
UNCONDITIONAL MAXIMUM LIKELIHOOD APPROACH FOR
CHANNEL ESTIMATION IN OFDM SYSTEMS
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ABSTRACT

In this paper, unconditional maximum likelihood

approach for channel estimation in OFDM systems

is proposed. This method is based on the idea of

fixed point algorithm that is using the property of

digital modulated signals getting values from finite

alphabet. This algorithm jointly estimates channel

parameters by unconditional maximum likelihood

estimation and gives maximum a posteriori (MAP)

estimates of the digital modulated signals. Perfor-

mance analysis of the proposed algorithm is then

carried out through the evaluation of Cramer-Rao

bounds. Finally, simulation results are presented

to demonstrate the applicability and effectiveness

of the proposed unconditional maximum likelihood

method.

1. INTRODUCTION

It is widely accepted that the need for high bit rate
wireless communication systems will reach its peak in
the years to come. However, despite of the huge progress
achieved, the peak nominal rates will be confined fac-
tors such as multipath propagation and unwanted inter
and intracell interference. OFDM is a strong candi-
date to mitigate the effects of these confined factors in
wireless environment. OFDM, sometimes referred to as
multi-carrier or discrete multi-tone modulation, utilizes
multiple subcarriers to transport information in from
one particular user to another. An OFDM-based sys-
tem divides a high-speed serial information signal into
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multiple lower-speed sub-signals that the system trans-
mits simultaneously at different frequencies in parallel.
The orthogonal nature of OFDM allows subchannels to
overlap, having a positive effect on spectral efficiency.
Each one of the subcarriers transporting information
are just far enough apart from each other to theoret-
ically avoid interference. The benefits of OFDM are
high spectral efficiency, resiliency to RF interference,
and lower multi-path distortion. To address frequency
selectivity, we propose to use OFDM.

Blind estimation of channel parameters along with
the transmitted signals in OFDM systems is an im-
portant problem. When developing a ML estimator,
there are two approaches in the literature: a deter-
ministic or conditional maximum likelihood estimator
and unconditional maximum likelihood estimator. The
first estimate assumes the source signals are unknown
but nonrandom signals. This estimate is referred to as
the conditional (or deterministic) maximum likelihood
(CML) estimate. The second estimate assumes the
source signals are sample functions from Gaussian ran-
dom processes. This estimate is referred to as the un-
conditional (or stochastic) maximum likelihood (UML)
estimate [1],[2]. Blind estimation algorithms based on
the conditional signal model (i.e., treating the digital
signals as deterministic sequences) have been proposed
in [3], [4], [5] for different types of estimation prob-
lems. In this paper, a maximum likelihood approach
that is treating the transmitted signals as stochastic
IID sequences against the estimation method based on
the conditional signal model is proposed. The effec-
tive solution of the unconditional maximum likelihood
function appears is also given by fixed point iteration
algorithm. Moreover, this method gives maximum like-



lihood estimation of channel parameters and the max-
imum a posteriori (MAP) estimates of the modulated
signals.

2. OFDM SIGNAL MODEL

An OFDM system decomposes the available bandwidth
into N overlapping narrow frequency bands. The ef-
fective symbol length is T = KTs, where Ts is the
sampling period of the system. The channel g(τ ; t) is
assumed to be slowly fading and we consider it to be
constant during one OFDM symbol. Furthermore, we
assume that the use of a cyclic prefix (CP) of length
Tcp both preserves the orthogonality of the subchan-
nels and eliminates intersymbol interference (ISI) be-
tween consecutive OFDM symbols. In this case we can
describe the system as a set of parallel Gaussian chan-
nels. The received signal on subchannel k can thus be
described as

yk = hkxk + vk, k = 0 . . . K − 1, (1)

where xk is the transmitted symbol, vk is additive chan-
nel noise and

hk = G

(
k

KTs
; t

)
, k = 0 . . . K − 1, (2)

is the attenuation at subcarrier k and G(f ; t) is the
frequency response of the channel g(τ ; t) during the
OFDM symbol at time t. The signal model in (1) can
be written in matrix form as follows:

y(n) = H · x(n) + v(n) 0 < n < N − 1 (3)

where
y(n) = [y0(n), · · · , yK−1(n)]T ,
x(n) = [x0(n), · · · , xK−1(n)]T and

H =




h0 0 · · · 0
0 h1 0 · · ·
...

...
. . .

...
0 · · · · · · hK−1


 (4)

.
The main problem in this paper is to estimate chan-

nel parameters θ = [h(0) h(1) . . . h(N−1)]T from the
signal y = [y(0) y(1) . . .y(N − 1)]T that is distorted
by additive Gaussian noise. Unconditional maximum
likelihood estimation method which is asymptotically
efficient will be used for the solution of the problem.
We therefore develop the signal model of the problem
first in the following subsection.

2.1. Unconditional Signal Model

The only difference between the conditional and uncon-
ditional models is the assumption regarding the signal
vectors x(n)s. In the conditional signal model the sig-
nal vectors are treated as unknown but deterministic
quantities and are part of the set of unknown param-
eters. Hence, the number of unknown parameters in-
creases linearly with the increase in the number of data
vectors which results in inconsistent estimates. In con-
trast, under the unconditional signal model the signal
vectors are treated as random quantities and are not in-
cluded in the parameter set. As a result, the number of
unknown parameters is fixed and it is possible to obtain
consistent estimates. For the problem at hand, the sig-
nal vectors are assumed to be temporally independent
vectors of ±1 (BPSK). Let S = {sm}, m = 1, . . . , 2K ,
be the set of all possible K vectors of ±1, i.e., the set
S represents the K dimensional binary constellation.
Using the temporal whiteness of the signal and noise
vectors, the probability of the data matrix A can be
written in terms of the constellation vectors as

fH(A) =
1

2KN (πσ2)KN

N∏
n=1

2K∑
m=1

exp

{
−‖ y(n)−Hsm ‖2

σ2

}

(5)
Note that the density of A is a finite mixture of

complex normal densities where the family of distri-
butions fH(·) is indexed by the unknown parameter
matrix H ∈ CK×1.

