

YILDIZ TECHNICAL UNIVERSITY
ELECTRICAL-ELECTRONIC FACULTY

COMPUTER ENGINEERING DEPARTMENT

SENIOR PROJECT

Image Processing Tool

Project Manager: Asist. Prof. Sırma YAVUZ

Project Group

 03011018 Akın MOĞULKOÇ

 03011030 Orçun ATAY

İstanbul, 2007

iii

© Bu projenin bütün hakları Yıldız Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü’ne aittir.

iv

CONTENTS
ABBREVIATION LIST ... v
FIGURE LIST..viii
TABLE LIST ... ix
PREFACE... x
Özet.. xi
Abstract...xii
2. INTRODUCTION .. 1
2. SYSTEM ANALYSIS.. 1

2.1.The Problem.. 1
2.2.Solution... 1
2.3. Feasibility Analysis.. 3

2.3.1. Technical Feasibility... 3
2.3.1.1 Hardware... 3
2.3.1.2 Software .. 3

2.3.2. Economic Feasibility .. 3
2.3.2.1 Hardware Costs... 3
2.3.2.2 Software Costs .. 4
2.3.2.3 Total Costs .. 4

3. 3. FUNCTIONS OF PROJECT.. 5

3.1.Grayscale .. 5
3.2.Sepia.. 5
3.3.Invert... 5
3.4.Rotate .. 6
3.5. Channel Extraction .. 6
3.6. Channel Filtering ... 6
3.7. Color Filtering.. 6
3.8. HSL Filtering ... 7
3.9. Binarization Filters .. 7

3.9.1. Treshold .. 7
3.9.2. Treshold WithCarry .. 7
3.9.3. Ordered Dithering ... 8
3.9.4. Bayer Dithering... 8
3.9.5. Floyd-Steinberg Dithering .. 9
3.9.6. The Burkes Dithering.. 9
3.9.7. The Jarvis, Judice, and Ninke filter .. 9
3.9.8. The Sierra filters ... 10
3.9.9. The Stucki filter .. 10

3.10. Mathematical and Morphologic Filters.. 11
3.10.1. Erosion .. 11
3.10.2. Dilation ... 11
3.10.3. Opening... 10
3.10.4. Closing .. 11
3.10.5. Hit and Miss Thinning .. 11

3.11. Convolution Filters .. 12
3.11.1. Mean Filter.. 12
3.11.2. Blur Filter.. 12

v

3.11.3. Sharpen Filter.. 13
3.11.4. Gaussian Filter .. 13

3.12. Two Sources Filters ... 13
3.13. Edge Detection... 13

3.13.1. Homogeneity Edge Detection... 13
3.13.2. Difference Edge Detection.. 14
3.13.3. Sobel Edge Detection.. 14
3.13.4. Canny Edge Detection .. 15

3.14. Blob Counter.. 16
3.15. Connected Component Labeling ... 16
3.16. Simple Skeletonization .. 17
3.17. Gamma Correction... 17
3.18. Conservative Smoothing.. 18
3.19. Adaptive Smoothing .. 18
3.20. Median Filter.. 18
3.21. Fourier transformation ... 19

4. SCREENSHOTS .. 19
5. CONCLUSION... 31
REFERENCES ... 31
ÖZGEÇMİŞ .. 32

vi

ABBREVIATION LIST:

CPU Central Processing Unit
BMP Bit Map Format
JPEG Joint Photographic Experts Group
PNG Portable Network Graphics
WBMP Wireless Bitmap Format
GIF Graphics Interchange Format
TIFF Tagged Image File Format
API Application programming interface
RGB Red Green Blue Space
HSL Hue Saturation Luminance Space

vii

FIGURE LIST
Figure 4.1 Frames Of User Interface .. 20
Figure 4.2 General User Interface... 21
Figure 4.3 Threshold Binarization .. 22
Figure 4.5 Hit&Miss Filter ... 23
Figure 4.6 Invert ... 23
Figure 4.7 Rotate... 24
Figure 4.8 Hue Modifier ... 24
Figure 4.9 Saturation Modifier ... 25
Figure 4.10 Mean Filter .. 25
Figure 4.11 Sobel Filter .. 26
Figure 4.12 Roberts Filter ... 26
Figure 4.13 Conservative Smoothing ... 27
Figure 4.14 Oil Painting.. 27
Figure 4.15 Skeletonization .. 28
Figure 4.16 Merge... 29
Figure 4.17 Pixelleta ... 30

viii

TABLE LIST
Table 2.1-Recommended Configuration... 3
Table 2.2 Configuration Details.. 4
Table 2.3 Total project costs... 4

ix

PREFACE:

Nowadays, increasing image processing applications, and supporting
applications for the development of these applications are gaining importance.
Likewise, the image processing tool we developed gathers the commonly used image
processing techniques. In this way, this tool helps not only the image processing
projects but also useful for obtaining sample images. Thus, the tool aims to decrease the
project processing durations.

