
Synchronizing Automata and Petri Net based Controllers

Mustafa Seçkin Durmuş, Uğur Yıldırım, Oytun Eriş, Mehmet Turan Söylemez

Control Engineering Department, Istanbul Technical University, Maslak, Istanbul, Turkey

durmusmu@itu.edu.tr, yildirimu@itu.edu.tr, erisoy@itu.edu.tr, soylemezm@itu.edu.tr

Abstract

In designing safe and reliable interlocking systems for

railways which are compatible with the related CENELEC

(European Committee for Electrotechnical Standardization)

standards semi-formal methods and diverse programming

techniques are highly recommended (HR). EN 50128 (where

methodologies to build failsafe software for railway

applications are defined) recommends the use of Automata

and Petri Nets (PNs) as semi-formal methods to build failsafe

interlocking software for railway applications. In this paper

interlocking software design which is achieved by using

automata and PNs is explained where they were used

synchronously as a voting system.

1. Introduction

Along with hardware development, software development

process of an interlocking system is one of the toughest and

most crucial parts in building a railway signalization system. For

this purpose, EN 50126/8/9 standards are developed by

CENELEC specifically for railway applications. EN 50126,

where mainly RAMS (Reliability, Availability, Maintenance and

Safety) analysis is described, is the general standard for all kinds

of railway applications. EN 50128 defines methodologies to

build failsafe software for railway applications, whereas EN

50129 determines requirements for the hardware of electric,

electronic and programmable devices that are to be used in

railway applications. On the software part, as it is mentioned

above, designers have to fully concern with EN 50128 standards

where the steps of safety critical software development process

are defined [1-4].

These standards bring out a very important concept, that is;

the probability for the system to execute the safety functions

required in all specified input conditions within a specified time

interval. Depending on this probability the Safety Integrity

Level (SIL) [5] of a system can be determined.

SIL level has to be at least at level 3 (SIL3) for railway

interlocking systems [1]. At SIL3 level, the range of failure per

hour (which is symbolized with λ) must be between 10-8 and 10-

7 (10-8≤ λ<10-7). This also means that the interlocking system

has to work in average 1000 years without falling into a

dangerous failure state. The easiest way to provide SIL3 level on

hardware is to use COTS (Commercial off the shelf) products

which are already certified [6-8].

Automata [9] and Petri Nets [10] are the most popular

modeling tools for Discrete Event Systems (DES). Railway

systems are also considered as DES because of the similarity in

their behaviors and features [11]. Even PNs have some

advantages [12] in comparison to Automata theory both in

graphical and mathematical representation; Automata theory still

preserves its own popularity. Since both methods decrease the

possible logical errors, they are very useful as semi-formal

methods on the modeling part of a DES. Several applications

including both methods can be found in [13-17].

Both IEC 61508 and EN 50128 standards regarded Automata

and Petri Nets as semi-formal modeling tools. Sometimes,

programs designed using Automata and Petri Nets have to work

together in a synchronized manner in the control of a master

controller unit. Recommendation of EN 50128 about semi-

formal methods and modeling methods can be seen in figure 1.

Fig. 1. Part of EN50128 Software Design and Implementation

table.

This can be useful especially in providing a Diverse

Programming design as mentioned in EN 50128 [4].

In this study, a railway station controlled by a decision unit

and a voting system is explained. The voting system consists of

two fail-safe PLCs synchronized with each other. The programs

running on these PLCs are designed using Automata and PN

methods. Decision unit is another fail-safe PLC where the votes

of PLCs are compared and all the communications between the

railway yard, Traffic Control Center and the voting system are

handled.

2. Software Development Process

A software development model known as V-model is

recommended in EN 50128 which is given in figure 2.

System

Specifications

Subsystem

Specifications

Software

Specifications

Software Design

(Automata and

Petri Nets)

Coding

(Ladder Logic,

FBD or SFC)

Module

Tests

Software

Integrity Tests

Subsystem

Integrity Tests

System

Integrity Tests

output

verification

Validation Validated

Software

Fig. 2. V-model

ELECO 2011 7th International Conference on Electrical and Electronics Engineering, 1-4 December, Bursa, TURKEY

365

In this paper, especially Software Design part is explained.

