L G K∑ ⊆∩ . But the given language can 
not be always controllable with respect to uc∑ . Then the 
idea of obtaining the maximum part of the given language 
is needed. Here the “maximal” means in terms of set 
inclusion. This maximum part of K is Supremal 
Controllable Sublanguage and denoted with CK ↑  and to 
compute efficient algorithms is given [10, 11]. With a 
similar approach violating the controllability condition, 
one finds the smallest prefix-closed and controllable 
language containing K. This language is known as Infimal 
Prefix-Closed Controllable Superlanguage of K and 
denoted with CK ↓ . Likewise algorithms also exist for its 
computation [8] 
 

III. PROBLEM FORMULATION AND AN 
EXAMPLE 

 
When the desired marked language is taken into 
consideration, the minimally restrictive nonblocking 
solution (MRNBS) is sometimes deemed inadequate 
owing to its too restrictive behaviour. In other words, the 
MRNBS gives a conservative result in the sense that it 
prevents all uncontrollable events that lead to blocking. 
As a consequence, this kind of a strategy may constrain 
the behaviour of the system significantly. Sometimes in 
some situations the blocking in the system can be easily 
detected and resolved. Moreover for the system to 



conclude a task may be more essential than avoiding the 
occurrence of a possible blocking. In this sense at the 
design phase of the supervisor, a relaxation in the 
nonblocking requirement is needed for obtaining a more 
functional supervisor. But at this point, the question “How 
much relaxing?” arises. In the past this problem had been 
considered by Lafortune and Chen and then they 
introduced two operators on a set of languages that 
optimizes the performance measure [2].  But by these two 
operators the optimal language is obtained in the sense of 
set inclusion. Also for different initial solutions different 
incomparable final solutions can occur. Moreover in 
practice the interpretation of generated strings by the 
system are not the same. So the differences between the 
strings have to be taken into consideration before 
selecting the “best” supervisor. To overcome these 
drawbacks in our previous works a new metric space and 
performance measure are introduced [4]. And for 
obtaining the best result a new algorithm is proposed [5].  
 
For a given G and the admissible S, the resulting closed 
loop system is symbolized with S/G. Let the admissible 
language and admissible marked language be ,a amL L  
respectively. Then the specifications and trivial 
assumptions on the controlled language are 

( ) ( ) ( )/ : /m mL S G L S G L G= ∩  

( ) ( ) ( )/ , /m am a aL S G L L S G L L L G⊆ ⊆ = ⊆ ,  

( )am a m a amL L L G L L= =∩ ∩  so amL  is ( )mL G  closed. 
Then the class of all admissible solutions is 

: : C C C
cand am a amL K L K L L↑ ↑ ↓  = ⊆ ⊆ ∧  

 
∩  

( ) ( )( )}ucK K K L G K= ∧ ∑ ⊆∩  

The strings that drive the system to blocking can be 
represented as a set which is defined as 

( ) ( ) ( ){ }( / ) : / \ /mBM L S G L S G L S G= . Also the 

admissible marked strings, which are not allowed by the 
controlled system, are denoted with 

( )( ) ( ){ }/ : \ /C
am mSM L S G L L S G= . These two sets are 

called Blocking Measure Set and Non-Satisfying Measure 
Set respectively [2] 
 
At this point, there is no difference between all strings 
generated by the system. For example, all the strings in 
the non-satisfying measure set have the same significance. 
But in practice, this kind of an assumption is not always 
true. Sometimes this set may include a very important 
string which concludes a very important task. To improve 
the performance, this kind of a string has to be added to 
controlled language in a formal way. But due to set 
inclusion, the suggested solution by Chen and Lafortune 
does not give permission for addition of this string if a 
new blocking arises.  
 

For this purpose, a new performance measure, which 
gives an opportunity to discriminate the languages, is 
formulized below. 
 
Definition 1: The importance of a generated string is 
denoted as ic  where 

*s∈∑ , *: \ic ε +∑ → \  and ( ) 0ic ε =                   ▲ 
Definition 2: The importance of a language is defined as 

( ) { }
*

: 2 0Lβ +∑ → +\   where 
*

2L ∑∈  such that 

{ 1 2 3, , ,L s s s= }..., ns .Then 

( ) ( )
1:

0

n

i i
i

c s L
L

otherwise

β
=


≠ ∅

= 



∑                         ▲ 

With these two definitions given above, the discrimination 
of the strings and the languages are generated. So the 
worth of a language is obtained in terms of function β  
but when it is investigated deeply, it is easily seen that it 
has no determining factor on languages only gives a 
numerical value. Therefore for comparing different 
languages a more formal structure has to be formed. So a 
new metric space for discrete event systems is formulated. 
For detailed information on metric space refer to [6]. 
Definition 3: The distance function 

