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Abstract 
 
Var compensators should be properly controlled to 
provide fast and continuous reactive power to meet a 
certain load demand. This ensures improved 
transmission performance and enhance the transient 
stability of the power system. This paper deals with 
the application of the internal model control 
technique to an advanced static var compensator. The 
controller is evaluated under a variety of operating 
conditions and the simulations results demonstrate 
instantaneous and robust var flow with the ac 
transmission system and  superior performance as 
compared to a conventional proportional-integral 
controller. 
 

I. INTRODUCTION 
 
Power transmission performance with higher long line 
transmission capacity and improved transient stability is 
achieved through a rapid and continuous reactive power 
support to the power system following large, fluctuating  
load demands. 
Static Var Compensators (SVCs) are high power 
electronics based devices used to provide fast variable 
reactive power compensation. By controlling the device 
switches, the equivalent susceptance is varied and hence 
the reactive current injected or absorbed from the 
transmission line is controlled.  
The introduction of modern semiconductor devices in the 
design of power electronic converters has resulted in a 
solid-state Var source with a more simple structure 
namely the Advanced Static Var Compensator (ASVC) 
[1], [2]. The ASVC uses a PWM controlled dc/ac 
voltage-source inverter (VSI) with a capacitor as a dc 
power storage device. 
The effectiveness of  these compensators depends on the 
choice of the control strategy. Conventional voltage 
regulation loops are based on a proportional-integral (PI) 
controller. These produce satisfactory performance only  

 
 
 
for limited operating range conditions. Various control 
approaches have been proposed in the literature [3], [4]. 
This paper considers the application of the internal model 
control (IMC) [5] concept to adjust the ASVC Var flow 
with the ac system. The performance of the closed loop 
control system is analysed and the effectiveness of the 
ASVC proposed controller is demonstrated and compared 
to a conventional PI controller.  

 
II.  OVERVIEW AND MODELLING OF THE ASVC 
 
The basic ASVC scheme is illustrated in Fig. 1. The 
ASVC circuit consists of six-pulse VSI with a dc capacitor 
and a PWM  modulator. Connection of the ASVC to the 
transmission line is  via a coupling transformer. With 
reference to Fig. 1, Rs and Ls represent the  coupling 
transformer active losses and leakage respectively. 
Basically, the ASVC supplies reactive power to the ac 
transmission system if the magnitude of the inverter 
voltage is greater than the ac terminal voltage. It draws 
reactive power from the ac transmission system if the 
magnitude of the ac terminal voltage is greater to the 
inverter voltage. Var exchange is zero when the two 
voltages are equal. 
 

 
 

Fig. 1 Circuit diagram of the ASVC 
 
It is assumed  that the source is a balanced sinusoidal 
three-phase voltage supply with frequency ω. 
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The equivalent circuit of the ASVC connected to a 
transmission line is shown in Fig. 2.   
 
 

 
Fig.  2  Three-phase equivalent circuit of the ASVC 

A : three-phase source voltage. 
B : coupling transformer. 
C : PWM voltage source inverter. 
D : dc-side capacitor. 

 
Where 
 
Is, IL : source and load currents. 
Ica,  Icb,  Icc : ASVC currents. 
Vsa,  Vsb,  Vsc :  source voltages 
Vdc , Idc : dc-side voltage and current.   
 
Applying d-q transform to the ac circuit and combining 
the dc circuit equation, the ASVC model is obtained as 
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The modulation index (MI) relates the maximum phase 
voltage to the dc link voltage  
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The state equation is non-linear with respect to the 
control variable α which is related to the phase difference 
between the source voltage and inverter output voltage. In 
the range of small values of α (|α| < 5°), the small signal  
equivalent state equations are expressed as 
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The system input is the control variable deviation ∆α and 
the output is the generated reactive power given by 
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Hence the system transfer function is given by  
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III. CONTROL SCHEME OF THE ASVC  

 
The overall closed loop control system is pictured in Fig. 
3. 

Fig. 3  ASVC closed loop control system 
 
The basic architecture of a classical IMC is illustrated by 
Fig. 4 [5]. A system model is placed in parallel with the 
actual system. The difference is used to adjust the 
command signal. An attractive feature of IMC is that it 
produces an offset-free response even when the system is 
subjected to a constant disturbance. 

 
Fig. 4  Basic IMC structure 
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With reference to Fig. 4, the control and output signal are 
expressed as 
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If a perfect model is assumed (G(z) = Gm(z)) then the 
closed loop system is stable if the controller C(z) and the 
system are stable. However under mismatch conditions 
(G(z) ≠ Gm(z)), a low pass filter is introduced in the 
feedback loop to improve the controller robustness with 
respect to modelling errors. 
The design filter has the following transfer function 
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In what follows β has been fixed to 0.002. Since the 
controller is the inverse of the system model (i.e. C0(z) = 
Gm(z)-1) then Qc(z) = Q*(z) and the system model should 
be inverse stable. Furthermore if C0(1)=Gm(1)-1 the 
controller produces an offset-free response. 
 
With a sampling period of Ts=0.005  sec, the discrete-
time transfer function of the system is obtained as 
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By taking Gm(z) = G(z) then the poles and zeroes of 
Gm(z) are  p1,2 = -0.407 ± j0.2943,   p3     = 0.5404  and  
z1,2 = -0.5549 ± j0.5775.   

 
Following the steps described in the Appendix the 
controller transfer function is given by  
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IV. PERFORMANCE EVALUATION  
 
Simulations were performed under Matlab/Simulink 
environment with the following ASVC parameters 
 
Rs = 1 Ω Ls = 5.10-3H     Cs = 500.10-6 F   
Vs = 220 V m  = 0.646      ω = 100π  rad/sec  

 
The PI  parameters are obtained using root locus design 
as shown in Fig. 5.  For a desired damping factor of 0.7 
the following controller gains are obtained 
 
Kp=7.5x10-6       Ki= =2.5x10-3                (9) 
 

 
Fig. 5 Root locus of the closed-loop control system 

 
IMC controller design was based on  the linearised model 
of the ASVC and then applied to the non-linear one. 
In Fig. 6 is shown the ASVC transient response in the case 
of the linear model.  The var command was varied from  
10 Kvar (inductive) to –10 Kvar (capacitive) to cause the 
system to swing from leading to lagging mode at time 0.2 
sec.  
 

 
Fig. 6  Reactive power response under step change from  

  inductive to capacitive with the linear model  
  IMC (solid), PI (dotted) 

 
IMC leads to a faster transient response with a shorter 
settling time and with no overshoot.  
In the next simulation result the controllers are tested  
with the non-linear model of the ASVC under the same 
conditions. Again, from the responses of Fig. 7 it can be 
observed that IMC produces a better performance than PI 
control which demonstrates its robustness under model 
mismatch situations. 
Finally, the controllers are evaluated under more realistic 
simulation conditions by considering the PWM  control 
circuit. Fig. 8 and 9 show the reactive power responses 
under IMC and PI controls and the current waveforms 
respectively. 



 

 
Fig. 7  Reactive power response under step change from   

             inductive to capacitive with the non-linear model   
             IMC (solid) , PI (dotted) 
 

 
Fig. 8 Reactive power transient response under a step  

              change from 10 Kvar leading to 10 Kvar lagging. 
 
It is observed from Fig. 9 how the current injected into 
the transmission line swings instantaneously in response 
a capacitive var demand. 

 
Fig. 9  Phase a current response 

 
Fig. 10 and 11 show the source voltage and inverter 
output voltage  waveforms with PI and IMC respectively. 

 
Fig. 10  Source voltage and inverter output voltage (PI) 

     

 
Fig. 11  Source voltage and inverter output voltage (IMC) 
 

 
V. CONCLUSIONS 

 
In this simulation study the performance and robustness  
of IMC has been evaluated and compared to a 
conventional PI controller in the control of an ASVC. 
From the results presented it can be concluded that IMC 
leads to improved transient response and hence provides 
fast reactive power compensation to the ac transmission 
network. IMC controller is easily tuned and is very 
suitable for real time implementation. 
 

APPENDIX 
 

Let assume that the system model be given of the form 
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where n is the system order, pi and zi are the system poles 
and zeroes respectively, d is the discrete time-delay equal 
to an integer number of sampling periods. 



 

Assuming a stable model Gm(z) (i.e |pi|< 1), the design 
procedure is performed through the following rules: 
 
Rule 1 :  The zeroes  of  C0(z) are equal to the poles of  

   G(z). 
 
Rule 2 :  The poles of C0(z)  are chosen as follows : 
!" the zeroes of G(z) with positive real part and inside 

the unit circle (Fig. 12, zone 1) 
!" the inverses of the zeroes of G(z) with positive real 

part and outside the unit circle (Fig. 12, zone 2) 
!" A pole at the origin for each zero with negative real 

part (Fig. 12, zone 3) 
!" It can be shown that this rule ensure a stable 

controller minimises the sum of the squared errors.  
 
 
 
 
 
 
 
 
 
 

 
Fig. 12  Zeroes of G(z) in the z-plane 

 
Rule 3 : Include an extra pole at the origin to C0(z) to 
compensate the inherent delay introduced by the 
sampling process. 
 
Rule 4 : The   gain    of    C0(z)    is    chosen    such    that  
C0(1) G(1)=1  
 
Rule 5 : Introduce the design filter F(z) to C0(z) to allow 
for modelling errors with a cut-off frequency such that 
0<β <1.  
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