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Abstract 
 

In designing safe and reliable interlocking systems for 

railways which are compatible with the related CENELEC 

(European Committee for Electrotechnical Standardization) 

standards semi-formal methods and diverse programming 

techniques are highly recommended (HR). EN 50128 (where 

methodologies to build failsafe software for railway 

applications are defined) recommends the use of Automata 

and Petri Nets (PNs) as semi-formal methods to build failsafe 

interlocking software for railway applications. In this paper 

interlocking software design which is achieved by using 

automata and PNs is explained where they were used 

synchronously as a voting system. 

 

1. Introduction 
 

Along with hardware development, software development 

process of an interlocking system is one of the toughest and 

most crucial parts in building a railway signalization system. For 

this purpose, EN 50126/8/9 standards are developed by 

CENELEC specifically for railway applications. EN 50126, 

where mainly RAMS (Reliability, Availability, Maintenance and 

Safety) analysis is described, is the general standard for all kinds 

of railway applications. EN 50128 defines methodologies to 

build failsafe software for railway applications, whereas EN 

50129 determines requirements for the hardware of electric, 

electronic and programmable devices that are to be used in 

railway applications. On the software part, as it is mentioned 

above, designers have to fully concern with EN 50128 standards 

where the steps of safety critical software development process 

are defined [1-4].  

These standards bring out a very important concept, that is; 

the probability for the system to execute the safety functions 

required in all specified input conditions within a specified time 

interval. Depending on this probability the Safety Integrity 

Level (SIL) [5] of a system can be determined. 

SIL level has to be at least at level 3 (SIL3) for railway 

interlocking systems [1]. At SIL3 level, the range of failure per 

hour (which is symbolized with λ) must be between 10-8 and 10-

7 (10-8≤ λ<10-7). This also means that the interlocking system 

has to work in average 1000 years without falling into a 

dangerous failure state. The easiest way to provide SIL3 level on 

hardware is to use COTS (Commercial off the shelf) products 

which are already certified [6-8]. 

Automata [9] and Petri Nets [10] are the most popular 

modeling tools for Discrete Event Systems (DES). Railway 

systems are also considered as DES because of the similarity in 

their behaviors and features [11]. Even PNs have some 

advantages [12] in comparison to Automata theory both in 

graphical and mathematical representation; Automata theory still 

preserves its own popularity. Since both methods decrease the 

possible logical errors, they are very useful as semi-formal 

methods on the modeling part of a DES. Several applications 

including both methods can be found in [13-17]. 

Both IEC 61508 and EN 50128 standards regarded Automata 

and Petri Nets as semi-formal modeling tools. Sometimes, 

programs designed using Automata and Petri Nets have to work 

together in a synchronized manner in the control of a master 

controller unit. Recommendation of EN 50128 about semi-

formal methods and modeling methods can be seen in figure 1. 

 

 
 

Fig. 1. Part of EN50128 Software Design and Implementation 

table. 

 

This can be useful especially in providing a Diverse 

Programming design as mentioned in EN 50128 [4]. 

In this study, a railway station controlled by a decision unit 

and a voting system is explained. The voting system consists of 

two fail-safe PLCs synchronized with each other. The programs 

running on these PLCs are designed using Automata and PN 

methods. Decision unit is another fail-safe PLC where the votes 

of PLCs are compared and all the communications between the 

railway yard, Traffic Control Center and the voting system are 

handled. 

 

2. Software Development Process 
 

A software development model known as V-model is 

recommended in EN 50128 which is given in figure 2. 
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Fig. 2. V-model 
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In this paper, especially Software Design part is explained. 

The other specifications are derived from the interlocking table, 

railway system requirements and the needs of the customer 

(Turkish State Railways). Interlocking table consists of possible 

route reservations and related requirements and it is considered 

as the starting point of modeling of a signalization system for a 

railway yard [18]. An example railway yard and its interlocking 

table are given in figure 3 and table 1, respectively. 
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Fig. 3. An Example railway yard 
 

Table 1. Interlocking table 
 

Route 

Selection 
Controlled Signal 

Signal 

Lights 

Switch 1 

Position 

363T – AT 

2B 

Green 
52BA 

(Y) or (G) Normal 

Yellow 52BA (R) 

363T – BT 
Yellow-Green 

52BB 

(Y) or (G) Opposite 

Yellow-Yellow 52BB (R) 

 

Railway components need to be modeled separately in order 

to simplify error tracking and visuality. Railway yard given in 

figure 3 consist of Signal Lights (SLs), Switches and Track 

Circuits (TCs). The definition of railway components can also 

be found in [19]. 

