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ABSTRACT 
In this study, a new synthesis algorithm for mixed 
lumped-distributed low-pass ladder networks via 
artificial neural networks is presented. In the course of 
algorithm, first, a neural network which has a single 
hidden layer consists of 15 neurons is formed and by 
using 500 examples, it is trained to calculate the 
component values of the 5th degree mixed lumped-
distributed circuit. An example is included to exhibit 
the implementation of the proposed synthesis 
algorithm and it is seen that the obtained values via 
the algorithm are very close to the values that are 
calculated by using conventional synthesis procedures. 
 

I. INTRODUCTION 
Synthesis techniques for the lumped element networks are 
valid at all frequencies. However, as the design frequency 
increases, it becomes more difficult to realize the lumped 
elements necessary to fabricate the circuit. Internal 
parasitics, which may be negligible at lower frequencies, 
cause significant deviations from the anticipated 
characteristics, resulting in hardware performance that 
deviates markedly from that expected. 
 
In addition, it is assumed that voltage and current is not a 
function of distance from the terminals of a lumped 
element. That is, the impedance is independent of physical 
length. When the size of the element is an appreciable 
fraction of a wavelength, the voltage and current is a 
function of distance from the connection points, and the 
element can no longer be considered lumped. It is difficult 
to define a particular size where the lumped assumption 
begins to deteriote; most designers have a rule of thumb 
based on experience with specified elements, types of 
circuits, and fabrication methods. Even if components can 
safely be considered lumped at the design frequency, the 
high-frequency response may be degraded, which can 
result in unacceptable out-of-band characteristics. 
 
These problems can be avoided by designing with 
distributed elements; that is, cascaded transmission lines 

and transmission lines terminated with an open or short, 
known as a unit element (UE) in synthesis theory, which 
turns out to be extremely important for physical 
realizability. 
 
II. SYNTHESIS OF CASCADED UNIT ELEMENTS 
The input impedance of a transmission line terminated 
with an arbitrary load  can be written as Lz
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Let )(λz  be the driving-point impedance of a network 
consisting of shorted stubs λsiz  and open stubs λ/oiz , 
which is positive real and rational in λ . Then, when a 
transmission line element is cascaded, the input 
impedance becomes 
 

λλ
λλ

λ
)(

)(
)(

zz
zz

zz
C

C
Cin +

+
=                               (2) 

 
which is also positive real and a rational function in λ . 
Working backwards, it can be evaluated )(λinz  at 1=λ : 
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which provides the characteristic impedance of the 
transmission line element directly from the input 
impedance. 
 
Richards’ Theorem: A unit element of characteristic 
impedance  can always be extracted from a positive 
real rational impedance 

)1(z
)(λz  leaving a remainder of 
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which is also rational and positive real of degree at most 
equal to that of )(λz . Furthermore, if 
 

{ } 0)1( =zEv  
 
i.e., the even component of )(λz  evaluated as 1=λ  
equals 0, then  
 

{ } { } 1)(deg)('deg −= λλ zz . 
 

III. SYNTHESIS OF LUMPED LOW-PASS 
LADDER NETWORKS 

Consider the ladder networks with inductive series 
branches and capacitive shunt branches (low-pass) shown 
in Fig 1. Input impedance of the circuits is  (input 
reflection factor is ), where p is the usual complex 
frequency variable (

)( pz
)( ps

p = jw+σ ). The first element is 
either a series inductor or a shunt capacitor, depending on 
whether  or  has the pole at infinity. )( pz )( py
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Figure 1 Low-pass LC ladder networks 

 
Algebraically, the networks just discussed (first Cauer 
structure) corresponds to a continuous fraction expansion 
about the point at infinity, 
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The  are always residues at infinity and can be 
determined by an iterative long division procedure, in 
which at each step the remainder is divided into the 
divisor of the previous step. 

ia

 
IV. MIXED LOW-PASS LADDER NETWORKS 

From the physical implementation point of view, one 
practical circuit configuration is that of simple low-pass 
ladder sections connected with unit elements (LPLUE) as 
shown in Fig. 2 

 
 L1   L2 
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Figure 2 Low-pass ladder with unit element 
 
The scattering matrix describing the mixed element two-
port can be expressed in the Belevitch canonical form as 
[5], 
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where 
 

• ),( λpf  is a monic real polynomial that consist 
of transmission zeros, 

• ),(),( λλ pgveph  are real polynomials in 
the complex variables jwp += σ  and 

Ω+= jελ  ( ττλ ),ptanh(=  being the 
delay length of unit elements), 

• ),( λpg  is a Scattering Hurwitz polynomial, 

• σ  is a unimodular constant; 1=σ , 

• Losslessness of the mixed element two-port 
requires that  

),(),(),(),(),(),( λλλλλλ −−+−−=−− pfpfphphpgpg . 
 