In any project, even while some simple processes are applied on any image too
much time may be lost, which is not the main aim of the project. That is for what the
application we developed is useful.

Special thanks to our consultant teacher Assist. Prof. Sırma YAVUZ for guiding and
standing us.

x

ÖZET:

JAVA dili ile platform bağımsız olarak tasarlanan ve gerçeklenen uygulamamız

40’ı aşkın işlem seçeneği ve kullanışlı ara yüzü ile görüntü işleme konusundaki
çalışmalara etkin bir yardımcı özelliği taşımaktadır. Bahsettiğimiz 40’ı aşkın işlev için
parametreleri kullanıcıdan alma yoluyla kullanım alanı genişletilmiş ancak bu projenin
hedef kullanıcı kitlesi için belirli bir bilgi birikimi gerekliliğini ortaya koymuştur. Bu
sebeple uygulamamız sıradan bir resim düzenleme aracından farklılaşmıştır.

Geliştirdiğimiz uygulama RGB ve HSL renk uzayı için renk filtreleri, matematik ve
morfolojik işlemler, konvolüsyon ve smooting işlemleri, fourier, vb gibi işlemleri
kolaylıkla gerçekleştirebilecek yapıya ve kullanıcı dostu ara yüze sahiptir.

xi

ABSTRACT:

The platform independent application we designed and realized by JAVA

language has a range of processing options of over 40 and a user-friendly interface, and
is a very useful tool for image processing applications. For these 40 processing options,
the parameters are entered by the users, and in this way the use area has spread, and this
situation resulted in the necessity that the target users should have certain knowledge
about the application we developed.

The application we developed has the capability to handle the processes such
that the color filters for RGB and HSL color space, mathematical and morphological
processes, convolution and smoothing processes, Fourier etc. This application also has a
user-friendly interface to realize the processes mentioned above easily and comfortably.

1. INTRODUCTION

Many of the techniques of digital image processing, or digital picture processing
as it was often called were developed in 1960s with the applications such that satellite
imagery, medical imaging, videophone, character recognition, and photo enhancement.
However, the cost of processing was fairly high with the computing equipments of that
era. In this era this processes could only be carried out by the scientists with powerful
computers, but now image processing can be done by anyone with a personal computer
or workstation. This is because of the constant price reduction in computers, the
increase in CPU speed and graphics power. This increase in accessibility makes image
processing an indispensable part of the computer science and the commercial
software’s.

2. SYSTEM ANALYSIS

2.1. The Problem
 With the increasing number of image processing projects; pre-processing has
become important. During developing image processing applications; implementing
pre-processing techniques, although some of them like basic morphological operations
and convolutions filters seems easy to achieve, within the application itself wastes
developers' time and increases project costs. For example in a character recognition
application, to get better results, images should be pre-processed with operations like
cleaning, smoothing etc which dramatically slows down the application.

2.2. Solution

Because of the high human resources costs, third party image pre-processing
tools or libraries are preferred for reducing the development period. Image processing
tool to be developed in this project will provide basic pre-processing operations
independently to the developer. With the use of this tool, developers can easily obtain
suitable sample images for testing their applications. Some of the functions the tool
includes:

• Color filters
• HSL filters
• Binarization filters
• Automatic binarization
• Mathematical morphology filters
• Convolution filters
• 2 Source filters
• Edge detectors
• Blob counter
• Connected components labeling
• Pixellate, Simple skeletonization, Jitter, Shrink, Oil painting
• Levels linear filter, gamma correction
• Median filter, Adaptive smoothing, Conservative smoothing
• Resize and Rotate

2

• Fourier transformation (low pass and high pass filters)

The tool will be able to read and write several image file formats. These are:

• BMP: Bit Map Format
• JPG, JPEG: Joint Photographic Experts Group
• PNG: Portable Network Graphics
• WBMP: Wireless Bitmap Format
• GIF: Graphics Interchange Format
• TIFF : Tagged Image File Format

2.3 Feasibility Analysis

2.3.1 Technical Feasibility
2.3.1.1. Hardware
 Our image processing tool will be developed to run on average PC
configuration, however, when we carry out matrix operations for manipulating pixel
data, it is obvious that we need CPU power and more memory. Considering these
requirements, recommended configuration is given on Table 2.1.

 Table 2.1-Recommended Configuration

2.3.1.2. Software
 When we confuse the implementation level of the project we need a complex,
fast and useful programming language and we have alternatives like JAVA, .NET, C++
etc. JAVA and .NET are more useful for image processing but C++ is a better solution
in point of speed.
 Entire system will be developed using JAVA 6 platform. Platform independent,
secure, object oriented structure properties of Java and facilities are the most important
reasons for this choice. On the other hand claim of JAVA 6 about the speed makes it a
better choice then other alternatives.

