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ABSTRACT 
We present iterative decoding process of Geometric 
Augmented Product codes that is a newly proposed 
linear block code construction technique. We also 
report the bit error performances for one of the 
constructed code of the technique utilising our 
iterative decoding approach. 
 

I. INTRODUCTION 
A new construction scheme of decomposable codes that 
generates wide range of binary linear block codes has 
been proposed recently and named as Geometric 
Augmented Product (GAP) Codes [1]. It has attractive 
generator matrix that allows easy encoding 
implementation with almost arbitrary code length. 
Basically, this construction employs a general single 
parity check matrix and another two or more component 
generator matrices to geometrically construct the final 
product generator matrix of the constructed code. In this 
paper, iterative soft decision decoding of GAP codes have 
been performed using the log-likelihood algebra as 
Hagenhauer [2] described, but we use a similar notation as 
in [3]. 
 

II. CODE CONSTRUCTION 
A decomposable general product code generator matrix, 
Gy , can be obtained by the Kronecker product of 
matrices G1 and G2, as Gy = G2 ⊗ G1, where G2 is taken as 
a single parity check matrix, as below,  
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GAP code construction uses Gy defined in (2) as a base 
matrix and augments another component generator 
matrix, Gz, in the specified geometrical manner to 
construct the ultimate generator matrix G as,  
 
                                          Gy                                          
         GzGzGzGz 
                  GzGzGzGz                          
                                                                                          
                                                        GzGzGzGz 
G =   Gz      Gz    Gz     Gz                                               (3).                       
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Utilizing the proposed GAP code construction of (3), we 
can construct almost all the optimal Hamming distance-4 
even codes in the size of (4) by specifying the component 
codes as C1 = (2, 1, 2) and Cz = (2, 1, 1) with generator 
matrices G1 = [1 1] and Gz = [1 0], respectively. The 
generator matrix of the component code, C2, is a single 
parity check matrix and the length, n2, can take any even 
value greater than or equal to four. 
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where s is an even integer number and greater than or 
equal to eight. As an example, C = (n, k. d) = (12, 7, 4) 



GAP code can be constructed as in (5), where n, k, d are 
code length, dimension and minimum Hamming distance, 
respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 

III. SYSTEM MODEL AND ITERATIVE 
DECODING PROCESS 

In our transmission system model, we consider Additive 
White Gaussian Noise (AWGN) channel environment 
with zero mean and the variance σ2 as N0/2, where N0 is 
single-sided noise spectral density. Binary Phase Shift 
Keying (BPSK) is used to map coded bits 1 and 0 as +1’s 
and -1’s at the output of the GAP encoder, respectively. 
At the receiver, it is assumed that the ideal channel state 
information is available. Under these assumptions, our 
system model is designed as in Fig.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this transmission system model, information bits ui ( i = 
1,2,…,k) are encoded by GAP encoder and coded bits vj ( 
j = 1,2,…,n) are transmitted over AWGN channel. The 
receiver side receives the received symbols rj = vj + nj , 
where n is independent and identically distributed 
Gaussian noise. The decoding process starts by 

calculating a useful metric called the log-likelihood ratio 
(LLR) for each received bit.  
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( ) ( ) ( ) ( )7vLvrLrvL +=  

 
where Lc(r) is the LLR of the channel measurements of r 
and L(v) is the a priori LLR of the transmitted bit v, which 
is zero initially as all the transmitted bits are equally 
likely. The simplified notation of (7) can be written as in 
(8): 
 
( ) ( ) ( ) ( )8ˆ vLrLvL C +=′  

 
The channel measurement of a received signal rj , Lc(r), 
can be written as LLR under Gaussian noise as follows,  
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After defining the channel measurement and a priori 
values, we introduce extrinsic LLR, Le(v), that is obtained 
from the decoding process at the output of the decoder. 
The soft decision is made at the output of the decoder 
regarding L( v̂ ), which is a real number that provides a 
hard decision. 
 