{ }
* *

: 2 2 0d +∑ ∑× → +\  is defined in terms of the 
importance of the language as: 
( ) { } { }( )1 2 1 2 2 1, : \ \d L L L L L Lβ= ∪                                  ▲ 

Then the set 
*

2∑  and the distance function defined above 
forms a metric space ( )*

2 ,d∑ . The blocking measure set 

and non-satisfying measure set which were defined by 
Chen and Lafortune can be easily improved on defined 
metric set.  
 Definition 4: The Non-Satisfying Measure and Blocking 
Measure for candL L∈  are respectively 
k ( ) ( )( ): , /C

am mSM L d L L S G=  

k ( ) ( ) ( )( ): / , /mBM L d L S G L S G=                      ▲ 

With these two definitions given above, not only the 
elements of these two sets are not known but also an 
opinion about their effects on the system can be obtained. 
By them it is clear that only trying to decrease the number 
of the elements of these two sets is not enough. Intuitively 
it is easily seen that the sum of these two performance 
criterions gives the performance measure of the system in 
this manner. 
 Definition 5: For candL L∈ , the performance measure of 

the language is defined as: i k ( ) k ( ): CJ SM L BM L= + .    ▲ 
 
Different solutions can be compared because the denoted 
performance measure is a numerical performance 



measure. As expected the language that gives the 
minimum performance measure is the best solution. 
Sometimes pareto optimal solutions can be observed. But 
here this kind of a solution set is not in our consideration. 
Then the optimal blocking supervisor problem can be 
defined as follows: 
Definition 6: Let the uncontrolled behaviour of the system 
be ( )L G , the performance measure be iJ , and then 

optimization problem is defined as imin
candL L

arg J
∈

 
 
 

        ▲ 

Let ISS  be a given supervisor that symbolizes the initial 
supervisor such that ( )/IS IS candL L S G L= ∈ . For ISS , 

( )ISBM S  and ( )C
ISSM S  will be a finite set 

as ( ) { }1 2, ,...,IS mBM S α α α= , ( ) { }1 2, ,...,C
IS nSM S ξ ξ ξ= .  

 
For guaranteeing the solution to be optimal below 
assumption are given. 
To i ( ) ( )\ \ \ \ 0

CC
i jJ L L L Lα α

↑↑     =   
     

∩  

                                              ( ) ( ) \ \ \ \
CC

i jL L L Lα α
↑↑   

∨ ⊇   
    

 

Definition 7: For ( ),i j BM Lα α ∈ and candL L∈  there 
exists a transformation 1 : cand candT L L→  such that 

( ) ( ) ( ) i
1

\  J \
, :

C C
i i

i
L if L J L

T L

L otherwise

α α
α

↑ ↑  
<      =   




�
                    ▲ 

According to the “if statement” in the definition of 1T , 
removing a string is bounded to a strict performance 
improvement. As the blocking set is finite; the 
transformation gives the best solution in m  steps 
according to blocking measure set. And candL  is a 
complete lattice set for 1T , so the transformed language is 
always a member of candL . For guaranteeing the 
uniqueness of the solution the below assumption is given 
. 
The first part of the assumption simply tells us that the 
intersection of strings, that are removed from the language 
due to two different blockings, have no effect on 
performance measure. In other words the removed 
common strings have no influence on blocking or success. 
Also at the second part, it is told that the strings that are 
removed due to one blocking can include same sort of 
removed strings. Moreover this assumption does not 
possess a too restrictive structure on target languages. 
Remark 1: A few more words for existence and 
uniqueness of the solution: The existence is guaranteed by 
the definition of candL  and the uniqueness of the solution 
is obtained by Lemma 1 and the assumption given above. 
As a straight result the following relation always holds. 

( )1 1 , ,i kT T L α α  =   ( )1 1 , ,k iT T L α α   . Similarly this can 
also be extended to more than two words. 
Definition 8: For ( ), C

j l SM Lξ ξ ∈ , candL L∈  then there 

exist a transformation 2 : cand candT L L→  such that 

( ) ( ) i ( ) i
2

 
, :

C C
j j

j
L if J L J L

T L
L otherwise

ξ ξ
ξ

↓ ↓  
<      =   




∪ ∪                ▲ 

Like 1T , including a string is strictly bounded to 
performance improvement so in a similar way 2T  gives 
the best solution according to non-satisfying measure set.  
 
In a similar way, in the name of guaranteeing the 
uniqueness of solution a new but similar assumption is 
included.  
i ( ) ( )\ \ 0

C C
j lJ L L L Lξ ξ
↓ ↓     =       

∪ ∩ ∪  

                              ( ) ( ) \ \
C C

j lL L L Lξ ξ
↓ ↓   ∨ ⊇     

∪ ∪  

Remark 2: candL  is also a complete lattice set for 2T . So 
the existence of the solution is guaranteed. Also in 
accordance with lemma 2 and the given assumption, the 
transformation gives a unique solution over non-satisfying 
measure set. 