A recommendation of EN 50128 for safe software 

architecture is Diverse Programming technique (can be seen in 

figure 4) which means that a specification of a given program 

have to be implemented N times in different ways. These N 

versions can run on separate controllers (in our study N is equal 

to two and these two versions is running on two separate fail-

safe PLCs). The standard recommends that different versions to 

be developed by different groups in order to guarantee diversity 

in programming and reduce the probability of common cause 

failures. Different voting strategies can be used in combining the 

decisions of N different algorithms depending on the application 

requirements. 

 

 
 

Fig. 4. Part of EN 50128 recommendations for safe software 

architecture 

 

For example, if a switch malfunction occurred after the 

entrance of a train on a route then all signal lights have to show 

red (safe state). Similarly, if one of the voters produces different 

output than the others, the whole system has to go into a safe 

(predetermined) state. To achieve this, two separate workgroups 

in Istanbul Technical University (ITU) worked on the same 

problem using different modeling (Automata and Petri Nets) and 

design techniques. 

2.1. Petri Nets as a Modeling Tool 
 

Petri Nets (PNs) [10] have some advantages over Automata 

both in their graphical and mathematical features [12]. PNs are 

defined in the literature by (1). 

 

                      PN = (P, T, Pre, Post, M0)                     (1) 

 

where 

· P : {P1, P2, …, Pn}, finite set of places. 

· T : {t1, t2, …, tn}, finite set of transitions. 

· Pre : (PxT)→N, directed ordinary arcs from places to 
transitions. 

· Post : (TxP)→N, directed ordinary arcs from transitions to 
places. 

· M0 : P → N, initial marking (N is a set of nonnegative 
numbers). 

A sample switch model is given in figure 5, and related 

places and transitions are given on table 2.  

 

• 

P1
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P5 P4

t4

t1
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N R  
Fig. 5. Switch and its PN model 

 
Table 2. Definitions of PN places and transitions 

 

Event Description 

P1 Switch starting position 

P2 Switch moves to normal position 

P3 Switch moves to reverse position 

P4 Switch is on reverse position 

P5 Switch is on normal position 

t1 (t2) Normal (Reverse) position request for switch 

t4 (t3) Switch arrives on normal (reverse) position 

t5 (t6) 
Switch position request from normal (reverse) 

position to reverse (normal) position 
 

At the beginning switch is assumed to be on normal position 

(P1). After an incoming position command, switch moves to that 

position (normal or reverse) and stays there until a new 

command is received. 

Converting this model to a useful PLC code is simpler by 

using Sequential Function Charts (SFCs) which is one of the 

five languages defined by IEC 61131-3 standard. Besides, 

several formal conversion techniques are also available in the 

literature to convert PNs to PLC codes [20], [21]. The reader is 

referred to [19], [22] and [23] for more information on railway 

component PN models. 

 

2.2. Automatons as a Modeling Tool 
 

An automaton, denoted by G, is a six tuple [11]: 

                      G = (Q, Σ, f , Γ,q0 ,Qm)                                    (2) 

where 
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· Q : is the set of states, 

· Σ  : is the finite set of events 

· f : QxΣ→ Q is the partial transition function on its 
domain. 

· Γ : Q→2Σ is the active event function.  
· Γ(q) : is the set defined for every state of G and 

represents the feasible events of q.  

· q0 : is the initial state. 

· Qm : is the set of marked states representing a completion 

of a given task or operation. 

 

In order to apply the method based on the Automaton model, 

first the events have to be identified and a state transition graph 

have to be obtained. Automata model of the switch given in 

figure 5 can be seen in figure 6 and related definitions of the 

model are given in Table 3. 
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Fig. 6. Automaton (State transition graph) 

 

Table 3. Events defined for automation 
 

Event Description 

e1 Normal position request 

e2 Reverse position request 

e3 (e5) Switch is on reverse (normal) position 

e4 (e6) 

Switch position request from reverse 

(normal)position to normal (reverse) 

position 

State 1 Switch starting state 

State 2 Switch moves to normal position 

State 3 Switch moves to reverse position 

State 4 Switch is on reverse position 

State 5 Switch is on normal position 

 

Converting of Automata models to PLC codes is similar to 

PNs [17], [24]. 

 

3. Synchronization of Automata and Petri Nets 
 

As it is mentioned in section 2, two PLC programs are 

obtained using Automata and PN modeling techniques. These 

two interlocking PLCs (I-PLCs) are connected to the railway 

yard through a voting system and so they have to be 

synchronized with each other. This synchronization is achieved 

by another fail-safe PLC called as Communication and Decision 

Making Unit (CDMU). CDMU receives requests from 

dispatcher, who is an officer in the Traffic Control Center 

(TCC), where all railway traffic is monitored and logged. 

