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Abstract - This paper, present the derivation of a new 
potential integral equation for the derivative of the surface 
current with respect to a  geometrical parameter for 
microstrip structures embedded in multilayered substrate. 
This new equation integral is solved together with the 
original integral equation with the ameliorated moment 
method [9]. From the geometrical derivatives of the surfaces 
currents, geometrical derivatives of the S parameter are 
obtained. 
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I. INTRODUCTION 

CONSIDERABLE amount of work has been done in 
recent years on the full-wave analysis of planar  

microstrip structures as can be seen form the numerous 
publications[1-4] in this topic. Such a rigorous analysis is 
very often based on an integral equation formulation, 
typically solved with the method of the moments. In this 
work, we carry out a dynamic study of the analysis of the 
sensitivities of planar microstrip structure using the 
ameliorated moment method. 
The shape sensitivities are obtained by the quasi-static 
method [5], or by using the method of the finite 
differences[2]. The first method provides only approached 
solution. The second method is not enough precise and the 
derivative or sensitivity, obtained with the new integral 
equation is superior with respect to a finite difference 
estimate [5]. The present paper presents the principles as 
well as a method for calculating the derivative of the S 
parameter with respect to an arbitrary geometrical parameter 
using the new potential integral equation as a full-wave 
analysis method. In this analysis, we have used the dynamic 
approach [6,8], based on the ameliorated moments method 
[9] and solution of Green functions for the dipole and 
miccrostrip antenna [7]. Expression for the matrix elements 
as a function of the basis and test functions is given. 
 

II. THEORY 
 
The general geometry of planar microstrip circuit, 
embedded in multilayered substrate is depicted in Fig.1. 
The substrate consists of an arbitrary number of layers , 
stacked in the z – direction. Different types of geometrical 

parameters appear in this multilayered planar microstrip 
structure: thicknesses of the substrate layers (such as h1 , 
h2), distances between metalization surfaces (e.g. d1) and 
geometrical parameters pertaining to the surface itself like 
width or length (e.g., L1, L2 or w1). We confine ourselves 
to the last types of geometrical parameters. Derivatives 
with respect to layer thicknesses will be the subject of 
forthcoming paper. The surface current is assumed to 
circulate only in the x direction in the strip [4,10] as 
shown in Fig.1. 
 

 
 

 
 
 
 
 
Fig. 1. Example geometry of planar microstrip 
structure embedded in a substrate. 
 
The plane-wave spectral representation of the grounded 
dielectric slab Green’s function , representing the x-
directed electrical field at(x, y, h) due to a an x-directed 
infinitesimal dipole of unit strength at (x0, y0, h). The field 
element integral equation is expressed by [6,11]: 
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where Q(kx, ky) is given in[6] and J is given by: 
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The distribution of the transversal density current g(y0) (in 
the y-direction ) is supposed uniform, it must verify the 
condition [6,15]: 
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and it’s Fourier transform Fy is given by:  
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ΙΙΙΙΙΙΙΙ - A . INTEGRAL EQUATIONS 
 
From equation (1), the relation between the total incident 
tangential electrical field and the surface current is given 
by the potential equation integral defined by: 
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The total derivative of the surface current with respect to 
the geometrical parameter ξ ) is given by:  
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This derivative satisfies the following integral equation: 

        

000,000
x y

0000
x y

00

dydx)yx(J)y,x/y,x(G

dydx)y,x(J)y,x/y,x(R

)y,x(E).v()y,x(

0 0

0 0

ξ∫ ∫

∫ ∫

=∇+
δξ

Εδ

!

!

!!!
!

              

(6)

                             

This new integral equation is obtained by applying the 
flux transport theorem [12,13] on the original equation 
integral (3). 
Where  R(x,y/x0,y0) is given by: 
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v! and v0
!

are the velocity vectors given in [12]. 