The other specifications are derived from the interlocking table,

railway system requirements and the needs of the customer

(Turkish State Railways). Interlocking table consists of possible

route reservations and related requirements and it is considered

as the starting point of modeling of a signalization system for a

railway yard [18]. An example railway yard and its interlocking

table are given in figure 3 and table 1, respectively.

333T
RG YY

R GY Y

363T
362

363

1T

2B

2DA

2DB
BT

AT 51T

52BA

52D 402

402T

403

403T

1
51

52BB

RG YRG Y

R GY

RG Y

RG Y

R GY

R GY R GY

Fig. 3. An Example railway yard

Table 1. Interlocking table

Route

Selection
Controlled Signal

Signal

Lights

Switch 1

Position

363T – AT

2B

Green
52BA

(Y) or (G) Normal

Yellow 52BA (R)

363T – BT
Yellow-Green

52BB

(Y) or (G) Opposite

Yellow-Yellow 52BB (R)

Railway components need to be modeled separately in order

to simplify error tracking and visuality. Railway yard given in

figure 3 consist of Signal Lights (SLs), Switches and Track

Circuits (TCs). The definition of railway components can also

be found in [19].

A recommendation of EN 50128 for safe software

architecture is Diverse Programming technique (can be seen in

figure 4) which means that a specification of a given program

have to be implemented N times in different ways. These N

versions can run on separate controllers (in our study N is equal

to two and these two versions is running on two separate fail-

safe PLCs). The standard recommends that different versions to

be developed by different groups in order to guarantee diversity

in programming and reduce the probability of common cause

failures. Different voting strategies can be used in combining the

decisions of N different algorithms depending on the application

requirements.

Fig. 4. Part of EN 50128 recommendations for safe software

architecture

For example, if a switch malfunction occurred after the

entrance of a train on a route then all signal lights have to show

red (safe state). Similarly, if one of the voters produces different

output than the others, the whole system has to go into a safe

(predetermined) state. To achieve this, two separate workgroups

in Istanbul Technical University (ITU) worked on the same

problem using different modeling (Automata and Petri Nets) and

design techniques.

2.1. Petri Nets as a Modeling Tool

Petri Nets (PNs) [10] have some advantages over Automata

both in their graphical and mathematical features [12]. PNs are

defined in the literature by (1).

 PN = (P, T, Pre, Post, M0) (1)

where

· P : {P1, P2, …, Pn}, finite set of places.

· T : {t1, t2, …, tn}, finite set of transitions.

· Pre : (PxT)→N, directed ordinary arcs from places to
transitions.

· Post : (TxP)→N, directed ordinary arcs from transitions to
places.

· M0 : P → N, initial marking (N is a set of nonnegative
numbers).

A sample switch model is given in figure 5, and related

places and transitions are given on table 2.

•

P1

P2 P3

P5 P4

t4

t1

t3

t5 t6

N R
Fig. 5. Switch and its PN model

Table 2. Definitions of PN places and transitions

Event Description

P1 Switch starting position

P2 Switch moves to normal position

P3 Switch moves to reverse position

P4 Switch is on reverse position

P5 Switch is on normal position

t1 (t2) Normal (Reverse) position request for switch

t4 (t3) Switch arrives on normal (reverse) position

t5 (t6)
Switch position request from normal (reverse)

position to reverse (normal) position

At the beginning switch is assumed to be on normal position

(P1). After an incoming position command, switch moves to that

position (normal or reverse) and stays there until a new

command is received.

Converting this model to a useful PLC code is simpler by

using Sequential Function Charts (SFCs) which is one of the

five languages defined by IEC 61131-3 standard. Besides,

several formal conversion techniques are also available in the

literature to convert PNs to PLC codes [20], [21]. The reader is

referred to [19], [22] and [23] for more information on railway

component PN models.

2.2. Automatons as a Modeling Tool

An automaton, denoted by G, is a six tuple [11]:

 G = (Q, Σ, f , Γ,q0 ,Qm) (2)

where

ELECO 2011 7th International Conference on Electrical and Electronics Engineering, 1-4 December, Bursa, TURKEY

366

· Q : is the set of states,

· Σ : is the finite set of events

· f : QxΣ→ Q is the partial transition function on its
domain.

