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Abstract

In this work, two evolutionary techniques, Particle Swarm 

Optimization (PSO) and Artificial Bee Colony (ABC) 

algorithms are used to optimize the denominator coefficients 

of the low-pass filter transfer function. Optimum selection of 

the coefficients will approximate the transfer function to 

ideal characteristic. Two different order of transfer 

functions are taken into consideration. Compared to 

conventional methods, both PSO and ABC minimize the 

approximation error in a short computation time. 

1. Introduction 

The low-pass filter is used in virtually every communication, 

measurement, and control system. Its function is to suppress all 

high-frequency components of a signal beyond some cut off 

frequency c, while allowing the lower frequencies to pass 

through the filter unattenuated. Hence the magnitude response 

of an ideal low-pass filter is defined by the "'brickwall" 

characteristic. However, this ideal response can not be 

expressed as a rational function of angular frequency. Since the 

ideal low-pass filter is not physically realizable, it is possible to 

design a physical circuit which approximates the ideal 

characteristics to within any prescribed [1]. Solution of the 

approximation problem is a major step in design procedure of a 

filter and is equally important in design of both analog and 

digital filters [2]. 

Approximation problem can be defined as a curve fitting 

optimization. Several methods are suggested to overcome this 

problem. For example, a Butterworth filter [3] meets magnitude 

specifications and employs no ripples in passband. However, it 

may have a long transition band. A Chebyshev filter [3] meets 

the hard specifications and owns lower complexity as well as 

ripples in the passband. 

Before the era of fast and efficient computation, each method 

would be encapsulated as a table of transfer function 

coefficients and engineers would realize a filter with the table 

data. These tables supply order-based coefficients for a 

normalized low-pass filter. A vast space of filter coefficients 

remains unexplored by classical approximations [4]. The 

implementation of optimization techniques offers the 

opportunity to exploit a large solution space which is not 

covered by design considerations of conventional analog filters 

such as Butterworth and Chebyshev approximations and enables 

better suited filters for particular specifications.

     The application of evolutionary techniques in filter 

approximation and thus optimization of coefficients of the 

transfer function is a promising area which is based on concepts 

of natural selection and survival of the fittest. In the literature, 

enhanced particle swarm optimization based Optim-filt system 

is developed which evolves filter approximations in the form of 

coefficients of a transfer function [4]. However approximation 

errors with respect to conventional methods are not specified.  

In [5], semidefinite programming (SDP) is used to optimize all-

pole filters by compensating the classical designs in that overall 

performance in the passband or the stopband. In [6, 7], 

approximation problem is formulated as a sequential quadratic 

programming (SQP) problem and given filter specification is 

translated into a tolerance scheme which can be extended by 

constraints in the frequency and/or in the time domain.

 In this work, Artificial Bee Colony (ABC) algorithm and 

Particle Swarm Optimization (PSO) which are swarm based 

evolutionary techniques are utilized for optimizing the 

coefficients of the transfer functions of a third order and a fifth 

order low-pass filter. The aim is to obtain the optimum 

coefficient value set which minimizes the error between the 

transfer function and ideal characteristic in a short computation 

time. A comparison of approximation error obtained with 

conventional methods which are reviewed in section 2 and 

evolutionary techniques which are reviewed in section 3 is 

provided in section 4. Finally, section 5 presents concluding 

remarks and suggestions for future work.

2. Conventional Filter Approximation Methods 

In practical filter design, the amplitude response is more 

often specified than the phase response. The amplitude response 

of the ideal low-pass filter with normalized cutoff frequency at 

c= 1 rad/s is shown in Fig 1. It has a gain of 1 (0 dB) in the 

passband and a gain of 0 in the stopband. This ideal amplitude 

response can not be expressed as a rational function of angular 

frequency ( ). Since the ideal low-pass filter is not physically 

realizable, there exists several approximation methods some of 

which are reviewed in the following. 

Fig. 1 Ideal low-pass characteristic 
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2.1. Butterworth Approximation

Butterworth approximation (1) is aimed at constructing 

maximally flat magnitude response filters, optimized for gain 

flatness in the pass-band.
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where, n represents both the order of the transfer function 

and the realized filter. The magnitude response of nth order

Butterworth function is sketched in Fig. 1 considering n = {2, 3, 

5, 10} with respect to ideal characteristic of a low-pass filter. 

Observe that |H(0)|=1 and |H(j1)|=0.707. In terms of the decibel 

scale,  the Butterworth magnitude response starts from 0 dB at 

DC and drops down monotonically by 3 dB (for all n values) at 

c=1 rad/s. Considering that n , Butterworth approximation 

approaches to the ideal low-pass characteristic [1, 3]. 

Fig. 2 Amplitude response of nth order Butterworth function

Before a circuit can be synthesized, it is necessary to derive 

the transfer function. Performing the mathematical operations 

for Butterworth approximation in [1-3], the coefficients of the 

general form of low-pass filter transfer function given in (2) is 

obtained. As an example, the second order low-pass filter 

transfer function is provided in (3). The denominator of (2) is 

known as a Butterworth polynomial. The first five Butterworth 

polynomials are tabulated in Table 1.  
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Table 1 Butterworth Polynomials

n Butterworth Polynomials 

1 1s

2 1414.12 ss

3 122 23 sss

4 1613.2414.3613.2 234 ssss

5 1236.3236.5236.5236.3 2345 sssss

2.2. Chebyshev Approximation 

The Chebyshev characteristic (4) has a steeper roll off near 

the cutoff frequency when compared to the Butterworth, but at 

the expense of monotonicity in the passband [2]. 
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Where,  is the ripple factor and its values are between 0 and 1, 

Cn( ) is a Chebyshev polynomial of the nth order and it’s terms 

are C0( )=1, C1( )= , Cn+1( )=2 Cn( )- Cn-1( ). The 

passband exhibits equiripple behavior, with the ripple 

determined by the ripple factor . In the passband, the 

Chebyshev polynomial alternates between 0 and 1 so the filter 

gain will alternate between maxima at 1|)(| jH  and minima 

at 21/1|)(| jH . The ripple is often given in dB (5).

21

1
log20dBinRipple       (5) 

As seen equation (5), the ripple amplitude is 3 dB for =1. Plot 

of the magnitude of Chebyshev approximation function for 1 dB 

ripple and n=3, 5, 9 are shown in Fig. 3.

Fig. 3 Amplitude response of nth order Chebyshev function  

The coefficients of the Chebyshev filter functions, as well as 

their poles, can be tabulated for various ripple dB values i.e 

{0.1, 0.5, 1, 3}. A sample of such tabulation for 1 dB ripple 

value is tabulated in Table 2. This table does not give the 

normalized Chebyshev filter functions. In all these cases, the 

upper edge of the passband ripple occurs at c=1 rad/s. 

Table 2 Chebyshev Polynomials

n Chebyshev Polynomials 

1 965.1s

2 102.1097.12 ss

3 3269.00222.17378.0 23 sss

4 275.0742.0453.1952.0 234 ssss

5 0817.04594.06935.04995.17064.0 2345 sssss

ELECO 2011 7th International Conference on Electrical and Electronics Engineering, 1-4 December, Bursa, TURKEY

116



3. Evolutionary Algorithms 

EA techniques differ in the implementation details and the 

nature of the particular applied problem. In this study, the 

performances of artificial bee colony optimization (ABC) and 

particle swarm optimization (PSO) which are nature inspired 

EA techniques are evaluated for active filter design. Details of 

those are introduced in the following.

3.1. Artificial Bee Colony Optimization  

Artificial Bee Colony (ABC) algorithm [8] is a recently 

introduced optimization algorithm and simulates the foraging 

behavior of bee colony. In ABC algorithm, the position of a 

food source represents a possible solution to the optimization 

problem and the nectar amount of a food source corresponds to 

the quality (fitness) of the associated solution. First of all, the 

food source positions are randomly initialized as xi (i=1,…,SN) 

where SN is the maximum number of the food sources. Each 

employed bee, whose total number equals to the the number of 

food sources, produces a new food source in her food source site 

as given in (6).

                             (6)  

where ij is a uniformly distributed real random number 

within the range [-1, 1], k is the index of the solution chosen 

randomly from the colony and j is the index of the dimension of 

the problem. After producing vij, this new solution is compared 

to xij solution and the employed bee exploits a better source 

while each onlooker bee whose total number is equal to the 

number of employed bees selects a food source with the 

probability as given in (7). 

     

                       (7) 

where fiti  is the fitness of the solution xij and produces a new 

source in selected food source site by (4). After all onlookers are 

distributed to the sources, sources are checked whether they are 

to be abandoned. The employed bee associated with the 

abandoned source becomes a scout and makes random search in 

problem domain by (8). The best food source found so far has 

been memorized and the production steps are repeated until the 

stopping criterion is met [9]. 

                            (8) 

3.2. Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is an evolutionary 

computation method based on the social behavior, movement 

and intelligence of swarms searching for an optimal location in 

a multidimensional search area which has been developed by 

Eberhart [10]. The approach uses the concept of population and 

a measure of performance similar to the fitness value used with 

evolutionary algorithms. Population consists of potential 

solutions called particles. Each particle is initialized with a 

random position value. In each iteration, the fitness function is 

evaluated by taking the current position of the particle in the 

solution space and two best values (pbest, gbest). Personal best 

value, pbest, is the location of the best fitness value obtained so 

far by the particle. Global best value,  gbest, is the location of the 

best fitness value achieved so far considering all the particles in 

the swarm [10-12]. 

In particle population matrix, containing N number of 

particles, ith particle with a feature number of D is denoted as 

xi=[xi1, xi2,…, xiD]. For each iteration, the velocity and the 

position vector of the ith particle in NxD dimension of the search 

space are updated as follows: 

vid
k+1 = w.vid

k + c1.rand1
k.(pbestid

k- xid
k) + c2.rand2

k.(gbestd
k- xid

k)      (9) 

xid
k+1 = xid

k + vid
k+1                                                 (10)

Here, the range of i, d and k indices are defined as {1...N},

{1…D} and {1…max_iteration_number} respectively. The 

acceleration factors c1 and c2 indicates the relative attraction 

toward pbest and gbest respectively. Following rand1 and rand2 are 

random numbers uniformly distributed between zero and one. 

Inertia weight parameter, w, controls the tradeoff between the 

global and the local search capabilities of the swarm. Initially w

should be chosen as less than one and should be decreased 

linearly in each iteration.  

PSO algorithm used in this work has been built up for the 

global best (gbest) PSO model. The gbest model is chosen since it 

converges faster than local best (lbest) PSO [13]. This is due to 

the larger particle connectivity of gbest PSO. Each particle can 

interact with every other one in the swarm and can be attracted 

to the best position obtained by any other particle. 

4. Simulation Results 

In order to investigate the usage of evolutionary algorithms 

(EA) in filter approximation and to compare with conventional 

methods, optimization of transfer function coefficients of nth

order low-pass filter is carried out. By establishing design 

parameters to EA and satisfying desired constraints, the optimal 

coefficients were aimed to be determined by EA methods. 

Design problem has been introduced by composing an equation 

consists of design parameters as a cost function (CF). In the 

beginning of the algorithm a certain range was determined for 

design parameters by human designer. EA should minimize the 

given CF and obtain design parameter values for the given range 

which gives minimum CF value. In order to introduce the design 

problem to EA, a CF which includes values of coefficients as 

design parameters is constituted as given in (11). 
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where, c=1 rad/s and  is the discrete angular frequency 

and sampled as {0.1, 0.2, 0.3,…, 2}. H(j ) is the transfer 

function of the low-pass filter. Considering ideal characteristic, 

the approximation error of pass-band and stop-band is 

determined by the first term and second term of (11), 

respectively.  

The right side of (11) would constitute the CF which EA 

would minimize. It is desired to obtain the exact values of 

design parameters which equate CF to a very close value to 

zero. In this work, PSO and ABC algorithms are utilized for EA 
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based filter approximation and performances of those are 

evaluated by means of computation time and accuracy. The aim 

is to estimate the coefficient values of transfer functions of a 

third order and a fifth order (n=3, n=5) low pass filter with 

minimum design error.  Each coefficient value was designated 

to take value between 1 and 10.

Considering ABC, the number of colony size was set to 

2000, the numbers of onlooker bees and employed bees are 50% 

of the colony size. Table 3 summarizes ABC parameters and 

simulation results for filter approximation design problem where 

n represents the order of the filter.  

Table 3 ABC Parameters and Simulation Results 

ABC

n=3 n=5

Search Limit 100 100 

Colony size 2000 2000 

P
ar

am
et

er
s

Number of generations 500 500 

Computational Time (s) 12.5 30.3 

Design error 0.1246 0.0680 

Coefficient b0 0.5003 2.2749 

Coefficient b1 1.1405 5.5629 

Coefficient b2 1.1836 8.8675 

Coefficient b3 - 5.1283 

S
im

u
la

ti
o

n

R
es

u
lt

s

Coefficient b4 - 9.4922 

Considering PSO, initial population matrix size was 10xn

where row number of 10 indicates the number of particles in the 

population and column number of n is the dimension of particle 

vector where n also represents the order of the filter. Table 4 

summarizes PSO parameters and simulation results for filter 

approximation design problem. 

Error comparison of conventional approximation methods vs. 

EA based methods is tabulated in Table 5. Results demonstrate 

that EA methods outperform conventional ones by means of 

accuracy. ABC obtained smaller approximation error than PSO; 

however computational time of PSO is less than ABC. 

Table 4 PSO Parameters and Simulation Results 

PSO 

n=3 n=5

c1,c2 1.7 1.7 

w 0.99 0.99 

Swarm size 10 10 

P
ar

am
et

er
s

Number of generations 1000 1000 

Computational time (s) 1.965 8.42 

Design error 0.1633 0.0885

Coefficient b0 0.9339 1.4413 

Coefficient b1 1.8823 3.0078 

Coefficient b2 1.9169 2.9807 

Coefficient b3 - 3.2120 

S
im

u
la

ti
o

n

R
es

u
lt

s

Coefficient b4 - 3.4273 

Table 5 Error Comparison of EA vs. Conventional methods  

Approximation Method 
Error

(n=3)

Error

(n=5)

Chebyshev1 (Ripple=1 dB) 0.4023 0.4971 

Butterworth 0.3211 0.1866 

Chebyshev1 (Ripple=0.1 dB) 0.3022 0.1206 

PSO 0.1633 0.0885 

ABC 0.1246 0.0680 

The graphs in Fig. 4 and Fig. 5 are illustrating the results of 

the proposed evolutionary techniques with respect to the 

conventional methods for a third order and fifth order 

approximation problem, respectively. It can be demonstrated 

that PSO and ABC both minimizes the approximation error in a 

short computation time. The sharpest descent in transition band 

is obtained with ABC; however, PSO is much approximated to 

ideal characteristic in passband.
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Fig. 4 Amplitude responses of 3rd order approximation functions 

10
-2

10
-1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

1.2

Frequency (rad/s)

A
m

p
lit

u
d
e

PSO

ABC

Butterworth

Chebyshev (1 dB)

Chebyshev (0.1 dB)

Ideal

Fig. 5 Amplitude responses of 5th order approximation functions 
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 5. Conclusion 

The performances of evolutionary algorithms on nth order 

low-pass filter approximation have been investigated. ABC and 

PSO algorithms were utilized for optimization of both 3rd and 5th

order low-pass transfer function and selection of optimum 

denominator coefficients which will approximate the relevant 

transfer function to ideal characteristic by means of accuracy 

and computation time.  