ΙΙΙΙΙΙΙΙ-B. SOLUTION OF THE INTEGRAL 
EQUATIONSWHITH THE AMELIORATED 

MOMENTS METHOD 
 

The two integral (3) and (6) will be solved with the 
method of moments. The integral equation (3) is written 
by imposing the boundary condition such as the total 
electrical field ,due to all the currents in the line , is null. 
This equation leads to : 
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Where fn (x,y) is given in [6] and Ii, Ir   and It are the 
incident, the reflective and the transmitted current 
components given by: 
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R and T are the reflection and transmission coefficients. 
To analyze this sensitivity, three dominant modes are used in 
the representation of the incident, reflective and transmitted 
currents. The transmitted current It is introduced in the 
equation (3) with additional PWS modes that  have to 
exist in   xn = -nd   for  n =1, 2,...N and in xn = nd   for   
n=N+1, N+2,...2N.It results therefore 2N PWS modes. 
Equation (3) is thus modified knowing that R, T, In 
become 2N+2 unknowns in order that one can solve the 
equation (3) by using 2N+2 test functions[6]  
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Where Fxm, Fxn , Fxm c , Fxms , Fxmct , Fxmm  and Fxmst are 
defined in [6,14].The substitution of the double 
summation in the resulting integral equation, allow us to 
define the impedance matrix by: 
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Where the impedance matrix elements Zmn, Zms Zmc, Zmst, 
Zmst are given in [6].Using the lower upper decomposition 
technique for inversing the resulting impedance matrix, we 
can resolve the matrix equation (13). This expression allows 
obtaining the reflection coefficient R, the transmission 
coefficient T and the In coefficients. 
 
    If the total electrical field ,due to all the currents in the 
line , is null. Equation (6)  leads to : 
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To solve the second integral equation (6), we enforced it 
with 2N+2 weighting or test functions .Then following the 
same method for calculating the Z matrix from (3), we 
will obtained W-matrix elements. The impedance matrix 
of (6) is given by: 
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Where the impedance matrix elements Zmn, Zms Zmc, Zmst, Zmst 
are calculated during the solution of the equation integral (3) and 
the impedance matrix elements Wmn, Wms , Wmc, Wmst , Wmst are 
given in[12].Using the lower upper decomposition technique for 
inversing the resulting impedance matrix, we can resolve the 
matrix equation (15). This expression allows obtaining the 
derivative, of reflection coefficient Rξ, the transmission 
coefficient Tξ and the Iξ

n. 
 

III. EXAMPLE 
 
We consider a transmission line with two parallel stubs on 
an alumina substrate (εr =9.6 and h=0.635mm)(see fig.2). 
The stubs have the same length L and change 
simultaneously. The width w of the transmission line and 
stubs is 0.635mm. We vary the length L from 0.3175 mm 
to 3.4925 mm in step of 0. 3175 mm. The operating 
frequency is 10 GHz and the electrical wavelength in the 
substrate 11.7 mm. There are two surfaces of which the 
shape is modified. The different velocity vectors for the 
second stub are defined in terms of the same geometrical 
parameter L in [12]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Geometry and meshing of double stub  

example. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
   
   
 
 
 
 
 
 
 
 
 
                                            
                                           
 
 
 
 
Fig. 3. Real and imaginary part of the transmission 
coefficient and of the geometrical derivative of the  
transmission coefficient at 10 GHz for the double stub 
case. 
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The theoretical results for the transmission real and 
imaginary part for the double stub, as shown in Fig. 2, are 
compared with the theoretical results in [12], the 
difference between our theory computations and those of 
Urrel & zutter in [12] are less than 0.02 over the 
frequency range, and the calculation time decrease more, 
which present a good agreement. 
 

IV. CONCLUSION 
The underlying principles and derivation of a new integral 
equation for the total derivative of the surface current with 
respect to a geometrical parameter were presented. By 
expanding the unknown total derivative of the current over 
the same set of basis and test functions as the current, 
numerically efficient computation of the geometrical 
derivative becomes possible as a byproduct of the 
electromagnetic simulation. S-parameter with respect to a 
geometrical parameter are obtained. Calculation of the 
matrix elements, filling and inversion of the impedance 
matrix is performed once. The impedance matrix can be re-
used for each geometrical parameter. 
The approach treats all possible geometrical parameters in 
the plane of the circuit in a uniform way. Through the 
examples we saw that the integral equation calculated 
derivatives coincides well with those obtained in [12]. 
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