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ABSTRACT 

In this paper a novel local uniform exponential stabilization 
for a class of nonlinear systems is investigated. A continuous 
and time-varying feedback control is constructed under 
which the local uniform exponential convergence for such 
systems is guaranteed. It is seen that the convergence rate 
and convergence region are variable parameters and they 
are chosen by the designer. The proposed method dose not 
need to construct Lyapunov functions and a time-invariant 
one is introduced.  Some illustrative examples are also 
provided to show the effectiveness of the proposed method.  
 

I. INTRODUCTION 
Given a control system, the first and most important 
question about its various properties is the stability [1]. 
The most useful and general approach for studying the 
stability of nonlinear control systems is the theory 
introduced in the late 19th century by the Russian 
mathematician Alexander Mikhailovich Lyapunov. 
Lyapunov's work includes two methods for stability 
analysis, indirect (linearization) method and direct 
(Lyapunov function) method, which determines the 
stability of equilibrium points. The indirect method draws 
conclusion about a nonlinear system's local stability close 
to an equilibrium point. The direct method is not 
restricted to be close to equilibrium and determines the 
stability by considering a scalar continuous and 
differentiable function for the system and examining the 
function time variation [1-5]. However it does not provide 
any coherent methodology for constructing such a 
function. The investigation of stability analysis of 
nonlinear systems using the direct Lyapunov method has 
produced a vast body of important results and has been 
widely studied.  
 
The Lyapunov method that was introduced for analysis 
also is a useful tool for control design (synthesis) of the 
nonlinear systems. It is recognized that the Lyapunov 
function method serves as a main technique to reduce a 
given complicated system to a relatively simple system 
and provide useful applications to control theory [6]. The 
objective of control design for physical systems is to 
construct a feedback control law which the closed-loop 

system satisfies the desired behavior [3]. For linear time 
invariant (LTI) systems there are a wide variety of 
controller design techniques that achieve a range of 
performance objectives including state regulation, 
tracking desired trajectories, etc. The linear quadratic 
regulator, H-infinity and other robust control techniques, 
classical approaches such as root locus and Bode design 
techniques are different methodologies for achieving the 
desired behavior. But there are no universal techniques 
for nonlinear systems. Different nonlinear systems must 
generally be considered as a separate design problem. In 
many design methods based on Lyapunov's direct method 
a Lyapunov function is constructed to guarantee the 
convergence of trajectories to an equilibrium point or an 
equilibrium set. Among them are Lyapunov redesign, 
back stepping, sliding mode and adaptive control [1-5].  
 
There have been a number of interesting developments in 
searching the stabilization law for nonlinear systems, but 
most have been restricted to find the asymptotic 
stabilization control law. Unlike linear systems, where the 
asymptotic stability implies exponential stability, the 
exponential stability for nonlinear systems in general may 
not be easily verified. Some recent investigations which 
have dealt with exponential stabilization for nonlinear 
systems can be seen for example [6-12]. Sufficient 
condition for stability of a class of nonlinear time-varying 
differential equations was proposed in [6]. In [7] 
exponential stabilization for single chained form systems 
by means of a static discontinuous feedback was 
investigated. An exponential stabilizing controller for an 
open-loop unstable bilinear system was proposed in [8].  
In [9] an extended chain form is investigated and ultimate 
exponential stabilization is achieved. The problem of 
exponential stabilization of a drift less nonholonomic 
chained system is addressed and solved by means of time-
varying control law in [10]. In [11] the problem of robust 
exponential stabilization of a class of uncertain dynamic 
systems with time varying delays and bounded controllers   
is proposed. Finally [12] proposed a global exponential 
stabilization for uncertain linear systems via output 
feedback. 

  



In this paper two novel approaches based on Lyapunov 
method for local exponential stabilization of a class of 
non-autonomous nonlinear systems are introduced, until 
the systems requirement satisfied. The proposed method 
dose not need to construct Lyapunov functions and a 
time-invariant one is introduced. The paper is organized 
as follows: Section II introduces notation, definitions and 
other preliminaries. The main results and some illustrative 
examples are stated in section III. Finally section IV is 
conclusion. 
 