2.3.2. Economic Feasibility

2.3.2.1 Hardware Costs

CPU P4 or Higher
Main Memory 512 MB
Graphic Memory 64 MB
HDD 40 MB

3

 According to exigencies which are exhibited in technical feasibility we need two
PCs for development duration. The detailed configuration and the costs can be seen on
Table 2.2.
Hardware Product Price Quantity
CPU Intel P4 or AMD 80$ 2
Main Board Asus P4S800D 50$ 2
HDD 40GB 40$ 2
Main Memory 512 MB 50$ 2
Graphic Card 64 MB 35$ 2
Monitor 17” Standard 110$ 2
Case Midi Towel 25$ 2
Optical Driver 52X 20$ 2
Keyboard Standard 5$ 2
Mouse Standard 3$ 2
 TOTAL 836$
 Table 2.2 Configuration Details

2.3.2.2 Software Costs
 All of the programs, which we will use during the development, are open source
products and they can be downloaded from their respective official web sites for free.

• Java 1.6 Standard Edition (www.sun.com)
• NetBeans 5.5 IDE (www.netbeans.org)
 For this project no extra API’s or libraries will be used and the design will be
implemented using the standard JAVA packages.

2.3.2.3 Total Costs

Hardware 836$
Software 0$
Human Resource 2000$
TOTAL 2836$

 Table 2.3 Total project costs
 According to the Table 2.3 total costs of the project is 2836$. However, it is a

considerably little amount when we consider the gain of development time for this kind
of a specific image processing project.
3. FUNCTIONS OF PROJECT:
3.1. Grayscale

This mode uses up to 256 shades of gray. Every pixel of a grayscale image has a
brightness value ranging from 0 (black) to 255 (white). Grayscale values can also be
measured as percentages of black ink coverage (0% is equal to white, 100% to black).
Images produced using black-and-white or grayscale scanners typically are displayed in
Grayscale mode.

4

Although Grayscale is a standard color model, the exact range of grays represented can
vary, depending on the printing conditions.
y = 0.299 * R + 0.587 * G + 0.114 * B

3.2. Sepia

The Toning filter has many uses other than toning black and white photographs.
It will act on any RGB image. Sepia filter allows you to give that yellow tint to your
pictures, as if they were shot near the end of the day. This filter will yield a pleasant
Antique effect. The algorithm which is used in sepia filter is:

gry = (r + g + b) / 3;
r = g = b = gry;
r = r + (depth * 2);
g = g + depth;

If red or green value is over than 255 you accept those 255.

3.3. Invert

Inverting the colors of the image creates a photo-negative effect. It is very
simple to invert an image:
R = 255 – R
G = 255 – G
B = 255 – B

3.4. Rotate

Rotating is turning the image with the given angle. When image is turned it does
not fit in the old rectangular. If image is located in the old rectangular some data will be
lost. Because of this the size of the rectangular that contains the image must be
increased.

3.5. Channel Extraction

Once an image with solely the blue and red cells is obtained, the blue and red
cells need to be separated from one another. This is accomplished with a simple loop
where each pixel in the image that has a red channel value greater than the blue channel
value is considered the color red and vice versa for a blue colored pixel. The binary
templates from the green channel extraction, background extraction, and red/blue
extraction are intersected together so that only the blue or red pixels of the image are
passed.

This filter gives all pixels red, green, and blue values the same value. So the
image becomes a grayscale image. If red channel is being extracted for all pixels the red
value is given to green and blue values. Then the image is grayscale and the gray value
is equal to old red value. Green extraction and blue extraction are same; the green or
blue value becomes the gray value.

3.6. Channel Filtering

This filter gives each pixel in your image a new color: the color channel that
contributes the most to the color of a pixel is removed (except for gray pixels, which are

5

kept gray). For red, green, and blue values maximum and minimum values are taken
from the user. Then, for all pixels if red is not between red-max and red-min values the
red value is set 0. It is same for green and blue values.

3.7. Color Filtering
 Color filtering is like channel filtering but there is a small different detail. In this
filter if red is not between red-max and red-min then red, green, and blue values are set
0. The same operation is done for green and blue values too.
3.8. HSL Filtering

Based on the human perception of color, the HSL model describes three
fundamental characteristics of color:
• Hue is the color reflected from or transmitted through an object. It is measured as a
location on the standard color wheel, expressed as a degree between 0° and 360°. In
common use, hue is identified by the name of the color such as red, orange, or green.
• Saturation, sometimes called chroma, is the strength or purity of the color. Saturation
represents the amount of gray in proportion to the hue, measured as a percentage from
0% (gray) to 100% (fully saturated). On the standard color wheel, saturation increases
from the center to the edge.
 • Lightness is the relative brightness or darkness of the color, usually measured as a
percentage from 0% (black) to 100% (white).
HSL filtering is so similar to color filtering. Just the values are not red, green, and blue;
they are Hue, Saturation, and Lightness. If one of hue, saturation or lightness value is
not between the given maximum and minimum values then for that pixel all of them are
set 0.

