DYNAMIC PERFORMANCE OF SINGLE-PHASE INDUCTION MOTOR WITH A SWITCHING CAPACITOR

Sedat Sünter* Mehmet Özdemir * Bilal Gümüş**

*Fırat University, Dept. Of Electrical and Electronic Engineering, Elazıg-Turkey

**Dicle University, Dept. Of Electrical and Electronic Engineering, Diyarbakır-Turkey

Abstract: In order to get maximum torque in the single-phase induction motor one of the methods is to use a switching capacitor in the auxiliary winding. This configuration with an electronic switch connected across the capacitor makes possible to obtain a maximum torque using one capacitor. Variable capacitor values are obtained by controlling the duty cycle of the electronic switch. An electronically controlled capacitor which employs one capacitor with electronic switch is used to improve the performance of a single-phase induction motor. In this paper the dynamic model for the single-phase induction motor with the switching capacitor has been studied by using MATLAB/Simulink software package program. In this work maximum torque of the machine has been obtained by using optimal capacitor values.

1. Introduction

Single-phase induction motors are usually low power machines and are widely used in industry and home applicants. This motor cannot run directly from the mains because of its structure. The single-phase induction motor (SPIM) is operated with auxiliary windings having inductive or capacitive characteristic. However, SIMPs with auxiliary windings having capacitive characteristic are usually used. This type of the motor is manufactured either with single or double capacitors. While the capacitor in the SPIM with single capacitor is taken out together with the auxiliary winding at 75% of the synchronous speed, in the SPIM with double capacitor one of the capacitor is taken out at 75% of the synchronous speed and the other one remains continuously in the operation. Thus, the starting and running torque of the SPIM is improved.

In the SPIM one of the most important problems is to determine appropriate capacitor values. The SPIM with the switching capacitor eliminates this problem. The capacitor values can be changed by the electronic switch connected across the capacitor in the auxiliary winding. Any capacitor value can be obtained by controlling on-off time of the electronic switch. Obtaining a maximum moment in the SPIM can be considered as an optimisation problem [1]. Thus, the optimal capacitor values which is a function of speed can be obtained.

In this work the dynamic operating model of the SPIM with the switching capacitor has been obtained using MATLAB/Simulink package program. Previous works in this subject have not studied the dynamic performance of the SPIM with the switching capacitor. This paper intends to fill the gap in this subject.

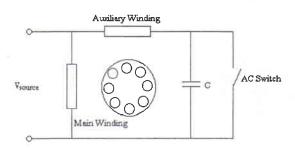


Figure.1 Single-Phase Induction Motor with Switching Capacitor

2. Mathematical Model

The mathematical model of the SPIM in d-q axis is given in Equations(1-4) as [2];

$$V_{sq} = (R_{sq} + p.L_{sq})i_{sq} + p.L_{oq}.i_{rq}$$
(1)

$$V_{sd} = (R_{sd} + p.L_{sd})i_{sd} + p.L_{od}.i_{rd}$$
(2)

$$0 = (p.L_{oq}).i_{sq} - (\frac{N_q}{N_d}.\omega_r.L_{od}).i_{sd} +$$
(3)

$$(R_{rq}^{'} + p.L_{rq}^{'})i_{rq}^{'} - (\frac{N_q}{N_d}.\omega_r.L_{rd}^{'})i_{rd}^{'}$$
(3)

$$0 = (p.L_{od}).i_{sd} - (\frac{N_d}{N_q}.\omega_r.L_{oq}).i_{sq} +$$
(4)

$$(R_{rd}^{'} + p.L_{rd}^{'})i_{rd}^{'} - (\frac{N_d}{N_q}.\omega_r.L_{rq}^{'})i_{rq}^{'}$$
(4)

where; V_{sq} and V_{sd} are the q and d axis stator voltages, R_{sq} and R_{sd} are the q and d axis stator resistances, L_{sq} and L_{sd} are the q and d axis stator inductances, p is the differential operator (d/dt), i_{sq} and i_{sd} are the q and d axis stator currents, L_{oq} and L_{od} are the q and d axis mutual inductances, i'_{rq} and i'_{rd} are the q and d axis rotor currents, N_q and N_d are the d and q axis effective turns, R'_{rq} and R'_{rd} are the q and d axis rotor resistances, L'_{rq} and L'_{rd} are the q and d axis rotor inductances and ω_r is the rotor angular speed. In the q and d axis the stator and rotor inductances can be expressed as follow;