· Γ : Q→2Σ is the active event function.
· Γ(q) : is the set defined for every state of G and

represents the feasible events of q.

· q0 : is the initial state.

· Qm : is the set of marked states representing a completion

of a given task or operation.

In order to apply the method based on the Automaton model,

first the events have to be identified and a state transition graph

have to be obtained. Automata model of the switch given in

figure 5 can be seen in figure 6 and related definitions of the

model are given in Table 3.

e1

2

1

35

4

e2

e3
e4

e5 e6

Fig. 6. Automaton (State transition graph)

Table 3. Events defined for automation

Event Description

e1 Normal position request

e2 Reverse position request

e3 (e5) Switch is on reverse (normal) position

e4 (e6)

Switch position request from reverse

(normal)position to normal (reverse)

position

State 1 Switch starting state

State 2 Switch moves to normal position

State 3 Switch moves to reverse position

State 4 Switch is on reverse position

State 5 Switch is on normal position

Converting of Automata models to PLC codes is similar to

PNs [17], [24].

3. Synchronization of Automata and Petri Nets

As it is mentioned in section 2, two PLC programs are

obtained using Automata and PN modeling techniques. These

two interlocking PLCs (I-PLCs) are connected to the railway

yard through a voting system and so they have to be

synchronized with each other. This synchronization is achieved

by another fail-safe PLC called as Communication and Decision

Making Unit (CDMU). CDMU receives requests from

dispatcher, who is an officer in the Traffic Control Center

(TCC), where all railway traffic is monitored and logged.

CDMU also receives signals (indications from sensors of the

railway components) and sends commands to railway yard.

The architecture of the interlocking system is given in figure

7. When a route request is made by the dispatcher, CDMU sends

this request to both I-PLCs where the comparison of this request

with the current situation is achieved. After the comparison the

request of the dispatcher is accepted or rejected depending on

the situation of the railway yard. Situation of the railway yard is

updated in every second by sending the sensor information of

the railway components to the I-PLCs. After an incoming

request from CDMU to I-PLCs, they send their decisions (votes)

back to CDMU about that request. If it is accepted the necessary

commands sends to railway yard and TCC.

Communication and

Desicision Making Unit

PLC

Interlocking

PLC

(Automata)

Interlocking

PLC

(Petri Net)

Traffic

Control

Center

(TCC)

Railway Field Components

(Switches, Track Circuits, Signal Lights)

Remote I/O

Modules

Remote I/O

Modules

Fig. 7. The architecture of interlocking system

Whenever an I-PLC sends a signal to CDMU after an

incoming request, I-PLC waits an answer from CDMU about its

signal. If the answer does not come back in 10 sec. (10 sec. is

also called as synchronization time of I-PLCs) then I-PLC

rejects the request and so CDMU.

CDMU have to wait each PLC for its decision because the

response times (depending on the cycle time of each I-PLC) of

I-PLCs are not same. When the decision of an I-PLC arrives to

CDMU, it waits for 2 sec (2 sec is also called as adaptation time

of I-PLCs) for the other I-PLC to answer. If the other I-PLC

does not answer in 2sec. CDMU doesn’t answer back to both I-
PLCs and the request will be rejected.

In briefly, these timings are related with the safe states of

related signals. For example, red signal output is safe state for a

signal light where other signal outputs (green or yellow)

considered as unsafe state. Similarly for switches, moving a

switch from one position to another is an unsafe state where

keeping its current position is considered as safe state.

Sometimes the decisions of I-PLCs may not be same. For

example, when a position changing request for a switch came

from the TCC, assume that one I-PLC accepts but the other does

not. In this situation, CDMU records this as an error (and

informs dispatcher about this situation) and does not accept the

request since changing position of a switch by the dispatcher is

considered as an unsafe signal. After observing the fact that final

switch movement signal has not been sent from CDMU after the

adaptation time the I-PLC that decided to accept switch

movement request changes its answer as reject.

