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Abstract- In order to determine the flashover behaviour of 
polluted high voltage insulators and to identify the physical 
mechanisms that govern this phenomenon,  the researchers 
have been brought  to establish a modelling. The 
observation of the discharge, during its elongation, on an 
electrolyte filled channel modelling a polluted HV line 
insulators  shows that the latter emite, from its tip, some 
branches, which have a weaker luminous intensity. 
Departing from the modelling of Cheng and Nour, we have 
developed a survey that permit to determine a critical length 
of the discharge from which the system elongates using a 
model derived from Obenaus’electric circuit This new 
approach gives better account of the physical phenomena 
that governs the extension of the body of the discharge. 
 

I.    INTRODUCTION 
Several models and several theoretical methods have 

been used in order to treat the flashover. Most previous 
models gave some results based on the simple model of 
Obenaus [1]. This model is a good approach of the 
problem. The experimental results wihch were obtainet in 
the laboratories gave the critical value of tension  that is 
twice or three times superior than the predicted one by 
the calculations.    

However , a certain number of modellings were 
proposed in order to correct this difference  
Being inspired by the works of Cheng and Nour[2] and 
for then sale of landing on the constraint of the total 
current that decreases when the length of the last branch 
increases, we tried to propose an approach of the problem 
that it is possible to represent in equivalent electric 
diagram.  It is unidimensionnel geometry model. The 
latter allows us that to suppose the transverse 
measurements before the length of the model as being 
negligible  

 
II.THEORETICAL SURVEY 

During its elongation, the discharge gives out some 
weaker subsidiary branches of luminous intensity, which 
are developed its tip. These observations, made by M. 
Ishi and Kawamura [3] match  those made by Boylett - 

                                                 
 

Maclean [4],[2] . In their  mathematical modelling, they  
introduce in their several discharges of different lengths 
are running above the electrolyte.   
The supplementary bow addition supposes supplementary 
contribution of energy of the source. In order to maintain 
them and to nourish them, it drives at the potential 
superior than those calculated for the mono arc model.The 
comparison of the theorical results obtained with the 
applied measurement of flashover critical voltage are 
satisfactory [5]. However, this procedure does not allow 
us totestefy the evolution of all electric parameters and 
esprcially the total current. While being inspired by the 
works of Cheng and Nours and for landing à the constraint 
of the total current that decreases when the last branch 
increases, we proposed a modelling [6] that we will 
represent (figure 1) by its equivalent diagram.   
We suppose that the discharge is divided into m branches, 
while using the rule of the current divider, we can have a 
relation between the different branch currents 
 

 

 

 

 

 

 
 
 
 
x0  is the length of the first branch 
xm is the length of the last branch 
Id0 is the current in the first branch 
Idm is the current in the last branch 
(L - xm)  is the length of flight 

Figure1: Electric diagram models multi - branches 
 
The voltage drops V0 and V1 in the first two branches are 
given by the following relation : 
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where V1 is the voltage drop in the branch 1 
 
On the other hand 
                         ( ) nAIxxV −⋅∆+= 101     
for the branch 2, the voltage drop is: 
j=2                  ( )   1012 IIxrVV +∆+=  

where              ( ) nAIxxV −∆+= 202   .2   
We obtain the expression of the current in various 
branches as well as the values of the different  
resistances: 
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Using the rule of the current divider, the calculation of 
the j branch resistance Rdj, enables us  to find the current 
of a branch in relation to the one that is immediately 
parallel to it.  
 (figure2)  
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Figure2: Representation of a stitch of the proposed model 
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and this of near in near until the last branch (figure3) 
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Figure 3: Electric diagram of a stitch 

 
where the current Im is determined in relation to the 
equivalent resistance of the whole circuit that it is 
downstream to it so that: 
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The equation of the model is: 
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ik: current in the  branch k 
 
the current in the pollution will be: 

                            









+=

eqm

dm

R
R

1  dmpm II                               

The equation of the model will become: 
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we have 
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The calculation of the expression of the equivalent 
resistance is deducted from the diagram of the figure 1 
where the branch crossed by the current presents a 
resistance of discharge: 
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The equivalent resistance will become : eqmR   

xrRR eqmeqm ∆+= − .1  
The graphic analysis of the new equation of the model 
leads up to the following critical sizes: 
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The evolution of the current in the branches Id(xm) is 

represented in figure 4 for different lengths x0 of the first 
branch, which permits to notice that while this length 
increases , the currents in the branches  decrease and  
become equal.   

The exam of the figure4 shows that it exists a beginning 
length marked x0c  from which the currents of the 
branches   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4:Current of the branches as function of the 
discharge length  for several values  of x0 

 
become equal with a weak density of the current while 
for beginning values lower than x0c, the density of the 
current increases reaching its maximum.   
These results are in agreement with those found by Flazi 
[7] where the electric current in the discharge penetrates 
the electrolyte through a small surface near the high 
voltage electrode, the lines of currents diverge 
progressively and become uniform from a certain 
distance. 
 