The first rows of h and g matrices are used to synthesize 
distributed part of the network, and the first columns are 
used to get the component values of lumped part. Other 
elements of the matrices give connectivity information 
that can be used to calculate transducer power gain (TPG) 
of the network. 
 

V. NEURAL NETWORKS 
Artificial neural networks (ANN) which consist of 
simplified neurons connected to each other are the models 
of nervous system. Although each neuron has a simple 
function alone, they can be used to solve complex 
problems, when they are used together. 
 
Artificial neural networks are adaptive systems which 
have learning capabilities. ANNs adapt and organize 
themselves to the changing conditions, improve a function 
and make the calculation by learning. ANNs can produce 
the correct response even though missing or corrupted 
input is given to them. They are more suitable for the 
daily life problems because of their nonlinear 
characteristics [11]. 
 



In Figure 3, a neuron can be seen which consists of a 
summing junction and a non-linear activation function. 
Here, x1, x2, …,xn are inputs; w1, w2,…, wn are synaptic 
weight coefficients and y is output. 

 

 

 

 

 

 

 

 

 

Figure 3 Neuron model 

 

A neural network model can be seen in Figure 4. Each 
neuron has many inputs and only one output, and this 
output is the input for the other neurons, so system is 
formed in parallelly. 
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Figure 4 ANN with one hidden layer 
 
ANNs can be used in signal processing, image processing, 
pattern recognition, medical, military systems, finance 
systems, artificial intelligence and power systems. 
 
5.1. Learning in Artificial Neural Networks 

Learning in artificial neural networks is based on the 
calculation of the synaptic weight coefficients suitable for 
the problem. Learning rule is an equation set by which all 
or some of the synaptic weight coefficients change so as 
to modify the response of each neuron in time. By this 
way ANN can adapt itself to get the desired response. 
 
ANNs are learnt by example data instead of 
programming. Learning process can be divided into two 
groups; supervised and unsupervised learning. 
 

In supervised learning, both the input and the response are 
given to the system. For each input, obtained response and 
desired response are compared. To get the minimum 
difference, synaptic weight coefficients are changed. 
When an acceptable error is obtained, learning process is 
stopped and then these synaptic weight coefficients can be 
used with the data that are not used in learning process. 
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5.2. Back Propagation Algorithm [13] 

In this paper, back propagation algorithm is used as the 
learning algorithm, which has emerged as the most widely 
used and successful algorithm for the design of 
multiplayer feedforward networks. 
 
In learning process, first of all, an error is obtained by 
subtracting the result from the desired value. Then the 
error is squared. In this algorithm, it is desired to realize a 
learning process with an error whose square is minimum. 
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Then delta values are calculated at the output nodes. 
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And by using back propagation, all the values at the 
output nodes are calculated. 
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Finally, the components of gradient are calculated and 
desired synaptic weight coefficients are obtained. 

xw δµ2−=∆      (12) 
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VI.EXAMPLE 

In this study, a neural network which has a single hidden 
layer consists of 15 neurons is formed and by using 500 
examples, it is trained to calculate component values of a 
5th degree mixed lumped-distributed low-pass ladder 
network (two unit elements and three lumped elements). 
 
h and g matrices of the mixed network and the networks 
itself are given below, 
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Figure 5 Designed mixed circuit 
 
By using ANN, the component values are calculated as 
C1=0.9431, C2=1.1610 
L1=1.6346 
Z1=1.0881, Z2=2.7657 
 
Also, by using conventional synthesis techniques, the 
component values are obtained as 
C1=0.9570, C2=1.0583 
L1=1.6948 
Z1=1.1072, Z2=2.6264 
 
Let’s calculate TPG of the network via these two sets of 
component values; 
 
 

 
 

Figure 6. TPG curves versus frequency 
 

VII. CONCLUSION 
As one can see from the example, component values are 
very close to the values that are obtained by using 
classical synthesis routines. As a result between the TPG 
curves there is a small difference. This error can be made 
smaller if ANN is trained better, say longer training set, 
smaller or different learning procedures. As a result of this 

study it can be said that ANN can be trained to synthesise 
the mixed lumped-distributed circuits.  
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