II. PRELIMINARIES 
Throughout this paper, nR  is the n-dimensional real 
space, kR≥ is the real numbers greater or equal to k, 

+R denotes the positive real numbers, x  is Euclidean 

norm of nRx ∈ , )(xV∇  is Gradient of smooth scalar 

function )(xV , RB  denotes the spherical region (ball) 

defined by Rx < , and a  is absolute value of real 
number a . 
 
Definition 1:  A function RDV →:  is said to be 
positive definite in D if it satisfies the following 
conditions: 
 

i. 0)0(   and    0 =∈ VD  
ii. 0)( >xV  in { }0−D  

 
Definition  2:  Let RDV →:  and nRDf →: . The Lie 

derivative of V along  f, denoted by VL f , is defined by  
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Consider the nonlinear system described by the time-
varying differential equations: 
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(1) 

 
where, nRtx ∈)( , nn RRRxtf →×+:),(  is a given 

nonlinear function satisfying 0)0,( =tf  for all +∈ Rt . It 
is assumed that the existence of system's (1) solution is 
guaranteed. 
  
Definition 3: Consider, the function RDxV →:)(  has a 
continuous partial derivatives, and is positive definite in a 
ball RB , if the time derivative of )(xV along any state 
trajectory of system (1) is negative definite i.e. 0)( <xV& , 

then )(xV  is said to be a Lyapunov function for  
system (1). 
 
Definition 4: The equilibrium point x=0 of system (1) is 
locally exponentially stable if any solution of (1) satisfies  
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whenever, δ<)( 0tx and +++ →× RRRsr :),(α is a 

non-negative function increasing in +∈ Rr , and λ is a  
positive constant. It is said to be locally uniformly 
exponentially stable if the function )(⋅α dose not depend 

on 0t . It is said to be globally exponentially stable if (2) 

is satisfied for any nRx ∈ . 
 
According to system (1), consider a class of nonlinear 
non-autonomous control systems as 
 

0,      ))(),(,()( ≥= ttutxtftx&  (3) 
 
that nRx ∈ , mRu ∈ , nmn RRRRuxtf →××+:),,( . 
 
Definition 5: Control system (3) is exponentially 
stabilizable by the time-varying state feedback 

))(,( txtu ϕ= , where mn RRR →×⋅⋅ +:),(ϕ  if the closed-
loop system  
 

 ))(,(),(,()( txttxtftx ϕ=&   
 

is exponentially stable. 
 

    III. PROBLEM FORMULATION AND  
MAIN RESULTS 

 
Lemma 1: Consider that the origin is an equilibrium state 
for system (1). If in a neighborhood D of the equilibrium 
state x=0, there exist a scalar differentiable function 

RDV →⋅ :)( such that 
  

i. )(xV  is positive definite 
ii. There exist positive constant p,, βα  such that  

βα <≤ )(xVx
p

 
iii. The derivative of )(⋅V  along any solution of (1) 

satisfies 
))()(()( βλ −= xVxVxV&  

 
which λ is a positive constant. 



Then system (1) is locally uniformly exponentially stable 

and its convergence rate is 
p

λβ
. 

 
Proof: Since  V  is positive definite and  

 

)( βλ −= VVV&  
and 

βα <≤Vx p  
 

then,V& is negative definite, clearly (1) is asymptotically 
stable. To show the exponential stability, we have 
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solving the above differential equation leads to 
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Because β<)0(V , so 0>k ,and  
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Furthermore, 
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so, comparing (4) and (5) leads to  
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The inequality (6) shows that (1) is locally uniformly 

exponentially stable with convergence rate of 
p

λβ
 ڤ .