However, this point of abscissa x0c delimits the domain 
of applicability of the model mono discharge  for which 
the current in the branches elongates  to become equal. 

 
Since the currents of the branches are nearly equal, we 

can,  make the fellows theoretical approximation : 

mt NII =                                                    
N   being the number of branches. 
The equation of the model will become: 
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These are the limits of the values of tension and current 
necessary to the existence of the discharge. These sizes 
are in agreement with those found by Alston and al [8] in 
the case of a discharge with only one branch.   

mt NII =   is the current in the case of the monodischarge 
model for a length of xc.   
 

Indeed when the currents of two successive branches 
become equal the voltage drop between these two 
branches elongates toward zero,    
Up to the end, these two branches will merge (unite)   
making only one branch. It tolerate a good understanding 
of  the passage to the model monodischarge. 

The passage from the multidischarge model  to the 
monodischarge model  will postulate that N=1 and It = 
N.Im from the point x0c. This point would be the initial 
criticizes length of  the main discharge. 

 We can notice, In figure 5, that for the length x0c the 
last branch reaches the grounded electrode so xm=L. This 
point x0c is the most difficult point of access defined by 
Flazi [7] as being the starting point to leave of which it is 
possible to the discharge to elongate. 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5: Length of the last branch as function of x 
 

The critical values  for the main discharge will be 
obtained when Icm = cste because Hampton [9] and Flazi      
has experimentally determined that the critical current  I 
was constant whatever parameters of the circuit may 
come. we  notices that this current is constant from x0 = 
8cm.   
The survey of the multi discharges model permits a good 
theoretical agreement on the critical conditions  of the 
flashover. 
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In the expression (1)   
                          Icm <Ic1 and Imin >Imin1   
 
Icm elongates toward Ic when x0 to elongates toward xc 
and therefore Vcm, the flashover voltage of the last branch 
elongates toward the calculated flashover voltage VC for 
the mono discharge model , deducted from the expression 
of the Vcm, that depends on Réqr  , the variation of which 

depends on r and is represented in figure 6     
   In the multi branches model, the currents are 
distinguish s by :Ipm> Im while in the mono branche 
model,  the current of the branch is equal to the current in 
the pollution before the critical conditions 
             
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Variation of the factor r/Req as function of x0 
 

 
We can remark in our survey that Ip  begins to decrease 
from a value Xoc.The variation of Ip for every length x0 
of the main discharge presents one maximum  Ipmax and 
one minimum Ipmin  (figure 7).When these two 
extremums of currents are  equal, the current in the 
pollution is constant,  noted length xc. we notice that this 
point is the critical point for the main discharge (figures.8 
,9,10). 
 
The expression of Ipm become:  
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This occurs in the only case when only one branch 
remains in  the pollution having Ic = Ip as critical  current. 
It is one of features of the mono discharge model : at the 
same time the total current is equal to the current in the 
last branch when the discharge reaches a crirical length  
xc=8.3cm    
Up to this point the current in the pollution decreases 
rapidily to zero and the discharge moves to the final 
jump. 
 

In the figures 7, 8, 9, we represente separately four 
different lengths of beginning x0, judged the most 
meaningful currents of the  pollution Ip in the last  branch 
Im according to the length of the branch x . We can see 

that all this curves Ip(x) cut the curve I(x) in  two points 
:Ipmin  and Ipmax (figures 7, 8). 

 
The graphs represented on figures 10 and 11 describe 

the evolution of the voltage drop in the pollution  
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure7. Evolution of the current in the pollution  for  
0.6cm< x0< 1.8cm 

 
for various lengths of beginning x0 of the main discharge 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure8: Evolution of the current in the pollution for . 
1cm <x0 <2.9cm 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

Figure10 : Voltage drop in the pollution for 
0.1cm<x0<1.8cm 



III.CONCLUSION 
According to the graphic studies made on the proposed 

formalism, we see that the point x0 close to 3cm is a 
particular point. In this point we note the following facts :   
- The length of the last branch xm is maximal and is 
equal to L the flaxhover is accomplished for this branch    
- The currents of the branches become weak and uniform, 
what has the effect of shorting the branches of pollution 
between two successive branches, the voltage drop in the 
pollution is minimal    
- The current in the pollution elongates toward Ic 

 

max pcmin I  I  〈〈pI  
- the total current extended to be equal to the current in 
the pollution. 
- The point x0 = 3 cm is the point of the passage from the 
multi discharge model to the mono discharge model.   
The related  analysis of the mono discharge model and 
the survey of the multi discharge, begin at  x0 = 3 cm 
where we notice that:   
- Ic elongates toward a constant value from x0 = 3 cm    
- Vc elongates toward a constant value from x0 = 3 cm    
These two values are the critical parameters of the mono 
arc model. 
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