$$L_{sq} = L_{lsq} + L_{oq} \tag{5}$$

$$L_{vl} = L_{tvl} + L_{vl} \tag{6}$$

$$\dot{L}_{rq} = \dot{L}_{lsq} + \dot{L}_{oq} \tag{7}$$

$$\dot{L}_{rd} = \dot{L}_{trd} + \dot{L}_{rd} \tag{8}$$

where; L_{lsq} and L_{lsd} are the q and d axis stator leakage inductances and L'_{lrq} and L'_{lrd} are the q and d axis rotor leakage inductances. The instantaneous electromagnetic torque is calculated as;

$$T_{e} = \frac{P}{2} \cdot \frac{N_{d}}{N_{q}} \cdot L_{oq} \left(i_{sq} \cdot i_{rd}^{'} - i_{sd} \cdot i_{rq}^{'} \right) \tag{9}$$

where; P is the number of poles. The electromechanical equation of the SPIM is;

$$p.\omega_r = \frac{1}{J_{vv}} (T_e - T_l) \tag{10}$$

where J_m is the inertia constant of the motor and load and T_1 is the external load. In these equations the d axis corresponds to the auxiliary winding and the q axis represents the main winding. Therefore, V_{sq} voltage will be equal to the source voltage, V_{source} . The auxiliary winding voltage is expressed as;

$$V_{sd} = V_{source} - \frac{1}{C} \int i_{sd} \, dt \tag{11}$$

where; V_{source} is the input voltage of the SPIM and C is the capacitor connected to the auxiliary winding in series.

3. Dynamic Modelling

Simulink working under Matlab software package program has been used to get the dynamic model of the system. Equations (1-11) are used to obtain the SPIM model in d-q axis. Simulink is a simulation program which uses tool boxes connected to each other. The motor model has been set up as single tool box in Simulink. Hence, the motor parameters can be easily observed by following the tool boxes and therefore it will be simple to perform the simulation for different types of motors by modifying the related toll boxes. In the simulation there are basically three parameter groups. These are; input, output and calculation parameters. The calculation parameters contain constants required to perform the processes. The input parameters can be variable and are used in the processes in the model. The output parameters determines the results reached at the end of simulation. The inputs of the tool box representing the SPIM are the source voltage and motor speed. The motor speed is a result of the simulation and it is also the input parameter for the motor tool box by feedback. The output parameters of the SPIM are the d-q axis stator currents and motor torque. The calculation parameters of this block are the d-q axis stator and rotor resistors and inductances. mutual inductances, the number of poles and turn ratio, N_d/N_g. The switching capacitor connected to the auxiliary winding has been also modelled and the switching times

have been calculated to get the optimal capacitor values [1]. The mechanical load fitted to the machine has been modelled and given in a separate tool box as shown in Figure (2). While the input parameters for this tool box are the electromagnetic torque of the SPIM and if available extra load, the output parameter is the motor speed. The inertia, viscous friction, aerodynamic friction and load torque are the calculation parameters of the tool box for the mechanical load. This tool box is used to calculate the motor speed using Equation (10). Figure (2) shows the simulation model performed in Simulink[4].

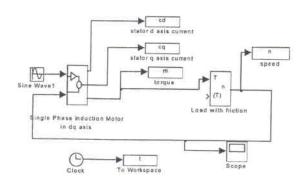


Figure 2. Dynamic Model of the SPIM Drive System in Simulink.

The model for the switching capacitor performed in Simulink is shown in Figure.3. The switching process in the model is provided by a pulse generator. There are two input parameters to this pulse generator. While one of the inputs represents the duty cycle of the pulse, the other one is used to determine the pulse starting time in the period. The output of the pulse generator is multiplied by the capacitor value. As a result the capacitor will be short circuited when the pulse generator output is zero and it will be present when the pulse generator output is high.