For the unconditional signal model (5), the negative
log-likelihood function is given by

L(H) = −
N∏

n=1

log
2K∑

m=1

exp

{
−‖ y(n)−Hsm ‖2

σ2

}
+const .

(6)
and the UMLE of H is the global minimizer of L(H).
It is unlikely that a globally convergent algorithm for
this highly nonlinear cost function (6) exists. However,
a locally convergent algorithm can be formulated based
on the first order likelihood equations

∂L(H)
∂H

= 0 (7)

where the i, jth element of ∂L(H)/∂H is ∂L(H)/∂Hi,j .
By the help of the fixed point iteration algorithm

the UMLE expression for H can be written as

Hu




N∑
n=1

2K∑
m=1

pm(n)smsT
m


 =

N∑
n=1

2K∑
m=1

pm(n)y(n)sT
m

(8)



where

pm(n) =
exp{− 1

σ2 ‖ y(n)−Hsm ‖2}
∑2K

l=1 exp{− 1
σ2 ‖ y(n)−Hsl ‖2}

(9)

is the a-posteriori probability that x(n) = sk given
x(n).

The solution steps of nonlinear set of equations in
(7) by using fixed point iteration is listed below.

2.2. Proposed Algorithm

Fixed Point technique (FPT)

1. The algorithm starts with an initial estimate H(0)

2. For i = 1, 2, . . . , compute

H(i+1)
u




N∑
n=1

2K∑
m=1

p(i)
m (n)smsT

m


=

N∑
n=1

2K∑
m=1

p(i)
m (n)y(n)sT

m

(10)
where

p(i)
m (n) =

exp{− 1
σ2 ‖ y(n)−Hism ‖2}

∑2K

l=1 exp{− 1
σ2 ‖ y(n)−Hisl ‖2}

(11)

Evaluate H(i+1)
u from set of equations in (10).

3. Repeat step 2 until | L(H(i+1)) − L(H(i)) |< ε
where ε is a pre-specified tolerance parameter.

4. For n = 1, . . . , N , find mn = argmaxmpf
m(n),

where pf
m(n) denotes the final a posteriori prob-

ability. The MAP estimates of the signal vectors
are x(n) = sm.

3. PERFORMANCE ANALYSIS

The Cramer-Rao bound (CRB) is a lower bound on the
covariance matrix of any unbiased estimator. Suppose,
θ̂ is an unbiased estimator of a vector of determinis-
tic unknown parameters θ (i.e., E{θ̂} = θ) then the
estimator’s covariance matrix satisfies

J−1(θ) ≤ E{(θ − θ̂(θ − θ̂
T } (12)

where Jk,l(θ) = −E{∂2 log fθ(y)/∂θk∂θl} is the (k,l)th
entry of the Fisher information matrix (FIM) and fθ(y)
stands for the likelihood function of y.

Under the assumption that vk is zero-mean white
Gaussian noise with covariance matrix σ2I, the likeli-
hood function fθ(y) can be obtained after averaging
fθ(y | x) over x: fθ(y) = Ex[fθ(y | x)] The exact
CRB is then given by Jk,l(θ) = −E{∂2 log Ex[fθ(y |
x)]/∂θk∂θl}. The evaluation of the exact CRB requires

the Hessian matrix for log Ex[fθ(y | x), which is an-
alytically intractable due to the nature of fθ(y | x).
However, it is common to adopt (see, e.g., [6]) an ap-
proximate bound which is not as tight as the exact
CRB, but computationally easier to evaluate. Due to
the concavity of the log function and Jensen’s inequal-
ity,we obtain the following valid CRB:

Jk,l(θ) ≤ −ExE{∂2 log[fθ(y | x)]/∂θk∂θl} (13)

where

log[fθ(y | x)] = −KN log(πσ2)− 1
σ2

N−1∑
n=0

‖y(n)−Hx(n)‖2

(14)
The entries of the FIM are obtained from (13) and (14)
and JH,H = 1

σ2

∑N−1
n=0 Ex[x(n)xH(n)] can be obtained.

4. SIMULATION RESULTS

In this section a simulation example is presented to
demonstrate the improved performance of the UML ap-
proach. A BPSK OFDM system with 12 subchannels
and 2 cyclic prefixes is considered. The observation in-
terval is chosen as N = 8. The root mean square (rms)
width is assumed to be τrms = 0.2µs for the power-
delay profile of the channel and the channel correlation
between the attenuations hm ve hn is given as

rm,n =
1− e−L((1/τrms)+2πj(m−n)/N)

τrms(1− e−(L/τrms))( 1
τrms

+ j2π m−n
N )

(15)

in [7] .
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Figure 1: Performance of the proposed algorithm



The proposed fixed point iteration channel estima-
tion algorithm is tested for the signal to noise ratios be-
tween the 10dB-40dB range. The algorithm is tested
for each SNR with 50 Monte Carlo realizations and
mean square error is recorded for each realization of
the algorithm. The results are presented in Figure 1.
It is observed from this figure that mean square er-
ror decreases with high signal to noise ratios. At the
same time it is observed that the CRB plot which is de-
rived from approximate logarithmic likelihood formula
is loosely coupled for higher SNR values.
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