Definition 6: Consider an nn×  symmetric positive-
definite matrix P and nRy ∈ , then ),( PyE  is called a  
n-dimensional ellipsoid with center y if, 
 

}1)()(:{),( ≤−−∈= yxPyxRxPyE Tn  
  

   (7) 

 
Now, consider a class of non-autonomous nonlinear SISO 
control systems in the form of 

0)0(
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where, nn RRRxtf →×+:),( and nn RRxg →:)( , are 

differentiable for any nRtx ∈)( .  Assume that the origin 
is an equilibrium point of the unforced system. It should 
be noted that this class of systems is very famous and 
many physical systems can be modeled as (8).  
 
Consider, )(xV as follows  
 

RPxxxV T ≤=)(   (9) 

 
where, P is a diagonal and positive-definite matrix and R, 
is a positive constant, also assume we set V& as 
 

)()( xhRVVV =−=&  (10) 
 
Clearly V is in the form of lemma 1. Now, consider V, be 
a Lyapunov function for (8). From (8) it is obtained, 
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Equations (10) and (11) lead to, 
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Equation (12) and lemma 1 show that the system defined 
in the form of (8) is locally exponentially stabilizable for 

any ),0(0 R

P
Ex ∈  and under control ),( xtϕ  if, 

),(.)( xtfVxh T∇−  divides VLg , with ),( xtϕ  be the 

divisor and a continuous function for any ),0(
R

P
Ex ∈ , 

i.e. 
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(13) 

 
where, the division condition lets using limited control 
signal. It can be seen that the convergence rate and 
convergence region are variables and can be chosen by 
the designer. If )(xg  be constant this method can be 
applied to any first-order nonlinear systems in the form of 



(8), because condition (13) is always satisfied. For higher-
order systems checking (13) is necessary.  
Now, to show the applicability of the method consider 
following examples. 
 
Example 1: Consider a nonlinear first-order system as 
follows, 
 

utxxx ++−−= ))5cos(21(22&  
 

(14) 
 
By Choosing 1)( 2 <= xxV  and from (10) we set 

)()1()( 22 xhxxxV =−=&  it is clear that 

),(.)( xtfVxh T∇− divides xVLg 2= . Therefore, from 
lemma 1 and condition (13), system (14) is locally 
exponentially stabilizable for any ∈0x (-1,1) and under 
control 
 

))5cos(21(2)(
2

1 23 txxxxu +++−=  
 

(15) 

 
Figures 1(a) and (b) show the system response for 

8.00 =x , and the control signal, respectively.   

 
Figure 1. (a) Response of system (14) with 8.00 =x  
(b) Control signal )(tu for the system defined by (14) 

 
Example 2: Consider a nonlinear second-order system as 
follows, 
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From (9) we choose  RxpxpxV <+= 2

22
2
11)(  and from 

(10) we set 
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it is seen that ),(.)( xtfVxh T∇−  divides 

21 2xxVLg += , if, 2,1 21 == pp  and 3=R . Therefore, 
from lemma 1 and (13), system (16) is locally 

exponentially stabilizable for all ).
3
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is a diagonal positive definite matrix as follows 
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and the feedback control is  
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2
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(17) 

 
Figures 2(a) and (b) show the system response, with 

0.7]-   2.1[0 =x , and the control signal, respectively. 

 
Figure 2. (a) Response of system (16) with 

0.7]-   2.1[0 =x (b) Control signal )(tu for the system 
defined by (16)  

Following is a lemma which proposed for the local 
uniform exponential stability of (1) with different time 
derivative of V. 
 
Lemma 2:  Consider system (1) and assume that origin is 
an equilibrium state for it. If in a neighborhood D of the 
equilibrium state x=0, there exist a differentiable function 

RDV →⋅ :)( such that  
 

i. )(xV  is positive definite 
ii. There exist positive constant p,α such that 

 

)()( xVtx
p
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(18) 
 

iii. The derivative of )(⋅V  along any solution of (1) 
is  

 



VxxV )()( 0−−= βλ&  
 

(19) 
 

which λβ , are positive constant. 
Then (1) is locally uniformly exponentially stable for any 

β<0x and its convergence rate is:  

p

x )( 0−βλ
. 