As it is seen, the transformations 1T  and 2T deal with the 
blocking set and non-satisfying set respectively. If these 
two transformations are used together, an optimal 
blocking supervisor can be attained with respect to 
performance measure.  
Remark 3: Since iα  and jξ  are arbitrary elements so 

always i ( ) i ( )\ \
C CCC

i j j iJ L J Lα ξ ξ α
↓ ↑

↓↑
        ≤           

∪ ∪  

holds. Then applying 1T  before 2T , gives a smaller 
performance measure. Then using these two 
transformations in shown order gives us the optimal 
blocking supervisor. This solution can also be applied in 
an algorithmic structure.  
Step 1  
• Pick any IS candL L∈ and calculate 1 max

C
ISL L K ↓= ∪  and 

( )1
C

FS amL L L ↓= ∩  respectively where  

( ) ( ){ }max : sup :  \ C
am IS IS amK K K L L ve K L L↓= ⊆ ⊆ ∪  

• Find ( ) { }1,...,FS mBM L α α= , ( ) { }1,...,C
FS nSM L ξ ξ=  

Step 2 
1( , )FS FS iL T L α= . Repeat this step for ( )1i FSBM Lα∀ ∈  

Step 3 
2 ( , )FS FS jL T L ξ= . Repeat this step for 

( )1
C

j FSSM Lξ∀ ∈  



Remark 4: Due to 1 2 and T T  are defined on finite sets, the 
number of iterations needed to arrive an optimal blocking 
supervisor is  ( ) ( )2 2

CBM L SM L m n+ = +  

 
Figure 1 

Example: Consider the automata G in Figure 1. Let 
{ }1 2 3 4, , ,uc β β β β∑ = , { }1 2 3 1 4 5 6 3 7, ,amL α α α α α α α β α= , 

{ }1 2 3 1 4 5 6 2 3 7 4, ,a amL L α α α β α α α β β α β= ∪ . ( )1 2 3 7ic α α α = ,

( )1 2 3 1 10ic α α α β = , ( )1 4 5 6 10ic α α α α = , ( )1 4 5 6 2 2ic α α α α β =

( )3 7 5ic β α = ,  ( )3 7 4 7ic β α β =  

Let { }1 2 3 1 1 4 5 6 2 3 7 4, ,ISL α α α β α α α α β β α β= . Then 
k ( ) 0CSM L = , k ( ) 19BM L =  
i ( ) k ( ) k ( ) 19C

IS IS ISJ L BM L SM L= + =  

maxK = ∅  so ( )1 SM IS ISL A L L= = and ( )1 1FS BML A L=  ISL=  
( FSL  denotes the final solution) When the example is 
solved by Chen and Lafortune’s optimization technique 
and the final solution remains the same. So no change at 
performance measure occurs. Now the problem will be 
solved by the search algorithm presented above. 
Step 1 ISL  is defined.  

( ) { }1 2 3 1 1 4 5 6 2 3 7 4, ,ISBM L α α α β α α α α β β α β=  

( )C
ISSM L = ∅ , FS ISL L=  

Step 2  
The transformation 1T  will be applied to blocking set. 

( ) { }1 1 2 3 1 1 4 5 6 2 3 7 4, ,FST L α α α β α α α α β β α β=  because 
i ( ) i ( )1 1 5 1,FS FSJ T L J Lα α β  <   

( ) { }1 1 4 5 6 2 1 4 5 6 2 3 7 4, ,FST L α α α α β α α α α β β α β=  because 
i ( ) i ( )1 1 2 1,FS FSJ T L J Lα α β  >   

( ) { }1 3 7 4 1 4 5 6 2 3 7 4, ,FST L β α β α α α α β β α β=  because 
i ( ) i ( )1 1 2 1,FS FSJ T L J Lα α β  >   

Step 3 
There is not any iteration step in this part because 

( )C
ISSM L = ∅  

Then { }2 1 4 5 6 2 3 7 4,FSL α α α α β β α β=  

The optimization algorithm presented above gives a better 
result according to numerical performance measure.  

 

IV. CONCLUSION 
 
The aim of the paper is to study the blocking in 
supervisory control of DES. For this purpose in our recent 
work a new performance measure was proposed and two 
different distance functions were given. Also a new 
optimization algorithm was suggested. This paper 
contributes a better understanding of the properties of 
blocking and gives a unique optimal blocking supervisor 
among a set of admissible supervisors. This paper is 
concluded by an example showing that the task of finding 
the optimal blocking supervisor  
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