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Abstract 
 

In this study, a complex-valued adaptive filter algorithm based 
on Lyapunov stability theory is presented to solve a system 
identification problem in the complex domain. The performance 
of the proposed complex-valued Lyapunov adaptive filter 
(CLAF) algorithm is improved for the complex-valued system 
identification problem by integrating the LST into the filter 
optimization cost. The performance of the proposed algorithm is 
tested on a complex-valued moving average (MA) system 
identification problem and compared with the conventional 
complex-valued least mean square (CLMS) and complex-valued 
normalized least mean square (CNLMS) algorithms. The 
simulation results show that the proposed CLAF algorithm has 
achieved a faster convergence rate and a lower steady-state 
MSE performance when compared to the other algorithms. 

 
1. Introduction 

 
Nowadays, adaptive filters have been widely and 

successfully used as an engineering tool in prediction, noise 
cancellation, system identification problems etc. [1]. In adaptive 
filter applications, the signal magnitude is generally used as the 
main source of information [2]. Therefore, conventional 
adaptive filter algorithms are generally real-valued algorithms 
and provide a signal processing in the real domain. But, real 
word processes having the intensity and direction components 
(radar, sonar, vector fields, etc.) also require the phase 
information to be taken into account [2]. Complex-valued 
signals contain the phase information in their structure naturally. 
Also, the complex-valued signals may be defined as the reel and 
imaginer or the phase and magnitude components of them. The 
real-valued adaptive filter algorithms cannot be directly applied 
to the complex-valued signals. Therefore, adaptive filter 
algorithms must be developed in the complex domain [2]. 

In the literature, the CLMS and CNLMS algorithms are 
widely used for signal processing in the complex domain 
because of their low computational complexities [1, 3]. 
However, these algorithms highly depend on the statistical 
properties of the system input. Hence, the input signal directly 
affects the convergence dynamics of them [4, 5].  

In order to overcome the mentioned problems above, the 
authors proposed the LST based algorithms [4-7]. However, 
these algorithms [4-7] were designed in the real domain and 
could be only used in real-valued signal tracking applications. 
Therefore, the performances of the aforesaid algorithms 
deteriorate in case of a measurement noise. 

Mengüç and Acır [8] has also proposed a LST based adaptive 
filter algorithm for real-valued system identification problems 

by considering a measurement noise. In that study [8], the 
proposed algorithm having a fixed step size parameter achieved 
a better performance than the other LST based algorithms [4, 5]. 

Recently, the CLAF algorithm for the prediction of complex-
valued signals was proposed in [9]. The CLAF algorithm in [9] 
has always guaranteed stability in the sense of Lyapunov. The 
CLAF aims to find the global minimum point along the energy 
surface [9]. 

In this study, the CLAF algorithm [9] is successfully applied 
to solve a system identification problem in the complex domain. 
The performance of the proposed algorithm is tested on a 
complex-valued MA system identification problem and 
compared with the CLMS and CNLMS algorithms. The 
simulation results shown that the proposed CLAF algorithm 
achieved a faster convergence rate and a lower steady-state 
MSE performance when compared to the other algorithms. 

 
2. Complex-Valued LST based Adaptive Filter 

Algorithm 
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Fig. 1. Block diagram of an adaptive filter 

 
The block diagram of an adaptive filter is shown in Fig. 1. 

Here, kx( )  and y k( ) are the filter input signal and the finite 
impulse response (FIR) filter output signal, respectively. Also, 
d k( ) is the desired signal, and the complex-valued error signal 
of the FIR filter is given in Eq. (1). 

 
 ( ) ( ) ( ) ( ) ( )r ie k d k y k e k je k       (1) 
 
where ( )re k , and ( )ie k  represent the real and imaginary part 
of the error signal, respectively. 

The complex-valued FIR filter output is given as follows: 
 
  Ty k k kw x( ) ( ) ( )=      (2) 

 1 Tk w k w k w k Mw( ) [ ( ), ( ), ..., ( )]= - -    (3) 

 
 1 Tk x k x k x k Mx( ) [ ( ), ( ), ..., ( )]= - -     (4) 
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where the complex-valued weight vector kw( )  and the 
complex-valued input vector kx( )  are defined in Eq. (3) and (4 
). Also, M is the filter order. 