Similarly, above expression can be expand to signal lights,

route requests and other possible incompatible situations. In

other words, CDMU also synchronizes I-PLCs in case of

incompatible votes.

CDMU also contains some Safety Instrumented Functions

(SIF), for example, if both I-PLCs accept a request which

normally should not accepted (e.g. movement of a switch on a

track occupied by a train), CDMU does not send this signal to

ELECO 2011 7th International Conference on Electrical and Electronics Engineering, 1-4 December, Bursa, TURKEY

367

railway yard and records this as an error and give information

about this error to TCC.

In addition to these, by the help of fail-safe feature of

CDMU, communication failures can also be identified. If

communication of CDMU with the remote I/O modules or with

any of the I-PLCs is interrupt, this failure is also recorded by

CDMU and TCC is informed about this situation. One more

feature is that, if communication with an I-PLC is interrupted

for a long time (more than 2 sec.), this is considered is as a fatal

error and all fail-safe PLCs get into safe state (predetermined

conditions).

To sum up briefly, CDMU;

· communicates I-PLCs, TCC and Railway yard with each

other,

· sends commands to Railway yard,

· updates the sensor information of I-PLCs,

· receives request from TCC and sends back the answer of

each request,

· records decision errors of I-PLCs,

· contains SIF (enforce if necessary),

synchronizes I-PLCs when the decisions are not same.

4. Results

In this study, a railway interlocking system which is working

as a voting system is explained where railway related functional

safety requirements of CENELEC standards, especially EN

61508 and EN 50128, are also considered. Voting system

consists of two fail-safe PLCs with the running codes

determined by using Automata and Petri Net methods regarded

semi-formal methods by EN 50128. Communication between

Traffic Control Center, Railway Yard and Interlocking PLCs are

achieved by a master controller called as Communication and

Decision Making Unit which is also a fail-safe PLC where all

decisions are compared, considered and executed. Obtained

interlocking software is tested and verified by a simulator called

Interlocking Test Program (ITP) developed by ITU. Interface of

ITP can be seen in figure 8 and the real interlocking system can

be seen on figure 9.

Fig. 8. Interlocking Test Program. CDMU window (left), TCC

window (right bottom) and railway field (right up)

Fig. 9. The architecture of interlocking system

Acknowledgment

This work is supported by The Scientific and Technological

Research Council of Turkey (TÜBİTAK) project number
108G186 – The National Railway Signalization Project.

5. References

[1] M. T. Söylemez, “Functional Safety Applications on
Railway Systems: Turkish National Railway Signalization
Project,” in 2nd International Industrial Safety Systems
Conference, Istanbul, Turkey, 2010 (in Turkish).

[2] M. T. Söylemez, M. S. Durmuş, U. Yıldırım, S. Türk and
A. Sonat, “The Application of Automation Theory to
Railway Signalization Systems: The Case of Turkish
National Railway Signalization Project,” (accepted for
IFAC World Congress 2011).

[3] IEC 61508-3, Functional Safety of
Electrical/Electronic/Programmabel electronic safety-
related systems, Part 3: Software requirements, 1997.

[4] EN 50128, Railway Applications, Communications,
signalling and processing systems, Software for railway
control and protection systems, 2001.

[5] M. Spellemaeker, L. Witrant, “How to Determine the
Safety Integrity Level (SIL) of a Safety System,” Available:
www.oldhamgas.com (12.05.2011).

[6] Available: http://www.hima.com/default.php (14.06.2011)

[7] Available:
http://www.sea.siemens.com/us/Products/Automation/Prog
rammable-Controllers/Pages/Programmable-
Controllers.aspx (14.06.2011)

[8] Available: http://www.mitsubishi-automation.com/
(14.06.2011)

[9] P. J. Ramadge and W. M. Wonham, “The Control of
Discrete Event Systems,” Proc. of IEEE, vol. 77, no. 1, pp.
81-98, 1989.

[10] T. Murata, “Petri Nets: Properties, Analysis and
Applications,” Proc. of IEEE, vol. 77, no. 4, pp. 541-580,
1989.