 
Proof: By defining 0x−= βγ  so, we have  
 

VV λγ−=&  
and 

0>γ  
therefore,V& is negative definite, clearly system (1) is 
asymptotically stable, now it needs to show that it is also 
exponentially stable. It is known 
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solving the above differential equation leads to 
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where, 0)0( >= Vk . 
Equation  (18) and (20) leads to 
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The inequality (21) shows that system (1) is locally 
uniformly exponentially stable with rate of convergence 

of 
p

x

p
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Now, consider V as equation (18) and time derivative as 
(19), be a Lyapunov function for system defined by (8). If 
one set VxxVxh )()()( 0−−== βλ& , then (19) leads to 
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(22) 

 
From (22) and lemma 2 it is clear that system defined by 
(8) is locally exponentially stabilizable for any 

βBx ∈0 and under control ),( xtϕ  if, ),(.)( xtfVxh T∇−  

divides VLg , with ),( xtϕ  be the divisor and a continuous 

function for any βBx ∈0  i.e. 
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),( xtϕ  is continuous for any βBx ∈0  

 
 

(23) 

 
where, the division condition lets using limited control 

signal. If one choose 
0x

k

−
=

β
λ  which k is a positive 

constant then global exponential stability can be achieved, 
with rate of convergence of p

1 . Following are two 

examples, which illustrate the applicability of the 
proposed method. 
 
Example 3:  Consider a nonlinear first-order system as 
follows  
 

uxxxtxxxx +++−−= cos)1(sin23&  
 

(24) 
 
From (18), (19) we choose 2)( xxV =  and set 

2
0 )5()( xxxV −−=& . It is clear that ),(.)( xtfVxh T∇−  

divides xVLg 2= . Therefore, from lemma 2 and 
condition (23), system (24) is locally exponentially 
stabilizable for any ∈0x (-5,5). For 20 =x  the control 
signal is, 
 

xxtxxxxu cos)1(sin
2

5 23 +++−−=  
 

(25) 

 
The state of the controlled system and the control signal 
are depicted in Figures 3(a) and (b), respectively. 

 
Figure 3. (a) Response of system (24) with 20 =x  

(b) Control signal )(tu for the system defined by (24) 
 

 



Example 4:  Consider a nonlinear non-autonomous system 
as  
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where, 11 ≥− ∈Rmi  for ni ,,2 L=  and 0>a . From 
equation (18) we choose )(xV as follows 

 

22
1)( nxxxV ++= L  

 

(27) 
 
 

For satisfying condition (23), we should have 

 
 

ax −= β0  and 2=λ  
 

(28) 
 
 

Therefore, for any arbitrary 0x , by finding β  from (28), 
system (26) from Lemma 2 is exponentially stabilizable. 
For example consider a third-order system in the form of 
(26) as follows 
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Here, for example by 5]    2-   1[0 =x , from (28) we find 
10=β . The control law is  

 

2
21

1
2313 sin)tan1(cos5228.3 xxttxxxxu −+−−+−= −  

 

(30) 
 
The states of the controlled system and the control signal 
are depicted in Figures 4(a) and (b), respectively. 

 
Figure 4. (a) Response of system (29) with 5]    2-   1[0 =x  
(b) Control signal )(tu for the system defined by (29) 
 

IV. CONCLUSION 
In this paper a novel method for local exponential 
stabilization for a class of nonlinear non-autonomous 
systems has been proposed. The convergence rate and 
convergence region are variable and can be chosen by the 

designer to satisfy the desired system’s performance. The 
proposed method dose not need to construct Lyapunov 
functions and a time-invariant one has been introduced.  
This method can be applied to any first order SISO 
nonlinear non-autonomous systems if their control input 
coefficients are constant. For higher order systems 
checking condition (13) or (23) is necessary. If condition 
(13) or (23) is satisfied then the proposed method will be 
more general than Back-stepping and Feedback 
linearization approach. Further works can be done on 
more sophisticated nonlinear systems with structural 
uncertainty.    
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