After the error function ( )e k  is defined in Eq. (1), a 
Lyapunov function ( )V k  is primarily determined to design the 
CLAF algorithm [9]. In this study, the Lyapunov function ( )V k  

is selected as 2*( ) ( ) ( ) ( )V k e k e k e k= = . To guarantee stability 

of the system, the selected Lyapunov function ( )V k  must 
provide the negative definiteness condition 

( ) ( ) ( 1) 0V k V k V kD = - - <  for all k  values. Therefore, this 
condition ( )V kD  is integrated into the constraint part of the 
proposed optimization problem to provide stability in the sense 
of Lyapunov in Eq. (5). 

Thus, the proposed design can be constructed as the 
inequality optimization problem in Eq. (5) [9]. 

 
  o min( )HArg  w w w  

subject to 
2 2( ) ( ) ( 1) 0V k e k e k        (5) 

 
In Eq. (5), Hw wd d  and ow  represent the cost function and 

the optimum weight vector, respectively. Also, 
( ) ( 1)k k   w w w  represents the difference between two 

consecutive weight vectors.  
If this optimization problem is solved by using the method of 

Lagrange multipliers, the weight vector update law based on the 
LST can be obtained as follows: 

 

   
*

*

( )( ) ( 1) ( ) ( 1) ( )
( ) ( )T

k
k k k e k sign k

k k
       

x
w w

x x
   (6) 

 
where ( )k ,   and   represent the a priori estimation error, 
the step size and the adaptation gain rate, respectively. 

 
 ( ) ( ) ( 1) ( )Tk d k k k   w x      (7) 

 
As a result of the convergence (in the mean) analysis of the 

proposed algorithm, the range of the step size   is obtained as 
0 2  . The step size   governs the steady-state 
convergence rate and the tracking capability of the proposed 
algorithm [8, 9]. 

The adaptation gain rate   is selected as 0 1k£ <  to 
satisfy stability in the sense of Lyapunov ( ( ) 0V kD < ) [4, 5, 9]. 
It should be also noted that   controls the convergence rate, 
and when   is selected a small value, the proposed algorithm 
provides a faster convergence rate. 

To avoid singularity in case of a vanishingly small 
*( ) ( )T k kx x , the weight vector update law in Eq. (6) can be 

modified by adding a small positive constant   in Eq. (8). 
 

     
*

*

( )( ) ( 1) ( ) ( 1) ( )
( ) ( )T

k
k k k e k sign k

k k
   


    


x

w w
x x

 (8) 

 
Finally, the proposed CLAF algorithm is presented step by 

step below. 

 
Algorithm: 
Parameters: 
 

 1e<< , e +ÎÂ  
 

 0 1k£ <  
 

 0 2m< <  
 

Initialization: Primarily, the initial value of the weight vector 
(0)w  and the filter order M must be determined. 

Given Data:  
  

   1, K

k k k
x d


 

 
where ( )kx  is the filter input signal, and ( )d k  is the desired 
signal. 
Computation: 
  

 ( ) ( ) ( 1) ( )Tk d k k k   w x  
 

 
     

*

*

( )( ) ( 1) ( ) ( 1) ( )
( ) ( )T

k
k k k e k sign k

k k
   


    


x

w w
x x

 

 
 ( ) ( ) ( )Ty k k kw x=  

 
 ( ) ( ) ( )e k d k y k= -  

 
Compute the above steps for 1,2,...,k K= . 

 
2. Simulation Results 

 
In this study, the performance of the proposed CLAF 

algorithm was tested on a complex-valued system identification 
problem. 
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Fig. 2. Block diagram of a system identification problem 

 
The classical structure of a system identification problem is 

shown in Fig. 2. As seen from Fig. 2, the desired signal d k( )  
consists of following model: 

 
 o

Td k s k n k k n kw x( ) ( ) ( ) ( ) ( )= + = +     (9) 

o 0 1 1
T

M
w w ww [ , ,..., ]-=    (10) 

where o
Ts k kw x( ) ( )=  represents the unknown system output, 

ow  is the optimal weight vector of the unknown system to be 
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estimated, and n k( )  denotes the complex-valued measurement 
noise. 