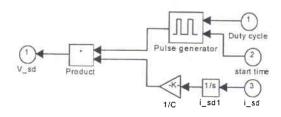


Figure 3. Model for The Switching Capacitor in Simulink

4. Determination of The Optimal Capacitor Values

According to the equivalent circuit of SPIM, the induction motor torque is expressed as;

$$T_{e} = \frac{1}{\omega_{e}} \frac{2}{p} \{ [(R_{sq} + R_{b} + R_{d})V_{sq-} + R_{d}V_{sq-}]^{2} + [(X_{lsq} + X_{b} + X_{d})V_{sq-} + X_{d}V_{sq-}]^{2} \}.$$

$$(R_{a} / (M_{1}^{2} + N_{1}^{2})) - \frac{1}{\omega_{e}} \frac{2}{p} \{ [(R_{sq} + R_{a} + R_{d})V_{sq-} + R_{d}V_{sq+}]^{2} + [(X_{lsq} + X_{a} + X_{d})V_{sq-} + X_{d}V_{sq+}]^{2} \}.$$

$$(R_{b} / (M_{1}^{2} + N_{1}^{2}))$$

$$(12)$$

Where R_a , X_a , R_b , X_b , R_d , R_d , M_1 and N_1 are dummy variables and can be expressed as;

$$R_{a} = [X_{os}^{2} R_{rg}^{'} / s] / [(R_{rg}^{'} / s)^{2} + (X_{os} + X_{lrg})^{2}] (13)$$

$$X_{a} = [X_{os}(R_{rq}^{'}/s)^{2} + (X_{os} + X_{lrq})X_{os}X_{lrq}]/$$

$$[(R_{rq}^{'}/s)^{2} + (X_{os} + X_{lrq})^{2}]$$
(14)

$$R_b = \left[X_{os}^2 \dot{R}_{rq} / (2-s) \right] / \left[\left(\dot{R}_{rq} / (2-s) \right)^2 + \left(X_{os} + X_{lra} \right)^2 \right]$$
 (15)

$$X_b = \left[X_{os} (\dot{R}_{rq}/(2-s))^2 + (X_{os} + X_{lrq}) X_{os} X_{lrq} \right] /$$

$$\left[(\dot{R}_{rq}/(2-s))^2 + (X_{os} + X_{lrq})^2 \right]$$
 (16)

$$R_d = 0.5[R_{sd}(N_q/N_d)^2 - R_{sq}]$$
 (17)

$$X_d = 0.5X_{lsd} (N_a / N_d)^2 - 0.5X_{lsq} - X_C$$
 (18)

$$M_1 = (R_{sq} + R_a + R_d)(R_{sq} + R_b + R_d) - (X_{lsq} + X_a + X_d)(X_{lsq} + X_b + X_d) - (R_d^2 + X_d^2)$$
(19)

$$N_1 = (R_{sq} + R_a + R_d)(X_{lsq} + X_b + X_d) + (R_{sq} + R_b + R_d)(X_{lsq} + X_a + X_d) - 2R_dX_d$$
(20)

The maximum torque at various speeds is achieved by letting $dT_c/dX_c=0$ and from Eq.(13) the condition of the maximum torque can be derived as following;

$$V_{sq}(M_1^2 + N_1^2)(R_a S_1 - R_b Q_1) + \{M_1(-2X_{lsq} - X_a - X_b) + N_1(2R_{sq} + R_a + R_b)\}.$$

$$\{R_b(P_1^2 + Q_1^2) - R_a(T_1^2 + S_1^2)\} = 0$$
(21)

where P₁, Q₁, S₁, T₁ are dummy variables and expressed as;

$$P_1 = (R_{sa} + R_a + R_d)V_{sa-} + R_dV_{sa+}$$
 (22)

$$Q_1 = (X_{lsa} + X_a + X_d)V_{sa-} + X_dV_{sa+}$$
 (23)

$$S_1 = (X_{lsq} + X_b + X_d)V_{sq+} + X_dV_{sq-}$$
 (24)

$$T_1 = (R_{sq} + R_b + R_d)V_{sq+} + R_dV_{sq-}$$
 (25)

As can be seen from Eq.(21) the reactance of the capacitor varies with the speed and motor parameters. Therefore, Eq.(21) can be used to obtain maximum torque. Based on the simulated motor parameters, an optimal capacitor values versus motor speed is shown in Figure 4. This curve is used to achieve maximum torque. The effective reactance of the capacitor can be changed by controlling the duty cycle of the electronic switch. The relationship between the real and effective reactances of the capacitor is given by;

$$X_{Ceffective} = X_{Creal} \frac{t_{off}}{T}$$
 (26)

where t_{off} is off time of the switch and T is the switching period.