3.9. Binarization Filters:

When you need to binarize a gray-levels image, you need to select a threshold value,
because gray values ranges from 0 to 255: pixels lower than these values are considered
background (paper) and pixels higher than this value are considered foreground (text
and graphic elements).
 3.9.1. Threshold: In this method the pixel values under the given threshold value

are accepted white and the others are accepted black.
3.9.2. Threshold with Cary: In this method the threshold value is not given by the
user; it is calculated from the image pixel color values by iteration. The method has
5 steps:

1. A threshold value (T) is chosen or calculated from the histogram of the
image.

2. According to T the pixel values are separated into two groups.
3. For each group average values M1 and M2 are calculated.
4. New threshold value: T = (M1 + M2)/2
5. These 4 steps are repeated until the difference between the two T values

is small enough.

3.9.3. Ordered Dithering: We can express the patterns in compact form as the
order of dots added:
 8 3 4 and 1 7 4
 6 1 2 5 8 3

6

 7 5 9 6 2 9

Then we can simply use the value in the array as a threshold. If the value of the
pixel (scaled into the 0-9 range) is less than the number in the corresponding cell of
the matrix, plot that pixel black, otherwise, plot it white. This process is called
ordered dither. As before, clustered patterns should be used for devices which blur
dots. In fact, the clustered pattern ordered dither is the process used by most
newspapers, and the term half toning refers to this method if not otherwise qualified.

3.9.4. Bayer Dithering: Bayer has shown that for matrices of orders which are
powers of two there is an optimal pattern of dispersed dots which results in the
pattern noise being as high-frequency as possible. The pattern for a 2x2 and 4x4
matrices are as follows:
 1 3 1 9 3 11 These patterns (and their rotations
 4 2 13 5 15 7 and reflections) are optimal for a
 4 12 2 10 dispersed-pattern ordered dither.
 16 8 14 6
Bayer's method is in very common use and is easily identified by the cross-hatch
pattern artifacts it produces in the resulting display. This artifact is the major
drawback of the technique which is otherwise very fast and powerful. Ordered
dithering also performs very badly on images which have already been dithered to
some extent. As stated earlier, dithering should be the last stage in producing a
physical display from a digitally stored image. The dithered image should never be
stored itself.

3.9.5. Floyd-Steinberg Dithering:

This technique is a modified threshold operation. The algorithm proceeds by
moving left-to-right and top-to-bottom over each pixel. Each pixel is threshold on
the value 128 for 8-bit images. An error-diffusion step is then performed where the
“error” between the input and output pixel is propagated to neighboring pixels
according to a fixed system. The error E at pixel P is the quantity (P-threshold (P)).
The error E is distributed such that the pixel to the immediate east of P is
incremented by 7E/16, the pixel to the south-west of P is incremented by 3E/16, the
pixel to the south of P is incremented by 5E/16 and the pixel to the south-east of P is
incremented by E/16. Once neighboring pixels have been adjusted, the threshold
operation continues in left-right-top-bottom fashion. Figure 4 gives an example of
using Floyd-Steinberg diffusion to dither a gray-scale image.

3.9.6. The Burkes Dithering:

Daniel Burkes of TerraVision undertook to improve upon the Stucki filter in
1988:
 * 8 4 The Burkes filter
 2 4 8 4 2 (1/32)

Notice that this is just a simplification of the Stucki filter with the bottom row
removed. The main improvement is that the divisor is now 32, which allows the
error values to be calculated using shifts once more, and the number of neighbors
communicated with has been reduced to seven. Furthermore, the removal of one row

7

reduces the memory requirements of the filter by eliminating the second forward
array which would otherwise be needed.

3.9.7. The Jarvis, Judice, and Ninke filter

If the false Floyd-Steinberg filter fails because the error is not distributed well
enough, then it follows that a filter with a wider distribution would be better. This is
exactly what Jarvis, Judice, and Ninke did in 1976 with their filter:
 * 7 5
 3 5 7 5 3
 1 3 5 3 1 (1/48)

While producing nicer output than Floyd-Steinberg, this filter is much slower to
implement. With the divisor of 48, we can no longer use bit-shifting to calculate the
weights but must invoke actual DIV (divide) processor instructions. This is further
exacerbated by the fact that the filter must communicate with 12 neighbors; three
times as many in the Floyd-Steinberg filter. Furthermore, with the errors distributed
over three lines, this means that the program must keep two forward error arrays,
which requires extra memory and time for processing.

