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ABSTRACT

Non-matrix expressions are presented for the Cramér-Rao
(CR) lower bound on frequency estimation variance for two
closely spaced sinusoidal signals observed in Gaussian auto-
regressive noise for both real and complex data cases. The
expressions give the dependence of the CR bound on the
phase difference between the two signals explicitly and allow
one to determine the largest and the smallest values of the
bound and the corresponding critical values of the phase
difference.

L. INTRODUCTION

The issue of frequency estimation is considered for two-
signal time-series data models consisting of either a
single real sinusoid in real Gaussian auto-regressive (AR)
noise (the real model) or two complex sinusoids in
complex Gaussian AR noise (the complex model). These
models extensively are used for testing the performance
of the so-called high-resolution frequency estimators
where the separation of the two signal frequencies present
in each model is assumed to be less than the resolution
limit of the periodogram (the Fourier limit).

It is well known that the Cramér-Rao (CR) bound
specifies a lower bound on the variance of unbiased
estimators of signal parameters. The CR bound, being
independent of the estimation algorithm wused, is
frequently studied to obtain the ultimate performance
limits for data models.

Expressions for the CR bound for estimating the
frequency parameters of the foregoing models are well
documented (e.g., see [1-3]). However, these expressions
do not show the dependence of the bound on the signal
phases explicitly. It is known that the bound strongly
depends on the phase difference between the two signal
components of the models when the frequency separation
between the two signals is less than the Fourier limit. For
this small-frequency-separation regime, it thus becomes
important to determine the largest and the smallest values
of the bound and the corresponding critical values of the
phase difference.

A recent paper [4] treated the problem for the case of
white Gaussian noise. An analytical solution to the
problem requires a non-matrix expression for the bound
which gives the dependence of the bound on the phase
difference explicitly. Moreover, this dependence should
be simple enough to allow an analytical determination of
the critical phase differences. This paper extends the non-
matrix bound formulae in [4] to the colored Gaussian AR
noise case. It is shown that the simple dependence of the
CR frequency bound on the phase difference also holds
for the colored noise case.

II. THE REAL MODEL CR FREQUENCY BOUND
We first consider the real model which consists of a
single real sinusoid in real Gaussian AR noise:

y(t) =0y cos(@yt +@y)+e(t), t=ty,t,...tx_; (1)

where o is the amplitude, w, is the frequency, ¢, is
the phase of the sinusoid, ¢, <t <---<t,_; are the
sampling instants, N is the total number of data samples

and e(?) is a real Gaussian AR(p) noise obtained by

filtering real white Gaussian noise w(¢f) with mean zero

and variance O'i, through a p th-order all-pole filter:

e(tn ) = _iaie(tn—i) + W(tn) .
i=l

We assume that the sampling instants (the ¢, ’s) and the
order p of the AR noise are known but all the other

parameters of the model are unknown and concentrate on
the estimation of the frequency parameter @, .

If @, is an unbiased estimator of the @, calculated from
the N data samples y(ty),y(¢),...,»(ty_1), then the
variance of the estimator satisfies the CR theorem:



var(@,) = B,

where B, is the diagonal term corresponding to the
parameter @, of the inverse of the Fisher information

matrix (FIM) for the problem. The following proposition
gives a non-matrix expression for the bound B, that

reveals the dependence of the bound on the phase ¢, of
the sinusoid.

Proposition 1: Let the data be given by (1). Then the CR
frequency bound B, can be expressed as
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a =(1,a,,a2,...,ap)T and the (k,/) th elements of the T’

matrices are
Ly (k)= N7'32- cos(@gt,14 ) - COS(@pt 1)
T, (k,)=N"Y =2 sin(@gt,,;) - cos(@ot,;)
L (k1) =N""32 sin(@yt, ;) - sin(@ot,,; )
Ty (kD)= N2 5 =21, - sin(@gl,,1 ) - cOS(@t 47)
Ty, (kD)= N2 5= 21, - COS(@pl,14z) - COS(Dol )
Ty ()= N7 321, -sin(@gl,1 ) - SIn(@ol 1)
Ty, (kD)= N2 521, - COS(@t 47 ) - SI(Dpl,4 )
r, (k=N Ztyst et ©0S(@ Uk ~1r11))
T, (k=N %‘ usk “pgr - COS(@g (L i +1,11))

Fc} (k’l) = N73 ztn+k ’ tn+l : Sin(wO (tn+k + tn+l ))

Here, 0<k,!/< p and the summation over n extends

from 0 to N—-1-k—1[. Also, it is assumed that the
number of data samples N satisfies the relation N >2p .

Proof: The proof begins with an expression for the
applicable FIM (e.g., see [1], [3]) and proceeds along
lines similar to those of the proof for the white noise case
given in [4, Appendix A]. Specifically, the decomposition
technique introduced in [4] is employed to reveal the
phase dependence of the bound. Also, the elements of the
FIM are computed via the recently proposed fast
algorithm [5, Lemma 1].

Equation (2) is the non-matrix expression for the CR
frequency bound for the real model in the case of colored
Gaussian AR noise. Note that the quantities K, M and

N, in (2) do not depend on the signal phase ¢, . In the
case of white Gaussian noise, the AR parameters a;,
i=L12,..., p, are all zero and only the (0,0)th terms of the

I" matrices enter into the calculations. The expression in
(2) then reduces to that in [4, Equation (5)].

Expression (2) is quite useful in that it gives the
dependence of the CR frequency bound B, on the phase
¢, of the sinusoid in a simple way. Note that the bound
is periodic in ¢, with a period of 7 and, hence, it is
sufficient to consider the bound in the interval
D, :{(Po Py € (‘%’% .

values of the bound B, and the corresponding critical

The largest and the smallest

values of the phase ¢, can easily be determined from (2)
as described by the following corollary (also given in

[4D).

Corollary 1: The CR frequency bound B considered as

a function of the phase ¢, has one maximum point and

one minimum point in the interval @, given by,
respectively
00) e = ((po)c—sgn(z—g)-% if My >0
@0 if My <0
BN (CO8 if My 20
P0)min =) (p,), —sen(2)- 5 if 11, <0
where

(®g). = %arctan(z—g)

arctan(-) € [—%,%
) I x>0
sgn(x) =
T4 k<0



Furthermore, maximum and minimum values of B, are
given by, respectively

2

(By).. = 20, 1
0/max —
aN® g, - M2+ N2
202 1
(BO)min =

2273 '
ayN™ Ky + /M7 +N¢§

Example 1: Consider the real model in (1) with N =10
data samples and uniform sampling times
n=0,,...,N —1. Let the noise be an AR(2) process with
a double pole at 0.8 (corresponding to a narrow band
noise spectrum having its peak at zero). Figure 1 shows
the largest and the smallest values of the CR frequency
bound B, . The vertical co-ordinate in the Figure depicts

the value of the product Bj-SNR, N 3 where SNR
denotes the local signal-to-noise ratio (i.e., the ratio of the
signal power to the noise power at the signal frequency).
The horizontal co-ordinate in the Figure depicts the value
of éw/Q where 8w denotes the separation of the two

t,=n,

signal frequencies present in the real model, 6w =2 ®,,
and Q denotes the Fourier limit, Q =27/N . We see that
the difference between the two limits of the bound is
large in the interval 6w/Q <1 indicating the strong
dependence of the bound on the phase of the sinusoid in
this region. For 8w/Q > 1, the difference becomes small

and the dependence of the bound on the phase may be
neglected. Figure 2 shows the worst-case and the best-
case values of the phase versus the normalized frequency
difference 6w/Q for the interval dw/Q<1.

III. THE COMPLEX MODEL CR FREQUENCY
BOUND
The complex counterpart of the previous model consists
of two complex sinusoids in a complex Gaussian AR(p)

noise:

2
y(t)=Xo; explj(@;t+ @)} +e(t), t=tg,t),..ty

i=1
3)

where the noise e(#) is obtained by filtering complex

. . . . . 2
white Gaussian noise with mean zero and variance o,

through a pth-order all-pole filter with (possibly)
complex coefficients (the a; ’s).
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Figure 1. Largest and smallest normalized CR bounds for
estimating the frequency of one real sinusoid in a real Gaussian
AR(2) noise as a function of the frequency separation. The
noise has a double pole at 0.8. Ten uniformly spaced samples
are taken.
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Figure 2. Worst-case (squares) and best-case (triangles) values
of the phase of one real sinusoid in a real Gaussian AR(2) noise
as a function of the frequency separation. The noise has a
double pole at 0.8. Ten uniformly spaced samples are taken with
the first sampling instant at zero.

Let B; denote the CR bound on the variance of unbiased
estimators of the frequency parameter ®;, i=1,2. The
following proposition gives the bound B; as a simple
function of the phase parameters ¢, and ¢, .

Proposition 2: Let the data be given by (3). Then the CR
frequency bounds B;, i=1,2, are given by

B = O'fv 1

T OC,-ZN3 K; +M,; cos2(p, —¢,))+ N, sin(2(¢, —@,))
4
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i.=1,23 (the
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superscript denotes the conjugate) where
a= (l,al,az,...,ap)T and the (k,/) th elements of the T’

matrices are

Ty, (k1) = N‘?exp{j(wl sk =y}

Ty, (k1) = N“gexpmwztﬁk — ot}

Ty, (k1) = N“gexpmwz(w — L))}

T, (k)= N‘zgj g XL (g — L))}

r,, (k.= N*zgj g XD (@slyp — Ot p)}

T, (k)= N*zgj Ay EXPL(@t g — Ot}

T, (D= N*zgj g OXPL(@ (fyg = L))}

T, (kD)= N*3§tn+k g XPL(@ (L = 1,0}

T, (k)= N*3§tn+k g eXPL (Ol — Ot}

T, (k1) = N*3§tn+k g eXpL( Oy (g = 1ys))
Here, 0 <k, < p, the summation index » runs from 0

to N—1—k—/ and the relation N >2p is assumed to
hold.

Proof: The proof is similar to the proof for the white
noise case given in [4, Appendix C] with the FIM
replaced by the FIM for the colored AR noise case (given
in, e.g., [2], [3]). Additionally, here we have used an
extension of [5, Lemma 1] to the complex noise case in
computing the elements of the FIM.

Equation (4) is the non-matrix expression for the CR
frequency bound for the complex model in the case of
colored Gaussian AR noise. Note that the bound B;

depends on the two signal phases through their
difference. The expression in (4) can be used to
determine the largest and the smallest values of the bound
and the corresponding critical values of the phase
difference.

IV. CONCLUSIONS

We have presented non-matrix expressions for the CR
frequency bound for two-signal time-series data models
consisting of one real or two complex sinusoids in
Gaussian AR noise. The expressions explicitly show the
dependence of the bound on the phase difference between
the two signal components of each model. These
expressions can be used to determine the largest and the
smallest values of the bound and the corresponding
critical values of the phase difference. This may be of
interest when the separation between the two signal
frequencies is small.
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