
SOLVING VEHICLE PARKING & BARRIER CROSSING PROBLEMS
WITH NEURAL NETWORKS

Arzu Babaev Onur GÜNGÖR Murat ERKAN
babaev@uludag.edu.tr onurgungor@sekizdesekiz.com muraterkan@sekizdesekiz.com

Uludağ University,
Faculty of Engineering and Architecture, Department of Electronics Engineering, 16059

Bursa, TURKEY

Key words : Neural network control applications, Vehicle parking problem, Barrier crossing problem

ABSTRACT

Neural network (NN) control applications
are designed to have a basic desicion
mechanism with minimum error rate and
less number of iterations. In this study NN
methods are used to solve two different
control applications, Vehicle Parking and
Barrier Crossing.

I – INTRODUCTION

In designing NN control applications, one of the
important challenges is to determine the
structure and the input – output values of the
decision mechanism. The second step of the
method is to train the input – output data, which
will form the mathematical model of the
application. In this study NN methods are used
to solve two different control applications,
Vehicle Parking and Barrier Crossing. This paper
is organized as follows. Section 2 gives the
architecture of NN. Section 3 defines vehicle
parking problem. Section 4 and Section 5
respectively gives solution stages of the problem
and simulation results. Sections 6, 7, 8 follows
the same steps for the barrier crossing problem.

II – NN ARCHITECTURE

NN is an effective method to demonstrate, save,
and process the data. NN can be considered as
a basic input –output system[1,2].

Figure 1 : Basic NN architecture

∑
=

=
n

j
jj xwy

1
and





≤
>

=
θ
θ

yif
yif

ys
,0
,1

)(

The circles in Figure 1 are called neurons, s(y) is
the threshold function, θ is the value of the
threshold. We use continuous sigmoid function
shown below as the threshold function.

s y
e y() =

+ − +

1
1 θ

Finding the elements of jw means training the

NN.

When the number of training data is too many
then the training of NN will be difficult. For this
kind of situation we need a hidden layer in the
NN structure as shown in figure 2.

mailto:babaev@uludag.edu.tr
mailto:onurgungor@sekizdesekiz.com

x

y

Start up Position

Final Position

Figure 2 : NN with a hidden layer

∑
=

=
n

j

t
jjl

t
l xwh

1
 , ∑

=

=
k

l

t
llli

t hsvy
1

)(

t
lh are the output values for the hidden layer

and ty is the output value of the NN.

III – DEFINITION OF THE VEHICLE
PARKING PROBLEM

Let’s explain the problem. Position of the vehicle
is defined by (x, y, θ) parameters[3]. Our aim is
to move the vehicle for parking to the specified
position (0, yt, 90o). x and y are the coordinates
of the position, θ is the angle of the position
(figure 3)

Figure 3 : Graphical comment of the problem

Start up position is taken as any (x, 0, θ) point
on x coordinate. y coordinate is defined between
[0, ∞] and not considered in this problem.
Consequently 3 input (x : position, θ : position
angle, -1 : bias) and 1 output (φ : rotation angle
of steering vehicle) contoller is obtained. The
intervals of parameters are chosen as

x Є [-10, 10], θ Є [0o, 180o], φ Є [-90o, 90o]

IV – SOLUTION OF THE VEHICLE PARKING
PROBLEM

To solve the problem, first the input data values
have to be determined and this values have to
be processed by training algorithm to obtain ijw
and Vij matrixes. They are found as

-2.257 6.611 1.775 -7.874
W34= -2.145 6.202 1.391 -7.265

-0.767 10.436 2.575 -2.901

and

 4.1099
 V41 = -9.456
 -2.657
 8.736

In the simulation program these matrixes are
used to calculate the new position and the new
position angle of the vehicle during each
iteration. After running the specified numbers of
iteration, the vehicle gets the final destination.
In each iteration the calculated angle is added
to the final angle of the vehicle and this provides
the vehicle to choose the right route.

V – SIMULATION RESULTS

Simulation program has been developed in
Visual Basic 6.0 and Training program has been
developed in Turbo C++. The program outputs
for four different cases are given in the figures
below. In each simulation different start up
positions and angles are chosen.

Figure 4 : Solution for x=10, θ=180

x

y

Final
Position

Startup
Position

Figure 8 : Graphical comment of problemFigure 5 : Solution for x=-10, θ=0

Figure 6 : Solution for x=-5, θ=90

Figure 7 : Solution for x=8, θ=52

VI – DEFINITION OF THE BARRIER
CROSSING PROBLEM

The second problem in this article is Barrier
Crossing[4]. In this problem there are barriers in
both sides of the vehicle’s moving path. Our aim

is to provide a suitable route for our vehicle by
preventing it to crash into a barrier. Position of
the vehicle is defined by (x, y, θ) parameters.

Start up position is taken as any (x, 0, θ) point
on x coordinate. y coordinate is defined between
[0, 4]. Consequently 3 input (x : position,
θ : position angle, m : side of the barrier) and 1
output (φ : rotation angle of steering vehicle)
contoller is obtained. The intervals of
parameters are chosen as

x Є [-2, 2], θ Є [0o, 180o], φ Є [-150o, 150o]

VII – SOLUTION OF THE BARRIER
CROSSING PROBLEM

To solve the problem, first the input data values
have to be determined and this values have to
be processed by training algorithm to obtain ijw
and Vij matrixes. They are found as

-0.491 2.313 0.773 1.505
W34= -0.669 -1.989 0.662 -0.436

-0.268 0.341 0.234 -1.315

and

 6.698
 V41 = -2.956
 -5.643
 6.991

In the simulation program these matrixes are
used to calculate the new position and the new
position angle of the vehicle during each
iteration. After running the specified numbers of
iteration, the vehicle gets the final destination.
In each iteration the calculated angle is added
to the final angle of the vehicle and this provides
the vehicle to choose the right route.

VIII – SIMULATION RESULTS

Simulation program has been developed in
Visual Basic 6.0 and Training program has been
developed in Turbo C++. The program outputs
for four different cases are given in the figures
below. In each simulation different start up
positions and angles are chosen.

Figure 9 : Solution for x=-2, θ=90

Figure 10 : Solution for x=2, θ=0

Figure 11 : Solution for x=0, θ=180

Figure 12 : Solution for x=1, θ=120

IX – CONCLUSION

In this study, N.N. solutions for 2 different
control problems are examined. Program
outputs which are taken with various start up
values both for start up position and position
angles can be found in the article.
After these two practical solutions, it can be said
that the N.N. method is a basic but an efficient
approach for solving these kind of control
automations. Even with complex problems, if
appropriate training data values are chosen, the
satisfactory results can be obtained with N.N.
controllers.

REFERENCES

1. B. Kosko . Neural Networks and Fuzzy
Systems Prentice Hall Inc, 1992.
2. L.H. Tsoukalas, R.E. Uhrig. Fuzzy and Neural
Approaches in Engıneering. John Wiley & Sons,
1997.
3. A. Babaev, I. Gucuyener. Takagi - Sugeno
biçiminde kural tabanlı kontrol sistemi. Second
Int. Symp. on Mathematical & Computational
Applications. Baku, September, pp. 236-241.
1999.
4. A. Babaev, S. Arı. Simplification of Structure
of a Neuro-Fuzzy Controller.-IMS-98, Sakarya,
August, 1998.