3.9.8. The Sierra filters:
In 1989, Frankie Sierra came out with his three-line filter:

 * 5 3 The Sierra3 filter
 2 4 5 4 2
 2 3 2 (1/32)
A year later, Sierra followed up with a two-line modification:
 * 4 3 The Sierra2 filter
 1 2 3 2 1 (1/16)
and a very simple "Filter Lite," as he calls it:
 * 2 The Sierra-2-4A filter
 1 1 (1/4)
Even this very simple filter, according to Sierra, produces better results than the
original Floyd-Steinberg filter.

3.9.9. The Stucki filter:
P. Stucki offered a rework of the Jarvis, Judice, and Ninke filter in 1981:
 * 8 4
 2 4 8 4 2
 1 2 4 2 1 (1/42)
Once again, division by 42 is quite slow to calculate (requiring DIVs). However,
after the initial 8/42 is calculated, some time can be saved by producing the
remaining fractions by shifts. The Stucki filter has been observed to give very
clean, sharp output, which helps to offset the slow processing time.

3.10. Mathematical and Morphologic Filters:

In the processing and analysis of images it is important to be able to extract
features, describe shapes and recognize patterns. Such tasks refer to geometrical

8

concepts such as size, shape, and orientation. Mathematical morphology uses concepts
from set theory, geometry and topology to analyze geometrical structures in an image.

 3.10.1. Erosion:

Classical erosion that removes pixels based on nearest neighbor comparisons always
produces distortion in shapes when applied more than a few times, because one
pixel removed in the diagonal direction corresponds to a distance of 1.414 (square
root of 2, the diagonal of a square) pixels compared to removing one in a vertical or
horizontal direction.
3.10.2. Dilatation:
It is vice versa of the erosion. This method enlarges the image and makes it thicker.

3.10.3. Opening:
The Opening block performs an erosion operation followed by a dilation operation
using a predefined neighborhood or structuring element.
3.10.4. Closing:
The Closing block performs a dilation operation followed by an erosion operation
using a predefined neighborhood or structuring element.
3.10.5. Hit and Miss Thinning:
The binary hit-or-miss transform is applied to filter digital gray-scale signals. This is
accomplished by applying a union of hit-or-miss transforms to an observed signal's
umbra and then taking the surface of the filtered umbra as the estimate of the ideal
signal. The hit-or-miss union is constructed to provide the optimal mean-absolute-
error filter for both the ideal signal and its umbra. The method is developed in detail
for thinning hit-or-miss filters and applies at once to the dual thickening filters. It
requires the output of the umbra filter to be an umbra, which in general is not true. A
key aspect of the paper is the complete characterization of umbra-preserving union-
of-hit-or-miss thinning and thickening filters. Taken together, the mean-absolute-
error theory and the umbra-preservation characterization provide a full
characterization of binary hit-or-miss filtering as applied to digital gray-scale
signals. The theory is at once applicable to hit-or-miss filtering of digital gray-scale
signals via the three- dimensional binary hit-or-miss transform.

3.11. Convolution Filters:
A convolution combines pixels in a source image that you specify with neighboring
pixels to produce an image. You can achieve a wide variety of imaging operations by
using the convolution filter, which includes blurring, edge detection, sharpening,
embossing, and beveling effects.

3.11.1Mean Filter: The idea of mean filtering is simply to replace each pixel value
in an image with the mean (`average') value of its neighbours, including itself. This has
the effect of eliminating pixel values which are unrepresentative of their surroundings.
Mean filtering is usually thought of as a convolution filter. Like other convolutions it is
based around a kernel, which represents the shape and size of the neighbourhood to be
sampled when calculating the mean. Often a 3×3 square kernel is used, as shown in
Figure 1, although larger kernels (e.g. 5×5 squares) can be used for more severe
smoothing. (Note that a small kernel can be applied more than once in order to produce
a similar - but not identical - effect as a single pass with a large kernel.)

9

3.11.2Blur Filter: This method makes the image blur. It uses this matrix:
1 2 3 2 1

2 4 5 4 2

3 5 6 5 3

2 4 5 4 2

1 2 3 2 1

3.11.3. Sharpen Filter: This method ensures the image to be sharpener. It uses this

matrix:
0 -1 0

-1 5 -1

0 -1 0

3.11.4. Gaussian Filter: The Gaussian smoothing operator is a 2-D convolution
operator that is used to `blur' images and remove detail and noise. In this sense it is
similar to the mean filter, but it uses a different kernel that represents the shape of a
Gaussian (`bell-shaped') hump.