In our simulation, the unknown system [10] is the complex-
valued moving average (MA) model as follows: 

 

0 1 2 31 2 3s k w x k w x k w x k w x k( ) ( ) ( ) ( ) ( )= + - + - + -  (11) 
 

where the optimal weight coefficients are 

0 6 6w j= - , 1 0 5w j.= + , 2 2w j= - +  and 3 2 3w j= + . 

Also, the statistics of the input signal kx( )  and measurement 
noise signal n k( )  are given in Eq. (12). 

 
0 1 0 1 0 0 1 0 0 1x N jN n N jN( , ) ( , ), ( , . ) ( , . )+ +   (12) 

 
The FIR adaptive filter structure was used to identify the 

optimal weight vector of the unknown complex-valued MA (4) 
system. Also, we assume that the adaptive FIR filter and the 
unknown system had the same number of weight coefficients. 
The performance of the proposed algorithm was compared with 
the CLMS and CNLMS algorithms. While the step sizes of the 
CLAF and CNLMS algorithms were selected as 0 1.m = , the 
step size of the CLMS algorithm was chosen as 0 01.m = . 
Also, the adaptation gain rate of the proposed CLAF algorithm 
was selected as 0.001  . 

In order to evaluate the performance of the algorithms, we 
used the mean square error (MSE). Also, all the simulation 
results were obtained by ensemble averaging over 100 
independent trials. 
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Fig. 3. The MSE performance of all the adaptive filter 

algorithms for the complex-valued MA(4) system problem 
 

The MSE performance of all the adaptive filter algorithms for 
the complex-valued MA(4) system is shown in Fig. (3). In order 
to better observe, the detail of MSE performance of all the 
adaptive filter algorithms for the complex-valued MA(4) system 
is also shown in Fig. (4).  
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Fig. 4. Zoom of the MSE performance of all the adaptive filter 

algorithms for the complex-valued MA(4) system problem 
 

As seen from Fig. (3) and (4), the proposed CLAF algorithm 
shows a fast convergence rate when compared to the other 
algorithms. After the 450th iteration, all the adaptive filter 
algorithms exhibit approximately the same MSE performance. 
 
Table 1. MSE of the CLAF, CLMS and CNLMS algorithms for 

the known MA(4) system identification problem 
 

Algorithms 
MSE 

2 0 1
n

J
min

.s= =  

CLMS 0.2119 
CNLMS 0.1126 
CLAF 0.1058 

 
Table 1 compares the steady state MSE values of all the 
algorithms. Here, after all the adaptive filters converge to the 
optimal weight vector coefficients, we expect that the variance 
of the error signal is theoretically equal to the variance of the 
measurement noise signal. Table 1 shows that the proposed 
CLAF algorithm achieves a lower MSE performance than the 
other algorithms. Moreover, its MSE value is almost close to the 
variance of the measurement signal. As a results, the 
performance of the proposed CLAF algorithm is improved for 
the complex valued system identification problem by integrating 
the LST into the filter optimization cost. 

 
6. Conclusions 

 
In this paper, we have presented a complex-valued adaptive 
filter algorithm based on the LST to solve a system 
identification problem in the complex domain. The performance 
of the proposed CLAF algorithm has been developed for the 
complex valued system identification problem by integrating the 
LST into the filter optimization cost. The performance of the 
proposed algorithm has been tested on the complex-valued MA 
system identification problem and compared with the 
conventional CLMS and CNLMS algorithms. The simulation 
results show that the proposed CLAF algorithm achieved a 
faster convergence rate and a lower steady state MSE 
performance when compared to the other algorithms. In our 
future study, complex-valued circular and noncircular signals 
will be examined, and novel complex-valued adaptive filtering 
algorithms by using the LST will be conducted for the filtering 
of general complex valued signals. 
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