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ABSTRACT 
In this study, the three dimensional dynamic model of the 
milling machine was prepared. The relative displacements 
on the contact point of the cutting tool and the workpiece 
were obtained by the forced vibration analysis. This 
displacements affected the machining accuracy of the 
milling machine. Therefore, radial and axial 
electromagnetic bearings were designed for the active 
control of the system and they were adapted on the spindle 
of the milling machine. The system was run with active 
control and without active control and both cases were 
compared. It was seen that the active control decreased the 
cutting tool vibration and improve the machining 
performance.  
 
 
 

I. INTRODUCTION 
The machining is a very important production method for 
precision parts. A lot of studies were achieved to increase 
machine tool performance on cutting tools. So, the 
cutting tools, which were appropriate for high speed, 
were manufactured and the cutting capacities of cutting 
tools were increased. However, vibration which is a very 
important problem between cutting tool and work piece  
arised and it reduced the machining accuracy. This 
problem is very effective for milling machines because 
milling process� cutting forces, which arise unavoidably, 
appear a variable character. The response of the system 
for this kind of cutting force affective directly cutting 
process and machining accuracy. A lot of studies were 
achieved to solve this problem by researchers [1,2,3]. 
These studies consisted of the selection of optimum 
parameters. The using electromagnetic forces to control 
shaft vibrations have recently been a subject of attention 
from a number of researchers and successful applications 

of bearing. In this study, it is intended that the dynamics 
effects of the cutting forces on the spindle are decrease 
and the cutting performance is increased using an 
electromagnetic bearing. The cutting forces were 
obtained by the experiment and the simulation. The 
electromagnetic attraction forces were produced by the 
electromagnetic bearing according to the cutting forces. 

 
II. THE MODEL OF THE CUTTING SYSTEM 

In this study, the asymmetric face milling was considered 
for the model of the cutting forces. The cutting force 
components between the cutting tool and the work piece 
are following.  
 

 AkF TT ×=    (1) 

TRR FkF ×=    (2) 

TAA FkF ×=    (3)  
 
These forces are correspond to the cutting tool� insert. If 
this cutting force components transform Cartesian 
coordinate (see figure 1).  The cutting force components 
in x, y and z directions can be obtained as following; 
 
 
 

iRiTx CosFSinFF θθ    +−=  (4) 

iRiTy SinFCosFF θθ    +=  (5) 

              ),(),( φφ iFiF Az =                            (6) 
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Figure 1. Cutting force components  
 

 
However, two or more inserts can cut simultaneously. In 
these cases, the cutting force components are following, 
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These cutting force components have variable 
characteristic. So the cutting system (work piece � cutting 
tool � spindle) is affected from the forced vibrations. 
Therefore, the relative displacement between the cutting 
tool and the work piece arise and so new cutting force 
components take place. The dynamic model of the system 
which is consisting of the spindle, the cutting tool and the 
workpiece has been prepared using mass, spring and 
damper elements. The dynamic model has three 
dimension and six degree of freedom (see figure 2). The 
cutting force components have been obtained by both 
experiment and simulation. The experimental set up has 
been present at figure 3. The model has been excited by 
the cutting force components, which have been applied 
on (m1) mass. The compensate electromagnetic forces 
have been applied on (m2) mass. For the dynamic model 
of the cutting system, the equation of the motion; 
 

               [ ]{ } [ ]{ } [ ]{ } { }FUKUCUM =++ &&&             (8) 
 
In which [M] is the mass matrix, [C] is the damping 
matrix and [K] is the stiffness matrix of the system, and 
vectors }{U , }{U& , }{U&&  and }{F  are the displacements, 
velocities, accelerations and forces respectively.  
Where; {F(t)} is the external force without 
electromagnetic bearing; 
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and with electromagnetic bearing; 
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Cutting force components, which have been obtained by 
experiment and simulation studies, have been present in 
figure 4 
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Figure 2. The dynamics model of the system 
 

 



 

 

   Figure 3. Experimental setup 
 

 