Figure 4. Speed Versus the Optimal Capacitor Values
Calculated for the SPIM

5. The Simulation Results of the Dynamic Model

The dynamic performance of the SPIM with the switching capacitor is shown in Figures (4-7). Figure.4 shows the speed characteristics for the SPIM with switching capacitor and for the SPIM with one and double capacitors in acceleration mode. As can be seen from Figure.4 the SPIM with switching capacitor has better transient characteristic than those of the other operating conditions of the SPIM. In addition, although all the machines have the same load condition, the SPIM with switching capacitor has higher rotation. This result shows that the SPIM with switching capacitor operates with the maximum torque at transient and steady-state. Figure.5 shows a comparison for the torque between the SPIM with switching capacitor and SPIM using double capacitor at the same operating conditions. Again, the SPIM with switching capacitor reaches higher torque values than those of the SPIM with double capacitor. If the SPIMs with switching capacitor and double capacitor are examined from the point of the main winding currents (figure 6 and 7) it will be seen that the SPIM with switching capacitor reaches faster to steady-state operation. In addition, the starting current in Figure.6 falls down in less

time. However, the starting capacitor of the SPIM double capacitor has longer effect as shown from Figure

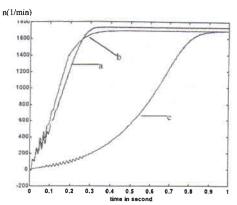


Figure 4. Simulation results for SPIM a)Using optimum capacitor b)Using installed starting (300 μ F) and running capacitor (40 μ F) c)Using single capacitor (40 μ F)

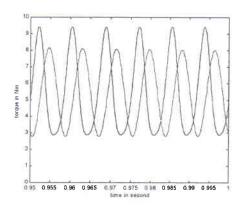


Figure 5. Torque Comparison of SPIM with (a) Switching Capacitor and (b) Double Capacitor

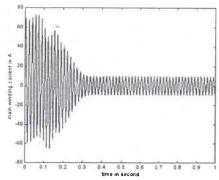


Figure 6. Main Winding Current of SPIM with Switching Capacitor

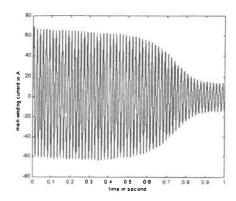


Figure 7. Main Winding Current of SPIM with Double Capacitor

6 Conclusions

In this paper, dynamic simulation of the SPIM with switching capacitor has been performed and the advantages of this drive system have been discussed. It has been shown that it is possible to obtain maximum torque by using optimum capacitor values in the SPIM with switching capacitor. This provides an advantage for both under starting condition with load and bigger load torque in steady-state. In addition, this system does not require a centrifugal switch and uses one capacitor instead of two. In the implementation stage, the electronic switch can be controlled by a DSP to obtain optimum capacitor values resulting in maximum torque. Practical implementation of this work has been carrying on.

References

[1] Liu, T. H., Wang, P. C., 1993, "Adjustable Switched Capacitor Control For A Single Phase Induction Motor". IECON Proceedings v 2, p. 1140-1145.

[2] P.C. Krause, Analysis of Electric Machinery, New York, McGraw Hill, 1987.

[3] E. Muljaldi, Y. Zhao, T.H. Liu and T.A. Lipo, Adjustable ac capacitor for a single phase induction motor, Proc. 1991 IEEE Conf. Industry Applications, Dearborn. Michigan, pp. 185-190.

[4] B. Gümüş, The Digital Simulation of the Single-Phase Induction Motor Fed By Matrix Converter, MSc Thesis, Firat University, Science Institute, Elazig, Turkey, 1997.

Appendix

Parameters of the SPIM: