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Abstract

The purpose of this article is to survey results concerning a new neural network model, the random
network, which we have introduced in [1] and extended and generalized in [2,3], and to present some new
results concerning its application to combinatorial optimisation. In this model “negative” or “positive” signals
circulate, modelling inhibitory and exzcitatory signals. These signals can arrive either from other neurons
or from the outside world, they are summed at the input of each neuron and constitute its signal potential.
The state of each neuron in this model is its signal potential, while the network state is the vector of signal
potentials at each neuron. If its potential is positive, a neuron fires, and sends out signals to the other neurons
of the network or to the outside world. As it does so its signal potential is depleted. We have shoun [1] that in
the Markovian case, this model has product form, i.e. the steady-state probability distribution of its potential
vector is the product of the marginal probabilities of the potential at each neuron. The signal flow equations
of the network, which describe the rate at which positive or negative signals arrive to each neuron, are non-
linear, so that their existence and uniqueness is not easily established except for the case of feedforward (or
backpropagation) networks. In [2], the relationship between this model and the usual connectionist (formal)
model of neural networks is discussed, and two sub-classes of networks are examined: balanced, and damped
networks and stability conditions are examined in each case. In practical terms, these stability conditions
guarantee that the unique solution can be found to the signal flow equations and therefore that the network
has a well-defined steady-state behaviour. In [3] the model is extended to the case of “multiple signal classes”
dealing with networks in which each neuron processes several streams of signal simulteneously. We indicate
how the random network can be used to implement the well-known XOR example. We then apply it to solve
approzimately an NP-hard combinatorial optimization problem, the graph covering problem. We also suggest
a hardware implementation of the model.

Introduction

We model a network of n neurons in which positive and negative signals circulate. Each neuron accumulates

signals as they arrive, and can fire if its total signal count at a given instant of time is positive. Firing then

occurs at random according to an exponential distribution of constant rate, and it sends signals out to other

neurons or to the outside of the network. In this model, each neuron 7 of the network is represented at any
time ¢ by its input signal potential k;(¢), which we shall simply call the potential.

Positive and negative signals have different roles in the network; positive signals represent excitation,

while negative signals represent inhibition. A negative signal reduces by I the potential of the neuron to which
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it arrives (i.e. it "cancels” an existing signal) or has no effect on the signal potential if it is already zero, while
an arriving positive or excitation signal adds 1 to the neuron potential. The potential at a neuron is constituted
only by positive signals which have accumulated, which have not yet been cancelled by negative signals, and
which have not yet been sent out by the neuron as it fires.

This is a simplified representation of biophysical neural behaviour, which is shown in Fig. 1 (see for
instance [5] or [7]). In this representation, at time ¢ = 0 a neuron is excited; at time 7' (typically T may be of
the order of 50 milliseconds) it fires a train of impulses along its axone. Each of these impulses is practically
of identical amplitude (represented in our random model by 1). Some time later (say around ¢ =T+ 7) the
neuron may fire another train of impulses, as a result of the same excitation. Even when the neuron is not
excited, it may send out impulses at random. Our model represents firing of an excited neuron by a train of
impulses or unit signals; the +1 or —1 value is tied to the interpretation (excitation or inhibition) given to the
arriving signal at the receiving neuron.
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Figure 1. Representation of biophysical neuron output signal after excitation at time { =0

Signals can cither arrive to a neuron from the outside of the network (exogenous signals) or from other
neurons. Each time a neuron fires, a signal leaves it depleting the total input potential of the neuron. A
signal which leaves neuron i heads for neuron j with probability p*(i,j) as a positive (or normal) signal,
or as a negative signal with probability p~(i,j), or it departs from the network with probability d(7). Let
p(i,5) = pT(4,5) + p~(4,7); it is the transition probability of a Markov chain representing the movement of
signals between neurons.

We shall assume that pt(i,i) = 0 and p~(4,4) = 0; though the former assumption is not essential we
insist on the fact that the latter indeed is to our model; this assumption excludes the possibility of a nheuron
sending a signal directly to itself. Clearly we shall have

Zp(i,j)+d(i)=1 for 1<i<n.
j

A neuron is capable of firing and emitting signals if its potential is strictly positive.

We assume that exogenous signals arrive to each neuron in Poisson streams of positive or negative signals.

In [1] we show that the Markovian version of this network, with positive signals which arrive to the ¢-th
neuron according to a Poisson process of rate A(3), 4id exponential neuron firing times with rates r(1),...,7(n),
and Markovian movements of signals between neurons, has a product form solution. That is, the open network’s
stationary probability distribution can be written as the product of the marginal probabilities of the state of
each neuron.

Thus in steady-state the network’s neurons are seemingly independent though they are in fact coupled via
the signals which move from one neuron to the other in the network.

The model we propose has a certain number of interesting features:

e it appears to represent more closely the manner in which signals are transmitted in a biophysical neural
network where they travel as voltage spikes rather than as fixed signal levels,
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e it is computationally efficient in the feed-forward case, and whenever network stability can be shown,

e it is easy to simulate, since each neuron is simply represented by a counter; this may lead to a simple
hardware implementation which is described in Section 7,

e it is closely related to the connexionist model and it is possible to go from one model to the other easily,

e it represents neuron potential and therefore the level of excitation as an integer, rather as a binary variable,
which leads to more detailed information on system state; furthermore the neuron is interpreted as being
in the “firing state” if its potential is positive.

As one may expect from existing models of neural networks [4], the signal flow equations which yield the
rate of signal arrival and hence the rate of firing of each neuron in steady-state are non-linear. Thus in [1] we
were able to establish their existence (and also a method for computing them) only in the case of feed-forward
networks, i.e. in networks where a signal cannot return eventually to a neuron which it has already visited
either in negative or positive form. This of course covers the case of back-propagation ornetworks [2]. In this
paper we are able to establish existence and uniqueness for so-called “balanced and quasi-balanced” networks
as well as for the class of “dissipative” networks, and uniqueness of the solution in the general case whenever
the solution exists.

In this paper we shall first recall briefly the main results proved in [1] concerning the random neural
network model.

We then illustrate the relation of the model to the usual connexionist network. We illustrate it with a
network which computes the exclusive OR (XOR) function. We then present the manner in which the random
network model can be used to solve approximately some hard combinatorial problems.

Two special classes of networks [2] which have internal feedback and for which we provide stability results
and compute the network state are then characterized. These are the balanced networks, and the quasi-damped
networks. The first class includes all networks for which the steady-state behaviour of each neuron is the same.
The second class includes all networks in which the positive signal flow rates to neurons are small enough
that the network would be stable even if internal negative signals are removed. The generalization of the
model to “multiple class signals” [3] is also discussed; in this new development, it is suggested that neural
networks which process simultaneously several different activities be considered. We apply our new model to
the approximate solution of the graph covering problem, which is NP-hard, and compare the results obtained
to previous approaches using simulated annealing, and to the existing greedy algorithm. Finally we suggest a
simple hardware realization of random networks.

2. General Properties of the Random Network Model

In this section we shall recall the main theoretical result concerning the random network model.

The following property states that the steady-state probability distribution of network state can always
be expressed as the product of the probabilities of the states of each neuron. Thus the network is seemingly
composed of independent neurons, though this is obviously not the case. Let k{t) be the vector of signal
potentials at time ¢, and k = (k1,...,k,) be a particular value of the vector. We are obviously interested in
the quantity p(k,t) = Problk(t) = k].

Let p(k) denote the stationary probability distribution

pk) = Jm Problk(t) = k]

if it exists.
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Theorem 1. [1] Let
@ = AT (@)/Ir(@) + A" (@), 1)

where the A*(i), A\~ (i) for i =1,...,n satisfy the following system of non-linear simultaneous equations:
M@ = ) ar(i)pt(5:9) + AG),
J
ATGE) =Y gr()pT (1) + A, (2)
J
If a unique non-negative solution {\*(i),\~(¢)} ezists to equations (1), (2) such that each g; <1, then:
n
p(k) = [[I1 - a:lg}* (3)
i=1

We omit the proof, which can be found elsewhere [1]. Since {k(t) : £ > 0} is a continuous time Markov chain it
satisfies the usual Chapman-Kolmogorov equations; thus in steady-state it can be seen that p(k) must satisfy
the following global balance equations:

p(k) Z[A(i) + (A@) + r(@)1[k: > 0]]
= Sole( (i)
+ p(k; )A(E)L[ks > 0] + p(kIA()
+ Z{p(k?f)r(i)p*(i,j)l[kj > 0]
+ p(ki)r(i)p™ (6, 5)
+p(k)r(@)p~ (4, )1lk; = 0]}] 4)
where the vectors used in (4) are defined as follows:
kf = (k1,.... ki +1,...,ky)
kz_ = (kl,...,ki—l,...,kn)

k’?j— = (kl,...,ki‘l“l,---,kj ’_la""kn)
ki = (ko ki 1,k 1, k)
and 1[X] is the usual characteristic function which takes the value 1 if X is true and 0 otherwise. Theorem 1

is proved by showing that (3) satisfies this system of equations.
The computational simplicity of this result is illustrated by the useful consequence indicated below.

Corollary 1.1. The probability that neuron i is firing in steady-state is simply given by ¢; of (1) and the
average neuron potential in steady-state is simply A; = ¢;/[1 — ¢].

By Theorem 1 we are guaranteed a stationary solution of product form provided the non-linear signal
flow equations have a non-negative solution. The following result can be easily established (though this was not
done in [1]).

Theorem 2. If the solution to (1), (2) exist with g; < 1, then they are unique.

Proof. Since {k(t) : t > 0} is an irreducible and aperiodic Markov chain, if a positive stationary solution p(k)
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exists, then it is unique. By Theorem 1, if the 0 < ¢; < 1 solution to (1), (2) exist for 4 = 1,...,n, then
p(k) is given by (3) and is clearly positive for all k. Suppose now that for some i there are two different 9, 4.
satisfying (1), (2). But this implies that for all k;, lim;—,, P[k;(t) = 0] has two different values [1 —¢;] and
[t — g;], which contradicts the uniqueness of p(k); hence the result.

Let us now turn to the existence and uniqueness of the solutions AT (i), A\~(i), 1 <i < n to equatiéns
(1), (2) which represent the average arrival rate of positive and negative signals to each neuron in the network.
An important class of models is covered by the following result concerning feedforward networks.

We say that a network is feedforward if for any sequence iy,...,%s,...,4p,...,im of neurons, i, = 4, for
r > s implies
m—1
H P(iv;iv41) =0
=1

Theorem 3. [1] If the network is feedforward, then the solutions A* (i), A\~ () to equations (1), (2) exist and
are unique.
We shall omit the proof of this result which can be found in [1]. Its significance lies in the fact that it
covers the usual backpropagation networks.
|

Let us now examine the similarity relationship of our model with the usual connexionist model [4].

2.1. Analogy with classical connexionist networks

A connexionist network [4] is a set of n neurons each of which computes its state y(i) using a sigmoid function
y(¢) = f(z(i)) where 2(5) = (X; wjy(j) — ©;) is the input signal composed of the weighted sums of the states
y(j) of the other neurons of the network; the wj; are the weights and ©; is the threshold. In its simplest form
f() is the unit step function. The set of weights and the set of thresholds completely characterise the network.

An analogy between the usual model of neural networks and the model introduced in this paper, which
we henceforth call the random network, can be constructed.

Each neuron is represented by a neuron of the random network. The threshold of neuron ¢ is represented
by a flow of negative signals to the neuron so that A(7) = ©;.

Consider the non-output neuron ¢; it is represented by the random neuron i whose parameters are chosen
as follows:

d(Z) =0, T(i)p+(i,j) = Wsj if w;; >0
and
r(A)p~ (4, 7) = |wy;| if wi; <O
Summing over all j, the firing rate () of the non-output “random” neuron i is chosen:
(i) =) |wil
J

Finally, for each output random neuron ¢ set d(i) = 1, and assign some appropriate value to r(i).

To introduce into the random network the external parameters or inputs to the neural network we can
use the arrival rates of positive signals A(¢). Assume that the external signals to the formal neural network

are binary. If the input signal to neuron ¢ is 0 or if neuron ¢ is not connected to an external signal we can set
A(i) = 0. If the external signal to neuron % has the value 1, we set A(¢) = A. Here A can be chosen so as to
obtain the desired effect at the output neurons.
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All the parameters of the random network are chosen from those of the formal network, except for the
firing rates of the output neurons, and the input rate of positive signals.

The state Y = (y1,..-,Yn) of the formal neural network, where y; is 0 or 1, is simulated by the state
probabilities of the random neurons.

Consider limy—,o0 P[k;(t) > 0] which (as a consequence of Corollary 1.1) is simply g¢;; we associate y; to

g;. Thus we have for some “cut-point” 1—a,

ly; =0] <= ¢ <1—o;
[y,;=1] — g2l—a.

A finer (i.e. more detailed) way of differentiating between highly excited and relatively unexcited neurons is via
the average neuron potential A; = ¢;/[1 — ¢;] as will be seen in the example given below.

In an arbitrary neural network, i.e. one which does not have the feedforward structure, this procedure
could also be used for establishing the random network. We could also use the d(¢) at each neuron ¢ in order
to represent the loss currents which are known to exist in biological neural systems [5], and take r(i)d(%) to be
the rate of loss of electric potential at a neuron if we wish to include this effect in the model.

Example 1. A simple example often given to illustrate the behaviour of formal neural networks is the network
for the XOR (exclusive OR) function [4]. We shall present the equivalent random model representation for this
network.

In Figure 2(a) we show a formal neural network which receives two binary inputs z1,z2 and which pro-
duces y(z1,z2) the boolean function XOR. It is composed of four neurons; each neuron is numbered (1 to 4)

and the synaptic weights are indicated on arcs between neurons. The threshold of each neuron is assumed to
be 0. On Figure 2(b) we show the random network analog corresponding to Figure 2(a).

According to the rules we have given for constructing the random network analog, we have:

e A\(i)=0 for i =1,...,4 because all thresholds are 0;

o r(1)=7r(2) =2, r(3) = 1.1, r(4) = r, as yet undetermined;

o pt(1,3)=p"(2,3) =05, p~(1,4) =p (2,4) =05, p*(3,4) = 1;

e d(1)=d(2) =d(3) =0, d(4) =1.

Recall that according to the rules proposed in Section 2.1, we choose a value A(?) = A to represent
z; =1, and A(i) = 0 to represent z; = 0. Set A large enough to saturate neurons 1 and 2, i.e. any A>2.
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Figure 2. a) A connexionist network for the Boolean XOR function, b) The random network analog of the formal
neural network shown in Figure 2(a) ; here, p*(1,3) = p*(2,3) = 0.5,p"(3,4) = 1, and p (1,4)=p"(2,4)=0.5
g4 is the analog of the output y of the connexionist network of Figure 2(a). Notice that:

0, if A(1)=L(2)=0,
Q= 11/[r+2), if A(L)=A(2)=A>2,

1/[r+1], if A(1)=A, A(2) =0 or vice-versa .

Setting @ = 0.85 and r = 0.1 we see that we obtain the XOR function with this network, since we have
g4 = 0.909 when A(1) = A, A(2) = 0 or vice-versa, and g4 = 0.5238 if A(1) = A(2) = A for any A > 2.
In fact we may choose any 1 — « such that 1.1/[r + 2] < 1/[r + 1]. The capacity of the network to represent
the XOR function becomes even more apparent if we consider the average potential of neuron 4; we then have
Ay = 11.222 when A(1) = 2,A(2) = 0 or vice-versa, and A4 = 1.0999 if A(1) = A(2) = A for any A > 2.
Thus, the average neuron potential can also be used very effectively to discriminate between the output states
of the neural network since we have a ratio greater than 10 between the average potential of neuron 4 for the
input equivalent to (0, 1) or (1, 0) and the input equivalent to (1, 1).

3. Balanced Neural Networks

We now consider a class of networks whose signal flow equations have a particularly simple solution. We shall
say that a network with negative and positive signals is balanced if the ratio

8 =) ar(@p* (4,6) + A@)/[Y_ a7 (G)p~ (3,9) + A(0) + r(3)]
J J
is identical for any ¢ =1,...,n. This in effect means that all the ¢; are identical.

Theorem 4. The signal flow equations (1), (2) have a (unique) solution if the network is balanced.

4. Damped and Dissipative Networks

We say that a random network is dissipative if p*(j,i) =0 for all i, 3.
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Notice that a dissipative network will, in general, need to have some positive exogenous signal arrivals to
be of any interest. However in such a network a neuron may only send negative signals to another neuron.

Theorem 5. [2] If the network is dissipative and r(¢) + A(¢) > A(é) then the signal flow equations (1), (2)
have a unique solution with ¢; < 1.

In fact such networks are a special case of damped networks which will be discussed below.

We shall say that a network is damped if p*(j,4) > 0, p~ (4,4) > 0 with the following property:
r(@) + A(3) > AG) + Zr()pt (4,0) forall i =1,...,n.

Theorem 6. [2] If the network is damped then the customer flow equations (1), (2) always have a unique

solution with ¢; < 1.

Proof. The proof is by construction of the n-dimensional vector homotopy [6] function H(g,z) for a real
number 0 < z < 1. Let us define the following n-vectors:

q=(q1,---,an), F(@) = (Fi(a),-- -, Fnla)

where

Fi(q) = [Z gir(p*(5,1) + A(i)]/[Z ()P~ (4,8) + A(E) +7(5)]

Clearly, the equation we are interested in is ¢ = F/(g) which, when it has a solution in D = [0,1]"*, yields the
appropriate values of the g; for Theorem 1 to be applicable in order to compute the stationary solution of the
network. Notice that F(q) : R® — R™. Notice also that F(q) € C?. Counsider the mappings F(g) : D — R™.
Clearly, we are interested in the interior points of D since we seek solutions 0 < ¢; < 1. Write D = D°UéD
where 6D stands for the boundary of D, and D is the set of interior points. Let y = (y1,... ,Yn) Where

yi = [Z r(§)p* (4,4) + A@)]/[AE) + r(@)]

By assumption y; < 1 for all ¢ =1,...,n. Now define
H(gz)=(1-2a)(g-y) +alg-F(@), 0<z<1l.
Clearly H(q,0) =gq—y and H(qg,1) = ¢ — F(g). Consider the set
H'={q:q€eD, H(g,z) =0 and 0 <z < 1}.

We can show that H~1 and 6D have an empty intersection, i.e. as z is varied from 0 towards 1 the solution
of H(q,z) if it exists does not touch the boundary of D. To do this assume the contrary; this implies that for
some z = * there exists some g = ¢* for which H(g*,z*) = 0 and such that ¢ = 0 or 1. If ¢f =0 we can
write

—(1 - 2" — " Fle’) = 0,

or
& /(1 — z*) = —y;/ Fi(q") < 0 = z* <0,

which contradicts the assumption about z. If on the other hand ¢f = 1, then we can write
—(1-z")(1-y)—-2"(1-F(¢) =0,
or

o /1—z")=—-(1—)/(1—-Fi(¢")) <0=>2z" <0
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because (1—y;) > 0 and 0 < Fy(¢*) < y; so that (1— Fi(g*)) > 0, contradicting again the assumption about z.
Thus H(g,z) =0 cannot have a solution on the boundary §D for any 0 < z < 1. As a consequence, applying
Theorem 3.3.1 of [4] (which is a Leray-Schauder form of the fixed-point theorem), it follows that F'(q) = ¢ has
at least one solution in DY; it is therefore a unique solution as a consequence of Theorem 2.

5. Multiple Class Networks

Consider a neural network which generalises the model presented in [1, 2]. It is composed of n neurons
and receives exogenous positive (excitatory) and negative (inhibitory) signals, as well as endogenous signals
exchanged by the neurons. As in [1, 2] excitatory or inhibitory signals are sent by excited neurons to other
neurons in the network, or to the outside world. The arrival of an excitatory signal increases the potential of
a neuron by 1, while an inhibitory signal’s arrival decreases it by one. A neuron is excited if its potential is
positive; it then fires at exponentially distributed intervals sending excitatory signals of different classes, or
inhibitory signals, to other neurons or to the outside of the network. This model has been introduced in [3]. It
represents a neural network which processes several streams of information in parallel, which appears to be a
sensible generalization of existing models.

Positive signals may belong to several classes. In this model, the potential at a neuron is represented by
the vector k; = (ki,...,kic) where k;. is the value of the “class ¢ potential” of neuron i, or its “excitation
level in terms of class ¢ signals”. The total potential of neuron 18 ky = Xem1,ckic-

Exogenous positive signals of class ¢ arrive to neuron ¢ in a Poisson stream of rate A(4, c), while exogenous
negative signals arrive to it according to a Poisson process of rate A(¢). Thus negative signals belong to a single
class. When a positive signal of class ¢ arrives to a neuron, it merely increases k;. by 1. When a negative signal
arrives to it, if k; > 0 the potential is reduced by 1, and the class of the potential to be reduced is chosen at
random: with probability k;./k; it is of class ¢ for any ¢ = 1,...,C. As with single class networks discussed
above, a negative signal arriving to a neuron whose potential is zero has no effect on its potential.

When its potential is positive (k; > 0), neuron i can fire; the potential depleted is of class ¢ with
probability k;./k; in which case the neuron fires at rate r(i,c) > 0. In the interval [t,t + At], neuron fires,
depletes by 1 its class ¢ potential, and sends to neuron j a class ¢ positive signal with probability:

(3, ¢)(kic/ki)p™ (3, ¢; 4, £) At + o(At)
or a negative signal with probability:
(%, ¢)(kic/ks)p~ (4, ¢; 5) At + o(At)
On the other hand, the probability that the depleted signal is sent out of the network, or that it is “lost” is
(%, ¢)(kic/k:)d(Z, ) At + o( At)

The {p*(i,¢;5,€),p™(i,¢;j),d(i,c)} are the transition probabilities of a Markov chain with state-space
{1,...,n} x{1,...,C} x {+,—} representing the movement of signals in the network, and for (i,c), 1 <i <
nl1l<e<C:

> opt(i,64,8) + > p(i,¢5) + dli,c) = L.
T J

Notice that if the network only contains a single class of positive signals (C = 1) then we simply have the model

presented previously in [1, 2].
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The complete state of the network is represented by the vector (of vectors) k = (ky,--.,k,). Under the
above assumptions, the process {k(t),t > 0} is Markovian, and we shall denote by p(k,t) = P[k(t) = k] the

probability distribution of its state. Its behavior is then described by the Chapman-Kolmogorov equations:

dp(k,t)/dt = —p(k,t) Y _[AG, <)
(4,0
+ (A@) + (6 o) (kic/ ki)

+ ) Aok + €ics t)r (i, ) (ki + 1)/ (ki + 1))d(i, )
(i,¢)
+ p(& — eic,t)A(i,c)l[kic > 0]

+ 3 (0(k + eic — eje, (i, ) (kic + 1)/ (ki + 1))p™ (3, ¢ 5, €)1[kse > 0]
(4,6)
+ p(& + €ic, t)T‘(i, c)((kic + 1)/(kz + 1))p_(7:7 C;j)l[kj = 0]
+ plk + eic + eje, t)r(i, &) (Kie + 1)/ (ki + 1)) (ke + 1)/ (ks +1))p™ (6,6 5)}

where we have used the notation:

k+e = (El,...,(_lgil,...,kic-l-1,...,kio),...,kn)
E-*—ejc = (_Igl,...,(l_c_jl,...,kjc-l-1,...,kjc),...,hn)

E+eic—eje = (kyyooo(kiny. o ki + 1,0 kic)
ey (Bjtsee ki — 1y i)
yeens k)

k+ei+eje = (kyyo.,(kin,-. o, ki +1,..., kic)
yeoes(Kjse ke +1,... kic)
ereskp)

These vectors are defined only if their elements are non-negative.

The stationary solution of the model described above has product form, i.e. its steady-state probability

distribution is the product of the marginal probabilities of each neuron.

Theorem 7. [3] Let k(t) be the vector representing the state of the neural network at time ¢, and let {g;c}

with 0 < X(;,¢)%c < 1, be the solution of the system of non-linear equations:

Gic = A+ (4,0)/[r(i,0) + A7 (@),

X(,e) = Y ger(5, )T (4,54, ¢) + A, ),
(j’E)

A G6) = 3 aier(G, 097 (. &) + ().
(4,6)

Then the stationary solution p(k) = lim;—,cc P[k(t) = k] exists and is given by:

n C
p(k) = [J (k)G [ [(gse) s/ %],

i=1 c=1

where the G; are appropriate normalising constants.
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6. Use of the Network Model for Graph Covering, a Combinatorial
Optimization Problem Which Appears in Image Processing

Certain combinatorial problems arise in a routine manner in image processing applications. One such problem
is minimum graph covering. It is an NP-complete problem, so that efficient algorithms for its exact solution
when the number of nodes of the graph is very large, are not available.

The formal problem can be stated as follows. Let G be a graph with K nodes K = {1,...,K } and
edges denoted by (u,v) where u,v are nodes of the graph. A cover of G is a subset C of K such that for each
edge (u,v) in G, either u or v isin C. A minimum cover of G is a set C* such that the number of nodes in
C* is no larger than the number of nodes in any cover C of G : [C*| < |C)|.

In intuitive terms, if an image is represented by a set of interconnected straight lines, then the minimum
cover will yield a representation of the image with a minimum number of components. In the transposition of
the image to the graph representation, the straight lines of the image can be represented by vertices of G, while
lines which intersect at an angle would give rise to an edge in G.

The minimum graph covering problem can also be formulated so that each node of the graph G can
carry a weight, and this weight is included in the “size” of each cover C. We summarize and compare here the
solution of the minimum cover problem using four main approaches:

- The exact solution E; in this case all covers are enumerated and a minimum cover is selected. For graphs
chosen at random, we have rapidly discovered that this approach was too time consuming to implement
on a workstation when the number of nodes of G exceeded K = 50.

- Simulated annealing SA; this is a simulated “neural network” approach based on the paper of Hopfield
and Tank [9].

- Heuristic solution using a known approach, the Greedy Algorithm GA. The idea here is to first select the
node of G which has the highest degree (number of neighbours), and to include it in C*t the cover being
generated; the node and all its adjacent edges and terminal nodes is then removed from the graph and
the procedure is repeated until all nodes have been removed, or placed in C+.

- Heuristic solution using the Random Network discussed in this paper. We now describe this part in some
greater detail.
6.1. Random network (RN) solution to the minimum graph covering problem

The random network used to solve the problem is set up in the following manner. For each node i of G, we
construct two neurons N(i) and n(i). The objective is to have N(:) =1 and n(i) =0 if i € C*, and N(i) =0
and n(i) =1 in the opposite case. The network parameters are chosen as follows:

A(N(3)) = D(3), the degree of node i
A(N(i)) =1 for all i

r(N () = 2K

r(n(i)) = D(i)

p~(N(i),n(s)) = 1 for all

pt(n(3), N(4)) = 1/D(4) if j is a neighbour of i
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- MN(®%)) = 0,A(n(i)) =0 for all <.
It can be easily seen that the network considered is hyperstable, so that the stationary solution of the

network state exists. It is obtained by an iterative numerical solution of equations (1), (2).
The algorithm used for obtaining a “quasi-minimal” cover C™~ using the random network is as follows:

1. Solve for the g(N(3)),q(n(s)), i =1,..., K from the above model.
2. Place in C— the node, say i*, for which g(NN (%)) is largest, i.e. closest to 1.
3. Remove i* and all its neighbours from G, and reinitialize the above model without .

4. Return to 1) if there is more than one node in the remaining graph; otherwise include in C~ and end the
procedure.

This algorithm uses the random network as a decision making tool in the greedy algorithm. Notice that
step 1) of the algorithm, which is the most time-consuming part, can be accelerated and executed in parallel

with up to 2K processors.

6.2.

Let us now compare results obtained with the four methods described above, using randomly generated graphs.
We compare both the quality of the results obtained, and the total computation time of the method on the

Experimental comparison

same workstation.

A family of random graphs is defined by two parameters (K, ), where = is the probability that there is
an arc between any two nodes of the graph. For K = 20 and 50 we tabulate results and indicate: the fraction
of cases where the method found the minimum cover (mini), the average number of nodes in excess of the
minimum cover (exc), and the computation time T. For K = 100 the exhaustive search of the minimum cover
for each graph was impossible to carry out. Thus for K = 100, exc stands for the average number of nodes
in excess of the smallest cover found among the four methods tested. For each (K, ), the number of graphs
chosen at random is 25, and the values shown are average values over this set.

K =20 =05 T =0.25 7 = 0.125
Method (mini,exc , T) (mini,exc, T) (miniexc, T)
SA 100% , 0, 43s 88% , 0.12 , 358 96% , 0.04 ,27s
GA 72% ,0.28,0s  68% ,0.40 , Os 84% ,0, Os
RN 100% , 0 , 3s 96% , 0.04 , Os 100% , 0 , Os
//-RN (Optimistic) --0.075s - 08 -+ Os
K =50 =05 7 = 0.25 7 = 0.126
Method (mini,exc , T) (mini ,exc, T) (minjexc , T)
SA 72%,0.28 , 43s 56% , 0.60 , 2'05” 56% , 0.48 , 1’30
GA 16% , 1.20 , 0s 24% ,1.28 , Os 12% , 1.52 , 0s
RN 52% , 0.52 , 32s 60% , 0.4 , 20s 80% , 0.2, 9s
//-RN (Optimistic) “pm, 0.328 -, 0.28 -, 0.09s
K =100 7w = 0.5 7 = 0.25 T =0.125
Method (mini,exc , T) (mini ,exc , T) (mini,exc , T)
SA 68% , 0.36 , 10’ 52% ,0.72 , 220" 32% , 1.32, 4'20”
GA 20% , 1.28 , Os 0% , 2.04 , Os 4% ,2.72 , 08
RN 60% , 0.52 , 340"  48% , 0.56 , 2°00”  56% , 0.52, 110"
//-RN (Optimistic) -~ L.1s -, 0.68 -,~, 0.35s
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We notice that for large 7, Simulated Annealing (SA) provides better results; however the computational cost
is generally incompatible with “fast” or real-time applications. For smaller values of 7, which correspond to
more realistic image processing applications since the graphs considered are less dense, the Greedy Algorithm
(GA) provides poor results, while the Random Network (RN) algorithm provides substantially better results
than SA. GA is the lowest cost algorithm in terms of computation time, but is much less effective than the RN
algorithm. In the best of cases, using parallelism, the RN algorithm can potentially become as fast as GA.

In order to examine the situation for sparsely connected graphs we show below results concerning a sim-
ulation of 25 graphs with K = 100, and = = 0.0625.

K =100 7 = 0.0625
Method (mini , exc, T)
SA 12% , 1.80 , 3'10”
GA 4% , 2.88 , 0
RN 76% , 0.36 , 35”
//-RN (Optimistic) - 0.178”

Here Simulated Annealing seldom finds the optimum solution, and its computation time is very high. The
conventional Greedy Algorithm (GA) is ineffective. The Random Network solution provides the best results at
higher computational cost than GA, but much lower than SA.

At this point of the evaluation, we dispose of a reasonable general comparison of these methods. Any fur-
ther comparison of these techniques would have to be based on graphs which describe some class of applications
in a more accurate manner.

7. A Simple Hardware Implementation of Random Networks

In addition to being an analytical tool for the study of neural networks via the results provided in Theorems 1
to 6, random networks can also be implemented in hardware as shown in Figure 3.

Each neuron is simulated using a Counter and a Random Number Generator (RNG). The latter is used
to simulate the exponential delays associated with the signal emission process, as well as to handle the signal
routing probabilities. The interconnection network receives signals, which can be viewed as short packets of data,

containing the signal’s polarity and its destination, and routes the signal to the appropriate output line connected
to the neuron to which it is addressed. Alternatively, all routing information and signal polarity (including
the random generation of the destination) can be handled by the interconnection network. This network
is programmable so as to represent different neural networks. External signal sources can be implemented
simply as permanently activated counters which constantly generate signals at their output. Obviously, as with
any highly parallel machine implementation, the complexity of the system is concealed in the interconnection

network.
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y»| Counter - RNG

Signals Signals
»| Counter - RNG > Inter-
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Figure 3. A possible hardware implementation of a Random Network
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