III. ELECTROMAGNETIC SYSTEMS 
AND THEIR DRIVE ELECTRONICS 

It is necessary that the forces in opposite direction to 
dynamic force components which effect on the spindle 
must be produced because the system must be prevented 
from undesired effects. These improving forces have 
been produced by electromagnets. The electromagnets 
configuration is shown in figure 5[7] and the block 
diagram of the electromagnet system designed for the 
present study is shown in figure 6 [8]. Each power    
amplifier, A, which drives a magnet coil, C, is of the   

the pole face. It is also unstable in an open loop mode 
since, as the deflection increases towards a magnet, so 
does the attractive force from that magnet. The system 
can, however, be made stable feeding back a signal (VH) 
by a  Hall probe, which is proportional to the flux at the 
pole face. For any given coil and its series resistance, R, 
the supply voltage, V, inductance, L, is given by: 
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Figure 4(a)  Simulated cutting force compenents 
 
 
 
Switching type, employing pulse � width modulation to 
reduce power losses. There are two electromagnets. One 
of them is radial and the other is axial. The radial magnet 
electromagnet consists of four radial poles and the axial 
electromagnet has one pole. 
 
An electromagnet exerts a force approximately 
proportional to the square of the magnet flux present at 
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Figure 4(b). Experimental cutting force components  

 

iR
dt
diLV +=    (11)  

Where (i) is the current passing throught the coil. Thus; 
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Now, consider the electromagnet in (x) direction; 
Hxxix S ϑϑ −=      (13) 

Where (Sx) is a signal which takes place in D/A converter 
output and calculated by PC for the spindle stabilation. ϑ ix 
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is the input voltage to the corresponding amplifier and 
ϑHx is proportional to the flux xφφφφ  at the probe face. This 
flux is also inversely proportional to the gap (Zx), between 
the magnet face and the spidle while the flux is 
proportional to the current, ix, in the magnet coil.  
 
So, xxHx K φφφφϑϑϑϑ ====  and; 
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ϑ ϑx ixa=     (16) 

 
If equation (17) is replaced in equation (14) where (a) is 
the amplifier gain. 
Hence 
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The attraction force produced by the magnets can be 
obtained as following; 

A
F x

x µ
φ
2

2
='    (20) 

Where µ is magnetic permeability coefficient 
(µ=µ0.µr=4π.10-7) and A is the cross � section of magnetic 
flux route. 
If equation (19) is replaced in equation (20) 
 

AKx
SxF x

µ22

2
≅'    (21) 

is obtained. 
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 Figure 6.   Schematic plot of the control system

 
Figure 5. The electromagnetic bearing 
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Hence, if (a) is large enough, 
 

φx x xS K≅ /    (19) 

From the last equation, it is seen that the attraction force 
(F�x) is proportion with square of Sx because Kx, µ and A 
are constant parameters. The similar equations can be 
used for y and z axis. The attraction forces obtained by 
the system simulation have been presented in figure 7.  
 
 

IV. CONCLUSIONS 
The displacements of (m1) node have been obtained in 
directions x, y and z replacing the cutting force 
components in figure 7. Because the displacements of 
1.node (m1) are criteria which express machining quality 
according to cutting dynamics. As know, if the relative 
displacement in the cutting area increase, machining 



 

 

quality is negatively effected and on the contrary 
machining quality is positively effected. The 
displacement components which have been obtained for 
(m1) node have been presented in figure 8 without the 
electromagnetic bearing and in figure 9 with the 
electromagnetic bearing. It has been observed that the 
electromagnetic bearing has affected the response of the 
system when figure 8 and figure 9 are compared. 
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Figure 7. Electromagnetic forces corresponding 
experimental excitation forces 
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Figure 8. Displacements without electromagnetic bearing  
 
As a result, it is possible that a machine tool with 
electromagnetic bearing has high cutting capacity. This 
case means to increase the machine tool performance. 
Active control of machine tools spindle vibrations using 
an electromagnetic bearing is a very suitable control for 
precision manufacture. 
It is expected that this active control method will be 
applicable to a variety of machine tools. 
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Figure 9.  Displacements with electromagnetic bearing 
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