2

2

2

2
1)(σ

πσ

x

exG
−

=

3.12. Two Sources Filters:

These filters ensure to work on two different images so you can merge, intersect,
add, subtract, difference, and move towards them.

3.13. Edge Detection:
The goal of edge detection is to mark the points in a digital image at which the luminous
intensity changes sharply. Sharp changes in image properties usually reflect important
events and changes in properties of the world. These include discontinuities in depth,
discontinuities in surface orientation, and changes in material properties and variations
in scene illumination. Edge detection is a research field within image processing and
computer vision, in particular within the area of feature extraction.

3.13.1. Homogeneity Edge Detection: If we are to perceive an edge in an image, it
follows that there is a change in color between two objects, for an edge to be
apparent. To put it another way, if we were to take a pixel and store as it's value the
greatest difference between it's starting value and the values of it's eight neighbors,
we would come up with black where the pixels are the same, and trend towards
white the harder the color difference was. We would detect the edges in the image.

10

Furthermore, if we allowed a threshold to be set, and set values below this to 0, we
could eliminate soft edges to whatever degree we desire. The code to do this is
followed by an example at threshold 0 and one at threshold 127.
3.13.2. Difference Edge Detection: The difference edge detection works in a
similar way, but it detects the difference between pairs of pixel around the pixel we
are setting. It works out the highest value from the difference of the four pairs of
pixels that can be used to form a line through the middle pixel. The threshold works
the same as the homogeneity filter. Again, here is the code, followed by two
examples, one with no threshold, and one with a threshold of 127.
3.13.3. Sobel Edge Detection: Based on this one-dimensional analysis, the theory
can be carried over to two-dimensions as long as there is an accurate approximation
to calculate the derivative of a two-dimensional image. The Sobel operator performs
a 2-D spatial gradient measurement on an image. Typically it is used to find the
approximate absolute gradient magnitude at each point in an input grayscale image.
The Sobel edge detector uses a pair of 3x3 convolution masks, one estimating the
gradient in the x-direction (columns) and the other estimating the gradient in the y-
direction (rows). A convolution mask is usually much smaller than the actual image.
As a result, the mask is slid over the image, manipulating a square of pixels at a
time. The actual Sobel masks are shown below:

The magnitude of the gradient is then calculated using the formula:

22 GyGxG +=
An approximate magnitude can be calculated using:
|G| = |Gx| + |Gy|

3.13.4. Canny Edge Detection: This is a multi-step edge detection procedure by
Canny. The purpose of the following two methods is to detect edges with noise
suppressed at the same time.
1- Smooth the image with a Gaussian filter to reduce noise and unwanted details and
textures.

),(*),(),(nmfnmGnmg σ=

11

Where

)
2

(

2

2

22

2
1 σ

σ
πσ

nm

eG
+

−
=

2- Compute gradient of using any of the gradient operations (Roberts, Sobel,
Prewitt, etc) to get:

),(),(),(22 nmgnmgnnM nm +=
and

)
),(
),(

arctan(),(
nmg
nmg

nm
m

n=θ

3- Threshold M:

Where is so chosen that all edge elements are kept while most of the noise is
suppressed.
4- Suppress non-maxima pixels in the edges in obtained above to thin the edge
ridges (as the edges might have been broadened in step 1). To do so, check to see
whether each non-zero MT(m,n) is greater than its two neighbors along the gradient
direction θ(m,n) . If so, keep MT(m,n) unchanged, otherwise, set it to 0.

5- Threshold the previous result by two different thresholds and (where) to obtain
two binary images and. Note that compared to, has less noise and fewer false edges
but larger gaps between edge segments.

6- Link edges segments in to form continuous edges. To do so, trace each segment
in to its end and then search its neighbors in to find any edge segment in to bridge
the gap until reaching another edge segment in.

3.14. Blob Counter:
The Blob Counter filter counts all blobs (objects or contours) within an image. The filter
contains two filters for blobs. One filter excludes all blobs outside a minimum and
maximum size. The second filter excludes all blobs whose seven "hu invariants" are
outside a minimum and maximum value. Hu invariants are proved to be invariants to
the image scale, rotation, and reflection except the seventh one, whose sign is changed
by reflection.