( ) ( ) ( ) ( ) ( )10ˆ vLvLrLvL eC ++=  

 
The sign of L( v̂ ) denotes the hard decision like +1 for 
positive values and -1 for negative values. The magnitude 
of  L( v̂ ) is the reliability of that decision.  In order to 
perform decoding regarding (10), we must show how to 
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Figure 1. Transmission system model for 
GAP encoding and iterative decoding 



obtain the extrinsic information Le(v). It can be derived 
utilizing the generator matrix, G, of the GAP encoder. The 
relation between each coded bits of v provides a sort of 
parity check information and so extrinsic information at 
the decoder. This relation can be specified from G by a 
careful observation. Each bit of v should be represented 
with other bits of v. We give an example over the 
generator matrix of GAP (12, 7, 4) code as shown in (5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Fig. 2, ‘⊕ ’ denotes modulo-2 addition. The log-
likelihood algebra [2] is used to define the sum of LLRs 
for a statistically independent v as follows: 
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( ) ( )[ ] ( )[ ] ( ) ( )( ) ( )11,min1 2121 vLvLvLsignvLsign ×××−=  

 
Here, ‘   .’  denotes log-likelihood addition that gives the 
LLR of the module-2 sum of the involved bits. As an 
example, for the GAP encoder, the soft output LLR value 
L( v̂ 1 ) is obtained utilizing (10), where one of the extrinsic 
LLR , Le(v), is obtained as shown in (12). 
  

( ) ( ) ( )( )[ 221 vLrLvL ce +=       ( ) ( )( )33 vLrLc +    
 
                        ( ) ( )( ) ]44 vLrLc +                             (12). 
 
Extrinsic LLR values, Le(v), are provided from the parity 
checks of a bit in v. As shown in Fig. 2, there are many 
parity check equivalents of a bit in v. In order to obtain 
the final extrinsic LLR value, we must perform the 
operations similar to (12) for all the possible parity check 
equivalents of a bit in v repetitively. In our decoder, we 
perform similar operations as in (12) for all the bits of v 

with respect to their first parity check equivalents and 
then decode again for the second parity check equivalents 
and so on. The process ends when all the parity check 
combinations are used. As it can be realized that Le(v) is 
refined in each process of (12). The iterative decoding 
algorithm for a GAP code proceeds as follows:  
 
1. Initialize the a priori information ( )vL  = 0. 

2. Find the ( )vLe  using all the possible parity check  
equivalents of a bit of v. Utilize from Fig. 2 and (12).   
3. Set new ( )vL  = ( )vLe . 
4. If  iteration is necessary for more reliable decision go to   
    step 2, otherwise go to step 5. 
5. The soft output LLR value is:  
      ( ) ( ) ( )vLrLvL eC +=ˆ               (13). 

     If ( )vL ˆ  > 0 then v = 1, otherwise v = 0. 
 
We have obtained the bit error rate (BER) of (12,7,4) 
GAP code over AWGN channel as shown in Fig. 3 with 
regard to the above algorithm. At the first iteration, the 
BER curve is worse than uncoded BPSK case; but at the 
second iteration, BER curve becomes better than uncoded 
case. An important inference is that, the BER curve 
converges to its best case at about the fourth iteration, 
where the coding gain is about 2.3 dB at the BER of 10-5. 
After the fourth iteration, the curve does not get much 
better, which is an advantage considering decoding speed.  
This is because, in the second step of the defined 
algorithm, we employed 13 different parity check 
equivalents of a bit of v for each bit. Consequently, for 
each iteration there are quite big numbers of elements for 
obtaining strong extrinsic information. On the other hand, 
when we compare the BER of 4 iteration with Viterbi 
Algorithm decoding , which is an optimal decoding 
algorithm, we concluded that the iterative decoding 
approach considerably to the optimal curve of Viterbi 
algorithm decoding.  
 

 
Figure 3.  BER iterative decoding performance of (12,7,4) 
GAP block code. 

v1 = v2 ⊕  v3 ⊕  v4 
    = v2 ⊕  v5 ⊕  v6 ⊕  v9 ⊕  v10        
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     M   
v2 = v1 ⊕  v3 ⊕  v4 
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     M   
M  
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     M   
 
 
Figure 2. Relationships among the   
           bits of v for (12,7,4) GAP code 



V. CONCLUSION 
We have analyzed the iterative decoding process of GAP 
codes and showed a way for iteratively decoding GAP 
codes. We used similar iterative decoding process as 
described in [2] and [3] by using log-likelihood algebra 
for computational simplicity. Simulations have been 
performed for the (12, 7, 4) GAP code over AWGN 
channel and observed that BER curve converges quite 
closely to the Viterbi decoding result. This paper is the 
first step for iterative decoding of GAP codes. The future 
research includes efficient and practical probability 
decoding methods of GAP codes for large code lengths. 
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