
ITERATIVE DECODING PERFORMANCE OF GEOMETRIC
AUGMENTED PRODUCT CODES OVER AWGN CHANNEL

Gökmen Altay Osman N. Ucan

e-mail: galtay@bahcesehir.edu.tr e-mail: uosman@istanbul.edu.tr
Bahçeşehir University, Faculty of Engineering, Department of Electrical & Electronic Engineering, 34538, Bahçeşehir,

Istanbul, Turkey
Istanbul University, Faculty of Engineering, Department of Electrical & Electronics Engineering, 34850, Avcılar,

Istanbul, Turkey

Key words: Block codes, iterative decoding.

ABSTRACT
We present iterative decoding process of Geometric
Augmented Product codes that is a newly proposed
linear block code construction technique. We also
report the bit error performances for one of the
constructed code of the technique utilising our
iterative decoding approach.

I. INTRODUCTION
A new construction scheme of decomposable codes that
generates wide range of binary linear block codes has
been proposed recently and named as Geometric
Augmented Product (GAP) Codes [1]. It has attractive
generator matrix that allows easy encoding
implementation with almost arbitrary code length.
Basically, this construction employs a general single
parity check matrix and another two or more component
generator matrices to geometrically construct the final
product generator matrix of the constructed code. In this
paper, iterative soft decision decoding of GAP codes have
been performed using the log-likelihood algebra as
Hagenhauer [2] described, but we use a similar notation as
in [3].

II. CODE CONSTRUCTION
A decomposable general product code generator matrix,
Gy , can be obtained by the Kronecker product of
matrices G1 and G2, as Gy = G2 ⊗ G1, where G2 is taken as
a single parity check matrix, as below,

22
11

11
11

G 2

nk ×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
MO

)1(

and,

yy nk ×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

11

11

11

y

GG

GG
GG

G
MO

)2(.

GAP code construction uses Gy defined in (2) as a base
matrix and augments another component generator
matrix, Gz, in the specified geometrical manner to
construct the ultimate generator matrix G as,

 Gy
 GzGzGzGz
 GzGzGzGz

 GzGzGzGz
G = Gz Gz Gz Gz (3).
 Gz Gz Gz Gz

 Gz Gz Gz Gz

Utilizing the proposed GAP code construction of (3), we
can construct almost all the optimal Hamming distance-4
even codes in the size of (4) by specifying the component
codes as C1 = (2, 1, 2) and Cz = (2, 1, 1) with generator
matrices G1 = [1 1] and Gz = [1 0], respectively. The
generator matrix of the component code, C2, is a single
parity check matrix and the length, n2, can take any even
value greater than or equal to four.

⎡ ⎤() (4) 4 , 1 slog - s s,) d k, (n, C 2 +==

where s is an even integer number and greater than or
equal to eight. As an example, C = (n, k. d) = (12, 7, 4)

GAP code can be constructed as in (5), where n, k, d are
code length, dimension and minimum Hamming distance,
respectively.

III. SYSTEM MODEL AND ITERATIVE
DECODING PROCESS

In our transmission system model, we consider Additive
White Gaussian Noise (AWGN) channel environment
with zero mean and the variance σ2 as N0/2, where N0 is
single-sided noise spectral density. Binary Phase Shift
Keying (BPSK) is used to map coded bits 1 and 0 as +1’s
and -1’s at the output of the GAP encoder, respectively.
At the receiver, it is assumed that the ideal channel state
information is available. Under these assumptions, our
system model is designed as in Fig.1.

In this transmission system model, information bits ui (i =
1,2,…,k) are encoded by GAP encoder and coded bits vj (
j = 1,2,…,n) are transmitted over AWGN channel. The
receiver side receives the received symbols rj = vj + nj ,
where n is independent and identically distributed
Gaussian noise. The decoding process starts by

calculating a useful metric called the log-likelihood ratio
(LLR) for each received bit.

() ()
()

() ()
() ()⎥⎥⎦

⎤

⎢
⎢
⎣

⎡

−=−=

+=+=
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−=

+=
=

11
11

log
1
1

log
vPvrP
vPvrP

rvP
rvP

rvL

()
()

()
()⎥⎦

⎤
⎢
⎣

⎡
−=
+=

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−=

+=
=

1
1log

1
1

log
vP
vP

vrP
vrP

 (6).

() () () ()7vLvrLrvL +=

where Lc(r) is the LLR of the channel measurements of r
and L(v) is the a priori LLR of the transmitted bit v, which
is zero initially as all the transmitted bits are equally
likely. The simplified notation of (7) can be written as in
(8):

() () () ()8ˆ vLrLvL C +=′

The channel measurement of a received signal rj , Lc(r),
can be written as LLR under Gaussian noise as follows,

() ()
()⎥⎥⎦

⎤

⎢
⎢
⎣

⎡

−=

+=
=

1

1
log

jj

jj
jC vrP

vrP
rL

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

=
2

2

1
2
1exp

2
1

1
2
1exp

2
1

log

σπσ

σπσ

j

j

e
r

r

()921
2
11

2
1

2

22

j
jj r

rr
σσσ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−=

After defining the channel measurement and a priori
values, we introduce extrinsic LLR, Le(v), that is obtained
from the decoding process at the output of the decoder.
The soft decision is made at the output of the decoder
regarding L(v̂), which is a real number that provides a
hard decision.