3.15. Connected Component Labeling:

12

Connected component labeling works by scanning an image, pixel-by-pixel (from top to
bottom and left to right) in order to identify connected pixel regions, i.e. regions of
adjacent pixels which share the same set of intensity values V. (For a binary image
V={1}; however, in a gray level image V will take on a range of values, for example:
V={51, 52, 53, ..., 77, 78, 79, 80}.)
Connected component labeling works on binary or gray level images and different
measures of connectivity are possible. However, for the following we assume binary
input images and 8-connectivity. The connected components labeling operator scans the
image by moving along a row until it comes to a point p (where p denotes the pixel to
be labeled at any stage in the scanning process) for which V={1}. When this is true, it
examines the four neighbors of p which have already been encountered in the scan (i.e.
the neighbors (i) to the left of p, (ii) above it, and (iii and iv) the two upper diagonal
terms). Based on this information, the labeling of p occurs as follows:
If all four neighbors are 0, assign a new label to p, else
If only one neighbor has V= {1}, assign its label to p, else
If one or more of the neighbors have V= {1}, assign one of the labels to p and make a
note of the equivalences.
After completing the scan, the equivalent label pairs are sorted into equivalence classes
and a unique label is assigned to each class. As a final step, a second scan is made
through the image, during which each label is replaced by the label assigned to its
equivalence classes. For display, the labels might be different gray levels or colors.

3.16. Simple Skeletonization:
Skeletonization is a process for reducing foreground regions in a binary image to a
skeletal remnant that largely preserves the extent and connectivity of the original region
while throwing away most of the original foreground pixels. The skeleton/MAT can be
produced in two main ways. The first is to use some kind of morphological thinning that
successively erodes away pixels from the boundary (while preserving the end points of
line segments) until no more thinning is possible, at which point what is left
approximates the skeleton. The alternative method is to first calculate the distance
transform of the image. The skeleton then lies along the singularities (i.e. creases or
curvature discontinuities) in the distance transform. This latter approach is more suited
to calculating the MAT since the MAT is the same as the distance transform but with all
points off the skeleton suppressed to zero.

3.17. Gamma Correction

To apply a gamma filter, each color is factored using the inverse power of the
gamma value (Gamma is normally restricted to the range 1/5 to 5)

gammacolorcolor
1

')
255

(*255=

Since the gamma calculation involves powers, and for a given value of gamma and
color the output color value is constant, it makes sense to pre-calculate the new color
values and store them in an array so the calculation doesn't need to be repeated each
time. Then the new value can be looked up simply as the index of the entry in a one-
dimensional array. For each pixel in the image array, read the red, green and blue values
and then replace them with their lookup within the gamma tables.

13

3.18. Conservative Smoothing
Like most noise filters, conservative smoothing operates on the assumption that

noise has a high spatial frequency and, therefore, can be attenuated by a local operation
which makes each pixel's intensity roughly consistent with those of its nearest
neighbors. This is accomplished by a procedure which first finds the minimum and
maximum intensity values of all the pixels within a windowed region around the pixel
in question. If the intensity of the central pixel lies within the intensity range spread of
its neighbors, it is passed onto the output image unchanged. However, if the central
pixel intensity is greater than the maximum value, it is set equal to the maximum value;
if the central pixel intensity is less than the minimum value, it is set equal to the
minimum value.

3.19. Adaptive Smoothing
Adaptive Smoothing is a new image smoothing method developed by Image Fusion
Systems Research. While traditional smoothing methods use the same window shape
and size, or the same filter to smooth an image independent of its content, in adaptive
smoothing, window shape and size are varied across the image domain depending on
local image content. In adaptive smoothing a window is sized according to the gradient
magnitude locally and shaped in such a way that it has a shorter side across edges
compared to along edges. This mechanism maintains edge details while smoothing
random noise.
 Adaptive smoothing reduces noise similar to traditional smoothing but unlike
traditional smoothing, it does not blur image edges
3.20 Median Filter:
 The median filter is a non-linear digital filtering technique, often used to remove
noise from images or other signals. The idea is to examine a sample of the input and
decide if it is representative of the signal. This is performed using a window (n*n and n
is an odd number)
 The values in the window are sorted into numerical order; the median value is selected
as the output. The oldest sample is discarded, a new sample acquired, and the
calculation repeats.

3.21. Fourier transformation:
Fourier transformation allows us to handle the pictures in frequency domain instead of
spatial domain. The simplest Fourier filters are low-pass and high-pass filters, which
filter out high or low frequencies (rapid changes in pixel values or average values).

14

• Low Pass Filter: An image can be blurred by, for each pixel, calculating the
weighed average of that pixel and its neighbors, using a convolution matrix. We can
also blur an image, by multiplying the spectrum with the transfer function of a low pass
filter. The transfer function of a low pass filter makes all high frequency components
zero or at least weakens them, while keeping or amplifying the low frequency ones.
• High Pass Filter: high pass filter on an image keeps only the high frequency
components. By applying a high pass filter, the DC component (the center of the
spectrum) of the spectrum is removed too, the resulting image can have negative pixel
values and it needs normalization.

4. SCREENSHOTS:

Figure 4.1 Frames Of User Interface

There are 5 frames in the graphic user interface. Their names are Images, History,
Details, Output, and Main frame.
Images: In this frame the names of the pictures which are being shown in main frame
are written. You can open many images and they are all shown in different frames.