[11] C. G. Cassandras and S. Lafortune, “Introduction to
Discrete Event Systems”, Kluwer Academic Publishers,
1999.

[12] A. Giua, “Petri Net Techniques for Supervisory Control of
Discrete Event Systems,” in 1st Int. Workshop on
Manufacturing and Petri Nets, pp. 1-30, Osaka, Japan,
1996.

[13] A. Giua and C. Seatzu, “Modeling and Supervisory Control
of Railway Networks Using Petri Nets,” IEEE Trans. On

ELECO 2011 7th International Conference on Electrical and Electronics Engineering, 1-4 December, Bursa, TURKEY

368

Automation Science and Engineering, vol. 5, no. 3, pp.
431-445, July 2008.

[14] A. M. Hagalisletto, J. Bjork, I. C. Yu and P. Enger,
“Constructing and Refining Large-Scale Railway Models
Represented by Petri Nets,” IEEE Trans. On System, Man
and Cybernetics-Part C: Applications and Reviews, vol.
37, no. 4, pp. 444-460, July, 2007.

[15] R. Zurawski and M. C. Zhou, “Petri Nets and Industrial
Applications: A Tutorial,” IEEE Trans. on Industrial
Electronics, vol. 41, no. 6, pp. 567-583, 1994.

[16] A. D. Febbraro, G. Porta and N. Sacco, “A Petri Net
modelling approach of intermodal terminals based on
Metrocargo© system”, in Proc. of the IEEE Intelligent
Transportation Systems Conf., pp. 1442-1447, 2006

[17] İ. T. Hasdemir, S. Kurtulan, L. Gören, “An implementation
methodology for supervisory control theory”, International
Journal of Advanced Manufacturing Technology, vol. 36,
no. 3-4, pp. 373-385, 2008.

[18] M. S. Durmuş, K. Akın, M. T. Söylemez, “Supervisory
Control Approach by Inhibitor Arcs for Signalization and
Interlocking Design of a Railway Yard,”, International
Symposium on INnovations in Intelligent SysTems and
Applications, INISTA'10, Kayseri & Cappadocia,
TURKEY, 21 - 24 June, 2010.

[19] M. S. Durmuş, U. Yıldırım, A. Kursun, M. T. Söylemez,
“Fail-Safe Signalization Design for a Railway Yard: A
Level Crossing Case”, WODES'10, International
Workshop on Discrete Event Systems, 30 August - 01
September, Berlin, Germany, 2010.

[20] M. Uzam, “Petri-net-based Supervisory Control of Discrete
Event Systems and Their Ladder Logic Diagram
Implementations,” PhD. Thesis, University of Salford,
SALFORD, M5 4WT, UK, 1998.

[21] . Thapa, S. Dangol and G.-N. Wang, “Transformation from
Petri Nets Model to Programmable Logic Controller using
One-to-One Mapping Technique,” Proc. of the 2005 Int.
Conf. on Computational Intelligence for Modelling,
Control and Automation and Int. Conf. on Intelligent
Agents, Web Technologies and Internet Commerce, vol. 2,
pp. 228-233, 2005.

[22] M. S. Durmuş, U. Yıldırım, M. T. Söylemez,
“Signalization and Interlocking Design for a Railway Yard:
A Supervisory Control Approach by Enabling Arcs”, The
in 7th International Symposium on Intelligent and
Manufacturing Systems, IMS 2010, 15-17 September,
Sarajevo, Bosnia Herzegovina, 2010.

[23] U. Yıldırım, M. S. Durmuş, M. T. Söylemez, “Fail-Safe
Signalization and Interlocking Design for a Railway Yard:
An Automation Petri Net Approach”, in 7th International
Symposium on Intelligent and Manufacturing Systems, IMS
2010, 15-17 September, Sarajevo, Bosnia Herzegovina,
2010.

[24] O. Eriş and İ. Mutlu, “Design of Signal Control Structures
Using Formal Methods for Railway Interlocking Systems”,
in 11th International Conference on Control, Automation,
Robotics and Vision, 7-10 December, Singapore, 2010.

ELECO 2011 7th International Conference on Electrical and Electronics Engineering, 1-4 December, Bursa, TURKEY

369

