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ABSTRACT 

In this study, propagation characteristics of a specific 
photonic crystal fiber (PCF) structure is investigated via 
Localized Basis Function (LBF) method. Simulation results 
are presented which demonstrate that modal field variations 
can be obtained in an accurate and numerically efficient 
manner utilizing the LBF approach proposed in this work. 
  
                        I. INTRODUCTION 
In recent years, there has been a significant interest in 
photonic crystal fibers (PCF’s). PCF’s are single material 
optical fibers with a periodic array of air holes made in 
their cross-sections running along the entire length of the 
fiber. The large and controllable periodic variations of 
transverse refractive index offered by these fibers opens 
up exciting new opportunities for the control and 
guidance of light [1, 2, 3, 4].  
  
In a PCF, light can be guided using either one of two 
quite different mechanisms: Total Internal Reflection 
(TIR) mechanism and Photonic Band Gap (PBG) effect 
[1]. TIR occurs when the refractive index of the core is 
higher than that of the cladding surrounding it. TIR is a 
well known mechanism and has widely been used in 
describing propagation in optical waveguides. Within the 
last decade there has been an increasing interest in a 
physical mechanism known as PBG which provides some 
new opportunities in confining and controlling light in 
fibres. PBG can be obtained by introducing a periodic 
perturbation into the cross-section of the fiber. The main 
property characterizing the PBG structures is the 
occurrence of pass and stop bands in the frequency 
spectrum. 
           
In this study, propagation characteristics of a specific 
photonic crystal fiber (PCF) structure depicted in Fig.1 
are investigated via Localized Basis Function (LBF) 
method. The PCF structure considered here, consists of 
an unbounded cladding region formed by introducing 

circular perforations in a lossless dielectric conforming to 
a periodic pattern of hexagonal symmetry except for a  
“defect” region obtained by removing one of the holes. 
Guided mode energy is concentrated in the vicinity of this 
defect which acts as the (high-index) core region for the 
PCF. Hermite-Gaussian type Localized Basis Functions 
(LBF) [5, 6, 7] are utilized together with Fourier type 
expansions in representing the localized guided modal 
fields and the periodic variation of the refractive index in 
the transverse domain. Because the refractive index of the 
defect is higher than the “effective index” of the cladding, 
the guidance of the electromagnetic field in the PCF 
structure can also be thought to result due to TIR 
mechanism. Numerical results are given which 
demonstrate the applicability of the presented method. 
    

                                 II.  METHOD 
In the LBF method considered in this paper, expansions 
based on Hermite-Gaussian (HG) functions are used for 
representing the fields within the core (defect) region 
whereas a mixed representation utilizing HG functions 
and 2-D Fourier series are used to model the periodic 
refractive index variation together with the defect (core) 
region. These expansions reduce the problem of 
determining the propagation characteristics of PCF to a 
matrix eigenvalue problem. The solution of the latter 
contains spurious elements, which need to be identified 
and eliminated. In the present work, the concept of the “ 
effective index” is utilized as a first approximation for 
rapidly discriminating between eigenvalues 
corresponding to the guided and radiation type solutions 
of the structure. Effective index is then utilized by 
arguing that the modal indices of the guided modes 
should fall within the interval bounded by the core 
(defect) refractive index and the effective index of the 
cladding. However, for verification purposes we have 
also plotted the variation of the fields corresponding to 



the calculated eigenvalues in order to that they actually 
correspond to the guided modes of the PCF.  
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. An unbounded periodic cladding structure and 
high-index core region (defect region); air holes are 
arranged in a hexagonal lattice in the cladding region, and 
the central air hole is removed. 
 
 
In our work, scalar wave approximation is assumed  
because the ratio of the air hole diameter (d) to the hole 
separation (Λ) is small (d/Λ<0.35). A modal electric field 
component is expanded as 
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Here va denote expansion coefficients and ( )jiv ,=  
represents a double index. Thus written explicitly we 
have 
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where N is the number of terms retained in the expansion 
and iΨ  stands for orthonormal basis of Hermite-Gaussian 
functions: 
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Here iH  is the ith-order Hermite polynomial. w  in (2) 
which represents the characteristic width of the basis set 
is taken to be Λ/2 where Λ is the separation between the 
holes.   
 
The squared transverse refractive index profile is 
separated into two parts: corresponding to the periodic 
lattice of holes which may be described using a Fourier 

series, and that corresponding to the central defect (i.e., 
the core) which will again be described using localized 
orthonormal Hermite-Gaussian functions. We thus write,  
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where N1 and N2 terms are retained in expansions for the 
defect region and the periodic cladding region holes, 
respectively. lx and ly are the periods along the x and the 
y axis, which for the structure shown in Fig.2  are 
determined as lx=Λ and ly=1.732Λ, respectively.  