 Simulation results demonstrate that both PSO and ABC 

minimize the approximation error compared to the conventional 

methods in a short computation time. The sharpest descent in 

transition band is obtained with ABC; however, PSO is much 

approximated to ideal characteristic in passband. Consequently, 

evolutionary techniques have effectively explored the search 

space in order to obtain denominator coefficients of a low-pass 

transfer function.

As a further work, studies will be carried out for improving 

the evolutionary algorithm based approximation method. An 

extension of this research might be either phase approximation 

or optimization of step response in time domain. 

6. References 

[1] L. O. Chua, C. A. Desoer, E. S. Kuh, “Linear and 

Nonlinear Circuits”, McGraw-Hill Book Company, New 

York, 1987. 

[2] T. Deliyannis, Y. Sun, J. K. Filder, “Continuous-time 

active filter design”, CRC Press, USA, 1999. 

[3] A. C. Sedra, K. C. Smith, “Microelectronic Circuits”, 

Oxford University Press, New York, 2004. 

[4] V. Aggarwal, W. O Jin, U. O. Reilly, “Filter 

Approximation Using Explicit Time and Frequency 

Domain Specifications”, Conf. Genetic and Evolutionary 

Computation, New York, NY, USA, 2006, pp. 753-760. 

[5] N. T. Hoang, H. D. Tuan, T. Q. Nguyen, and H. G. Hoang, 

“Optimized Analog Filter Designs With Flat Responses by 

Semidefinite Programming”, IEEE Transactions on Signal 

Processing, vol. 57, no. 3, pp. 944-955, 2009. 

[6] O. Koca, H. Karl, R. Weigel, “A Novel Method Based 

Upon Nonlinear Optimization for Analog Filter Design 

with Mask Constraints”, International Symposium on 

Signals, Systems and Electronics, ISSSE ’07, Montreal, 

Que, 2007, pp. 9-12.

[7] N. Damera–Venkata, and B. L. Evans, “An Automated 

Framework for Multicriteria Optimization of Analog Filter 

Designs,” IEEE Trans. Circuits and Systems–II, vol. 46, 

no. 8, pp. 981-990, 1999. 

[8] D. Karaboga and B. Basturk, “A powerful and efficient 

algorithm for numerical function optimization: artificial 

bee colony (ABC) algorithm”, Journal of Global 

Optimization, vol.39, no.3, Springer Netherlands, pp.459-

471, 2007. 

[9] D. Karaboga and B. Akay, “Artificial bee colony (ABC), 

harmony search and bees algorithms on numerical 

optimization”, Innovative Production Machines and 

Systems Virtual Conference, Cardiff, UK, 2009. 

[10] R.C. Eberhart and J. Kennedy, “Particle swarm 

optimization”, Proc. IEEE Int. Conf. on Neural Networks,

1995, pp. 1942-1948. 

[11] M. Clerc, “The particle swarm - explosion, stability and 

convergence in a multidimensional complex space”, IEEE

Trans. Evolutionary Computation, pp. 58-73, 2002.

[12] T. Kiink, J.S. Vesterstroem and J.Riget, “Particle swarm 

optimization with spatial particle extension”, Proc. lEEE 

Cong Evolutiorian Computation, pp.1474-1479, 2002. 

[13] A.P. Engelbrecht, “Fundamentals of Computational 

Swarm Intelligence”, John Wiley & Sons, England, 2007.   

ELECO 2011 7th International Conference on Electrical and Electronics Engineering, 1-4 December, Bursa, TURKEY

119