() () () () ()10ˆ vLvLrLvL eC ++=

The sign of L(v̂) denotes the hard decision like +1 for
positive values and -1 for negative values. The magnitude
of L(v̂) is the reliability of that decision. In order to
perform decoding regarding (10), we must show how to

 110000000011
 001100000011
 000011000011
 000000110011 (5).
 000000001111
 101010100000
 000010101010

G =

GAP
Encoder

AWGN
channel

v u

 Lc(r)

soft-in soft-out
Decoder

r

L(v)
Le(v)

L(v̂)

Figure 1. Transmission system model for
GAP encoding and iterative decoding

obtain the extrinsic information Le(v). It can be derived
utilizing the generator matrix, G, of the GAP encoder. The
relation between each coded bits of v provides a sort of
parity check information and so extrinsic information at
the decoder. This relation can be specified from G by a
careful observation. Each bit of v should be represented
with other bits of v. We give an example over the
generator matrix of GAP (12, 7, 4) code as shown in (5).

In Fig. 2, ‘⊕ ’ denotes modulo-2 addition. The log-
likelihood algebra [2] is used to define the sum of LLRs
for a statistically independent v as follows:

()1vL () ()
() ()

() ()21

21

1
log212 vLvL

vLvL

e ee
eevvLvL

+
+

=⊕=

() ()[] ()[] () ()() ()11,min1 2121 vLvLvLsignvLsign ×××−=

Here, ‘ .’ denotes log-likelihood addition that gives the
LLR of the module-2 sum of the involved bits. As an
example, for the GAP encoder, the soft output LLR value
L(v̂ 1) is obtained utilizing (10), where one of the extrinsic
LLR , Le(v), is obtained as shown in (12).

() () ()()[221 vLrLvL ce += () ()()33 vLrLc +

 () ()()]44 vLrLc + (12).

Extrinsic LLR values, Le(v), are provided from the parity
checks of a bit in v. As shown in Fig. 2, there are many
parity check equivalents of a bit in v. In order to obtain
the final extrinsic LLR value, we must perform the
operations similar to (12) for all the possible parity check
equivalents of a bit in v repetitively. In our decoder, we
perform similar operations as in (12) for all the bits of v

with respect to their first parity check equivalents and
then decode again for the second parity check equivalents
and so on. The process ends when all the parity check
combinations are used. As it can be realized that Le(v) is
refined in each process of (12). The iterative decoding
algorithm for a GAP code proceeds as follows:

1. Initialize the a priori information ()vL = 0.

2. Find the ()vLe using all the possible parity check
equivalents of a bit of v. Utilize from Fig. 2 and (12).
3. Set new ()vL = ()vLe .
4. If iteration is necessary for more reliable decision go to
 step 2, otherwise go to step 5.
5. The soft output LLR value is:
 () () ()vLrLvL eC +=ˆ (13).

 If ()vL ˆ > 0 then v = 1, otherwise v = 0.

We have obtained the bit error rate (BER) of (12,7,4)
GAP code over AWGN channel as shown in Fig. 3 with
regard to the above algorithm. At the first iteration, the
BER curve is worse than uncoded BPSK case; but at the
second iteration, BER curve becomes better than uncoded
case. An important inference is that, the BER curve
converges to its best case at about the fourth iteration,
where the coding gain is about 2.3 dB at the BER of 10-5.
After the fourth iteration, the curve does not get much
better, which is an advantage considering decoding speed.
This is because, in the second step of the defined
algorithm, we employed 13 different parity check
equivalents of a bit of v for each bit. Consequently, for
each iteration there are quite big numbers of elements for
obtaining strong extrinsic information. On the other hand,
when we compare the BER of 4 iteration with Viterbi
Algorithm decoding , which is an optimal decoding
algorithm, we concluded that the iterative decoding
approach considerably to the optimal curve of Viterbi
algorithm decoding.

Figure 3. BER iterative decoding performance of (12,7,4)
GAP block code.

v1 = v2 ⊕ v3 ⊕ v4
 = v2 ⊕ v5 ⊕ v6 ⊕ v9 ⊕ v10
 = v3 ⊕ v5 ⊕ v7 ⊕ v9 ⊕ v11
 M
v2 = v1 ⊕ v3 ⊕ v4
 = v1 ⊕ v5 ⊕ v6 ⊕ v9 ⊕ v10
 = v4 ⊕ v6 ⊕ v8 ⊕ v10 ⊕ v12
 M
M
v12 = v11 ⊕ v9 ⊕ v10
 M

Figure 2. Relationships among the
 bits of v for (12,7,4) GAP code

V. CONCLUSION
We have analyzed the iterative decoding process of GAP
codes and showed a way for iteratively decoding GAP
codes. We used similar iterative decoding process as
described in [2] and [3] by using log-likelihood algebra
for computational simplicity. Simulations have been
performed for the (12, 7, 4) GAP code over AWGN
channel and observed that BER curve converges quite
closely to the Viterbi decoding result. This paper is the
first step for iterative decoding of GAP codes. The future
research includes efficient and practical probability
decoding methods of GAP codes for large code lengths.

REFERENCES
1. G. Altay, O. N. Ucan, H. Fatih Uğurdağ, “Geometric

Augmented Product Codes with Minimal Trellises,”
submitted to IEE Proc. Communications.

2. J. Hagenauer, E. Offer, L. Papke, "Iterative Decoding
of Binary Block and Convolutional Codes," IEEE
Trans. Inform. Theory, vol. 42, pp. 429-445, March
1996.

3. B. Sklar, "A Primer on Turbo Code Concepts," IEEE
Comm. Magazine, pp. 94-102, Dec. 1997.