                                                                                                                        

iψ  in (3) has the same functional form as given by (2) 
however, w  is now replaced by dw 26.0= (d: the air 
hole diameter), i.e. the basis sets used in representing 
modal fields and ( )yxn ,2  within the defect region are 
defined with different characteristic widths.           
 
Expansion coefficients Dij are evaluated via inner 
products defined over the unit cell (UC), 
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Figure 2. A periodic unit cell of the unbounded periodic 
cladding structure. 
 
 
On the other hand Cij coefficients in (3) are evaluated via 
inner products defined over the central defect (CD) 
region,    
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The representations for the scalar electric field 
component and the squared transverse refractive index 
given in (1) and (2), respectively, are substituted into the 
scalar wave equation. 
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where 0/ kn β=  denotes the modal index. 
 
Next, each term of the resulting expression is multiplied 
by ( , )F x yµ

 and integrated over the entire transverse (x, 

y) plane. Making using of the orthonormality of the 
Hermite-Gaussian basis functions, the problem is then 
reduced to matrix form:  
 

0)( 2 =− VInM                                                             (7) 
 
where I stands for the unit matrix. Setting det[ InM 2− ] 
= 0 yields the modal eigenvalues 2n .  Here V denotes 
the vector (N2×1) of expansion coefficients a , and the 
elements µ,vM of N2×N2 matrix M are obtained as 
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The guided mode solutions can be distinguished from the 
radiation modes by extracting the eigenvalues 222 kn β= , 
which fall within the following range  
 
 

  
2

2

2
2

seff n
k

n 〈〈
β                                                                                                          (9)                                                             

 
where ns is the refractive index of substance and neff is the 
effective index of the periodic cladding region obtained 
by perforating the substrate. The determination of the 
effective index of the periodic cladding region involves 
the solution of an auxiliary problem defined on a unit cell 
[8]. On the other hand, some researches [8, 9, 10] have 
reported results by modeling the PCF as a step index fiber 
characterized by core and cladding regions by the 

refractive indices of the defect region and effective index, 
respectively. The problem in this approach resides in the 
ambiguity in defining the equivalent core radius. It would 
therefore be interesting to determine the extent to which 
the concept of effective index can be stretched in 
modeling PCF’s.  
 

III. RESULTS 
The specific PCF structure of hexagonal symmetry 
considered in this work is shown in Fig.1. In all 
numerical calculations presented here we assumed 
d/Λ=0.2 and ns=1.45, corresponding to a silica substance. 
 
Fig.3 demonstrates that the convergence properties of the 
representation given in (3) are fairly good and the 
refractive index profile can be represented quite 
accurately by using reasonable number of terms in the 
expansions.    
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Figure 3. Variation of index profile along x profile 
obtained from (3) using N1=14, N2=200.   
 
 
It is reported in the literature [8] that the PCF considered 
here supports only one guided mode. The calculated 
variation of the normalized propagation factor defined as  
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is shown in Fig.4. It can be seen from this figure that a 
single mode starts propagating in the PCF for d/λ > 0.65 
and no other mode propagates in the range of d/λ values 
shown in the figure. 
 
 
 
 
 
 
 
 
 
 
 
      
        Figure 4. Variation of b with d/λ. 
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The variation of calculated transverse profile of the 
dominant mode is given in Figs. 5a and 5b for   d/λ=0.4 
and d/λ=0.9 respectively. It is clearly seen from a 
comparison of Fig. 5a with Fig. 5b that one obtains a 
radiation type field behaviour and a guided mode 
behaviour when  d/λ is chosen below or above the modal 
cut-off value d/λ=0.65, respectively. 
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                                        (b)   
 
Figure 5. The radiation and guided modes below and 
above the modal cut-off value d/λ=0.65. (a) The radiation 
mode, d/λ=0.4. (b) The guided mode, d/λ=0.9. N=10, 
N1=10, N2=100. 
 

                 IV. CONCLUDING REMARKS 
In this study, propagation characteristics of the specific 
photonic crystal fiber (PCF) structure are investigated via 
Localized Basis Function (LBF) method. Hermite-
Gaussian type Localized Basis Functions (LBF’s) [5, 6, 
7] are utilized together with Fourier type expansions in 
representing the localized guided modal fields and the 
periodic variation of the refractive index in the transverse 
domain. We have presented numerical results, which 

compare very well with those reported in the literature 
[6]. This scaler work demonstrates that the fields in the 
PCF can be obtained in a straight forward manner using 
LBF approach. Moreover, the numerical efficiency of this 
approach is quite good. Although the scalar case is 
considered in this paper, the method can also be used to 
obtain full wave solutions for the vector fields.   
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