15

History: In this frame the filters that have been applied to the image. When the selected
image changes at the same time the history of the new image is written in History
Frame.
Details: This frame shows the details about the image like histogram and other image
statistics.
Output: This frame is giving any information to the user about the filter that is being
applied. The warnings are shown in pop-up menus and the others are shown in Output
frame:
Main Frame: This frame contains the images that are being shown. One or more image
can be shown at the same time.

Figure 4.2 General User Interface

General use of application is very simple. Filters can be selected from the filters menu
for applying to image. Filters have been classified in 11 main sections.

16

Figure 4.3 Threshold Binarization
Binarization section has 8 subsections: All these subsections create a binary image from
the selected image. In here threshold binarization was applied to image.

Figure 4.4 Jarvis-Nudice-Dunke Binarization

Jarvis-Nudice-Dunke Binarization was applied to image.

17

Figure 4.5 Hit&Miss Filter

Morphology section has 7 subsections that apply basic morphologic methods. For
applying morphologic methods image must be binary. If image is not a binary image it
is wanted to apply a binarization method from user. Hit&Miss method was applied to
image in here.

Figure 4.6 Invert

Color section has 9 subsections. These subsections are related with RGB color space.
Invert method was applied to image.

18

Figure 4.7 Rotate

The image was rotated 45 degree in here.

Figure 4.8 Hue Modifier

HSL section has 4 subsections. These subsections are related with HSB color space.
Hue value was changed in here.

19

Figure 4.9 Saturation Modifier

Saturation of the image was changed in here.

Figure 4.10 Mean Filter

Convolution section has 4 subsections. These convolution methods are applied with the
matrix which is taken from the user. In here the effect of Mean Filter on the image is
seen.

20

Figure 4.11 Sobel Filter

Edge detection section has 7 subsections. These sections are the most popular edge
detection methods. Here the edges were detected with Sobel Filter.

Figure 4.12 Roberts Filter

Another Edge Detection method (Robert Edge Detection) was applied to the image. The
more image gets complicated detection of the edges become harder.

21

Figure 4.13 Conservative Smoothing

Smoothing section has only one subsection: Conservative smoothing.

Figure 4.14 Oil Painting

Others section has 5 subsections. These subsections are generally known methods but
are suitable to take place in any classification. So they were collected in Others section.
The effect of Oil Painting Filter is seen in here.

22

Figure 4.15 Skeletonization

Skeletonization section has no subsection. Simple skeletorization method is applied to
the image. If the image is not a binary image it is converted to binary image then
skeletonization method is applied.

Figure 4.16 Merge

23

Two Sources Operations has three subsections: Add, Subtract, and Merge. These
methods are applied with two images. When Two Sources Operations section is selected
a new window appears which includes the names of the current images. User can select
the second image from this window and apply the selected method. In here the new
image is the merge of the other two images.

Figure 4.17 Pixelleta

The effect of Pixelleta filters is seen here.

24

Figure 4.18 Original Lena

Figure 4.19 Lena After FFT

25

Figure 4.20 Retransform After Butterworth Filter

26

Figure 4.21 Adding Noise

Figure 4.22 Noise Reduction

27

CONCLUSION:
Thinking the project we realized, we have developed and designed an image

processing tool. The processes handled by this application can be increased. Besides,
the commonly used processes are included in the application, in fact. When comparing
this application with its equivalents, it has been seen that the application functions with
higher effectiveness. Moreover, the functioning parameters are left for the users as far
as possible.

28

REFERENCES:
[1] HyperMedia Image Proceing,http://www.cee.hw.ac.uk/hipr/html/hipr_top.html
[2] Image Processing Fundamentals,
http://www.ph.tn.tudelft.nl/Courses/FIP/noframes/fip-Morpholo.html
[3] Gonzalez & Woods, Digital Image Processing, 2nd Edition, Prentice Hall, 2002
[4] Russ, John C.(1995), THE IMAGE PROCESSING HANDBOOK, 2nd edition,
CRC Press,1995
[5] Crane, Randy, A. Simplified Approach to Image Processing: Classical and Modern
Techniques in C, Prentice Hall, 1996

29

ÖZGEÇMİŞ:

Adı Soyadı Akın MOĞULKOÇ
Doğum Tarihi 20.05.1985
Doğum Yeri Sivas/Kangal
Lise Kayseri Fen Lisesi
Staj Yaptığı Yerler. Link Holding(Yazılım)
 Türk Telekom(Donanım)

ÖZGEÇMİŞ:

Adı Soyadı Orçun ATAY
Doğum Tarihi 13.04.1985
Doğum Yeri Zonguldak
Lise Zonguldak Atatürk Anadolu Lisesi
Staj Yaptığı Yerler Link Holding(Yazılım)
 Art Elektronik Ltd.(Donanım)

