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ABSTRACT
 The coaxial waveguide transient radiation is analyzed by
the finite-difference method. Accurate Absorbing Boundary
Conditions (ABC) are used on virtual boundaries for
restriction of the computation domain. The numerical
example of the near-zone field transformation makes better
physical insight into radiation process.

To compute non-stationary radiation in
electrodynamic structures, as a rule, the finite-difference
method is used. But for all that the restriction of the
computational domain problem is arised in unbounded
regions. For solving this problem the computational
domain is usually restricted by virtual boundaries. The
approximate or accurate Absorbing Boundary Conditions
(ABCs) are applied on these boundaries.

In  1990 the Malony and Smith work [1] was
devoted to the numerical modeling of the radiation of
coaxial waveguide with the endless flange. The problem
geometry is shown in Fig. 1.
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There is H - polarization is considered in our work. That
is the magnetic field has only azimuth component ϕH .
The initial disturbance is the TEM pulse of the coaxial
waveguide with time duration 02t=τ . In [1] the
approximate absorbing boundary conditions were used.
The essential drawback of these conditions is the great
error of the field definition under the small grazing angels
on the virtual boundaries. Because of it time growth the
integral error growth in the entire domain. To get rid of
this drawback the accurate ABC must be applied. In our
work we have gotten such accurate ABC in the
waveguide cross section CD and on the hemisphere AB in
the top half-space (Fig. 1).

ABC in the coaxial waveguide cross section
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Here nw  are the field distribution in guide cross section
for nTM  mode:
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Fig.  1 Geometry for the boundary value problem –
coaxial waveguide with infinite image plane. Axial
symmetry is assumed.
symmetry is supposed. All conductors are assumed
t. The electromagnetic field in this system is
bed by the following initial-boundary problem in
rical coordinates:

( )




ϕ−
βπ

,
222 ba

n

where    ( ) ( ) ( ) ( ) ( )ρββ−βρβ=ρϕ nnnn NbJbNJb 1001,
and  nβ  is the root of equation:
                   ( ) ( ) ( ) ( ) 00000 =ββ−ββ bNaJaNbJ nnnn



ABC on the AB arc
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Where γS  are expressed through Hankel function:

( )( )
( )
( ) ( ){ }

( )
( ) ( ){ }

(1)

(1)
1 1

(1)
1

1(1)
11 1

, ,

12 Re exp

1 exp

n
s

s
s ss

n
n

nn

S r a t

H rz
iz t

azH az

H rz
iz t

azH az

γ

γ

γ

γ

γ

τ ε

τ ε

τ ε

= −

+
+

+− +

− =

 
− − +   

+ − −

∑

and  ( )xmµ  is Legendre functions, sz  is the roots of the
equation

( ) ( ) 01 =γ sLzH , 232 +=γ n

in fourth quadrant.
These absorbing boundary conditions are

applicable for arbitrary three-dimension systems with
axial symmetry. They are nonlocal in space and in time.
The main advantage of the ABC in hemisphere is the
absence of the normal derivative. Therefore it can be
realized in the Cartesian grid effectively.
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