CDMU also receives signals (indications from sensors of the 

railway components) and sends commands to railway yard.  

The architecture of the interlocking system is given in figure 

7. When a route request is made by the dispatcher, CDMU sends 

this request to both I-PLCs where the comparison of this request 

with the current situation is achieved. After the comparison the 

request of the dispatcher is accepted or rejected depending on 

the situation of the railway yard. Situation of the railway yard is 

updated in every second by sending the sensor information of 

the railway components to the I-PLCs. After an incoming 

request from CDMU to I-PLCs, they send their decisions (votes) 

back to CDMU about that request. If it is accepted the necessary 

commands sends to railway yard and TCC. 
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Fig. 7. The architecture of interlocking system 

 

Whenever an I-PLC sends a signal to CDMU after an 

incoming request, I-PLC waits an answer from CDMU about its 

signal. If the answer does not come back in 10 sec. (10 sec. is 

also called as synchronization time of I-PLCs) then I-PLC 

rejects the request and so CDMU. 

CDMU have to wait each PLC for its decision because the 

response times (depending on the cycle time of each I-PLC) of 

I-PLCs are not same. When the decision of an I-PLC arrives to 

CDMU, it waits for 2 sec (2 sec is also called as adaptation time 

of I-PLCs) for the other I-PLC to answer. If the other I-PLC 

does not answer in 2sec. CDMU doesn’t answer back to both I-
PLCs and the request will be rejected. 

In briefly, these timings are related with the safe states of 

related signals. For example, red signal output is safe state for a 

signal light where other signal outputs (green or yellow) 

considered as unsafe state. Similarly for switches, moving a 

switch from one position to another is an unsafe state where 

keeping its current position is considered as safe state. 

Sometimes the decisions of I-PLCs may not be same. For 

example, when a position changing request for a switch came 

from the TCC, assume that one I-PLC accepts but the other does 

not. In this situation, CDMU records this as an error (and 

informs dispatcher about this situation) and does not accept the 

request since changing position of a switch by the dispatcher is 

considered as an unsafe signal. After observing the fact that final 

switch movement signal has not been sent from CDMU after the 

adaptation time the I-PLC that decided to accept switch 

movement request changes its answer as reject.  

Similarly, above expression can be expand to signal lights, 

route requests and other possible incompatible situations. In 

other words, CDMU also synchronizes I-PLCs in case of 

incompatible votes.  

CDMU also contains some Safety Instrumented Functions 

(SIF), for example, if both I-PLCs accept a request which 

normally should not accepted (e.g. movement of a switch on a 

track occupied by a train), CDMU does not send this signal to 
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railway yard and records this as an error and give information 

about this error to TCC. 

In addition to these, by the help of fail-safe feature of 

CDMU, communication failures can also be identified. If 

communication of CDMU with the remote I/O modules or with 

any of the I-PLCs is interrupt, this failure is also recorded by 

CDMU and TCC is informed about this situation. One more 

feature is that, if communication with an I-PLC is interrupted 

for a long time (more than 2 sec.), this is considered is as a fatal 

error and all fail-safe PLCs get into safe state (predetermined 

conditions). 

To sum up briefly, CDMU; 

· communicates I-PLCs, TCC and Railway yard with each 

other, 

· sends commands to Railway yard, 

· updates the sensor information of I-PLCs, 

· receives request from TCC and sends back the answer of 

each request, 

· records decision errors of I-PLCs, 

· contains SIF (enforce if necessary), 

synchronizes I-PLCs when the decisions are not same. 

 

4. Results 
 

In this study, a railway interlocking system which is working 

as a voting system is explained where railway related functional 

safety requirements of CENELEC standards, especially EN 

61508 and EN 50128, are also considered. Voting system 

consists of two fail-safe PLCs with the running codes 

determined by using Automata and Petri Net methods regarded 

semi-formal methods by EN 50128. Communication between 

Traffic Control Center, Railway Yard and Interlocking PLCs are 

achieved by a master controller called as Communication and 

Decision Making Unit which is also a fail-safe PLC where all 

decisions are compared, considered and executed. Obtained 

interlocking software is tested and verified by a simulator called 

Interlocking Test Program (ITP) developed by ITU. Interface of 

ITP can be seen in figure 8 and the real interlocking system can 

be seen on figure 9. 

 

 
Fig. 8. Interlocking Test Program. CDMU window (left), TCC 

window (right bottom) and railway field (right up) 

 

 
Fig. 9. The architecture of interlocking system 
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