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Abstract Hierarchical mesh representation and mesh
simplification have been addressed in computer graphics for
adaptive level-of-detail rendering of 3D objects used for
animation. In this paper, we propose a new simplification method
to design hierarchical 3D meshes such that each mesh level
(representing a different level of spatial hierarchy) is a subset of
the previous higher detail mesh and has Delaunay topology. This
topology constraint on each mesh layer not only helps to design
meshes with desired geometric properties, but also enables
efficient compression of the mesh data for multimedia
applications.
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I. INTRODUCTION

Three-dimensional (3-D) polygonal meshes have been
popular in computer graphics to describe the geometry
(structure) of world objects. They have been employed to
view objects from different angles and/or to render
photorealistic synthetic images by texture mapping [1]. For
example, an animation can be created by repeatedly
mapping a still image (texture map) onto a 3-D mesh
subject to global transformations. Three-dimensional
meshes are an elementary building block of the Virtual
Reality Modeling Language (VRML), a standard for
storing and interacting with graphics objects and virtual
worlds over the World Wide Web [2].
Hierarchical representation of 3-D meshes have attracted
attention because it: 1) provides rendering at various levels
of detail (quality scalability); 2) allows
progressive/scalable transmission or storage of the object
geometry and motion information. Scalability means that

terminals of different complexity can extract data of
different quality levels from this single bitstream.
Hierarchical representation of 3-D meshes has been
addressed in computer graphics for adaptive level-of-detail
(LOD) rendering of 3-D objects [3]. Geometric methods
for fine-to-coarse 3-D mesh simplification include [4]. A
wavelet-based multiresolution mesh approximation was
proposed in [5]. In VRML, rendering at multiple
resolutions is enabled by the LOD node which requires
definition of L separate meshes that are stored or
transmitted independently (simulcast). Meshes of
tetrahedra have many applications, including interpolation,
rendering, compression, and numerical methods such as the
finite element method. Most such applications demand
more than just a triangulation of the object or domain
being rendered or simulated. To ensure accurate results,
the tetrahedra must be "well-shaped", having small aspect
ratios or bounds on their smallest and largest angles [6].
In this paper, we propose a hierarchy of 3D Delaunay
meshes and we only remove vertices in the fine to coarse
design strategy. We do not reposition vertices nor edges. In
Section 2, algorithm for 3D mesh simplification with its
proper design parameters is explained. In Section 3,
experimental results and conclusions for "Torus" and "Cat"
volume data are given.



II. ALGORITHM

II.1. Initial Fine Detail Mesh

The three dimensional Delaunay triangulation is defined as
the triangulation that satisfies the Delaunay criterion for n-
dimensional simplexes (in this case n=3 and the simplexes
are tetrahedra). This criterion states that a circumsphere of
each simplex in a triangulation contains only the n+1
defining points of the simplex. It has been proven that two
dimensional Delaunay triangulation satisfies an "optimal"
triangulation, but in three dimensional Delaunay
triangulation the situation is not so, since a measurement
for optimality in three dimension is not agreed on.

II.1.a Computation of the “Alpha” Parameter

A graph can be defined as G = ( V,E ) Here V is the
set of vertices, V = { v0, v1, ... , v1, ... , vv-1 }, and E is the
set of  edges, E = { e0, e1, .... , ei , .... ,  eE-1 }.
Optimal alpha value has to be computed in order to get a
good approximation of the original image. The average
tetrahedron edge length (le) of the convex hull can be used
to determine this optimal value.

(2.1)

Although the convex hull may contain edges of large
length when connecting end nodes of the volume data,
experiments show that the average edge length gives us a
proper alpha value. In fact, to preserve all tetrahedra
present in the 3-D mesh, maximum circumradius of them
has to be used to determine alpha value, which in practice
is expressed as average value when convex hull is
employed. Again these "ill-conditioned" tetrahedra force
us to choose average edge length instead of circumradius
in alpha value determination.

II.1.b Boundary Extraction Algorithm

The boundary extraction algorithm for 3-D images
represented by the Delaunay tetrahedralization, uses the
sum of the solid angles at every vertex to determine
whether the vertex is on the boundary or not. The solid
angle at the vertex vi of the tetrahedron T (v0, v1, v2, v3) is
defined to be the surface area formed by projecting each

point of the face not containing vi  to the unit sphere
centered at vi .

Figure 1 - The shaded area is the solid angle of the
tetrahedron   T (v0  , v1 , v2 ,v3) at vertex v0

For each tetrahedron, the solid angle at each corner is
calculated. A vertex is said to be on the boundary, if the
sum of the solid angles of every tetrahedron the vertex
belongs to at this node, is less than the surface area of a
unit sphere, 4π. If the sum of the solid angles equals 4π, the
vertex has to be in the interior of the image. It is obvious
from the definition of the solid angle of a tetrahedron, that
there is no possibility for the sum of the solid angles to be
greater than the surface area of the unit sphere, provided
that the tetrahedrons do not intersect.
To compute the solid angle (Ψ) of a tetrahedron:

ΨA    =  (dihedral angle  at edge AB)
+ (dihedral angle at edge AC)
+ (dihedral angle at edge AD)  - π (2.2)

where the dihedral angle (Θ) at the edge eAB is the angle
between the intersection of the two faces containing the
edge eAB and a plane perpendicular to this edge:

           ΘAB    = π - | arccos ( faceABC    •   faceABD  ) |    (2.3)

II.2 Mesh Boundary Simplification

A sequential simplification algorithm is used to remove
boundary vertices going from one hierarchy level to the
next. The boundary simplification algorithm uses a
distance parameter Dmax to control the shape error. Dmax
specifies the pixel error tolerance and the choice of this
parameter is discussed in detail in [7]. For each boundary
vertex, a candidate edge segment is drawn between an
initial boundary vertex and the vertex under consideration,
the chord vertex. For every vertex between the initial and
the chord vertices, the distance d from the vertex under
consideration to the candidate edge segment is computed.
Every vertex having d less than Dmax is a candidate for
removal. The first vertex for which d is greater than Dmax
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becomes the new initial vertex. Note that only an
independent subset of the removable nodes is actually
removed, so as to conform to the hierarchy. This procedure
is repeated until all the vertices have been processed. This
is an exact generalization of 2D algorithm to 3D case.
A constant Dmax value is applied to form all levels and
either the user is asked to input a certain possible amount
of error for each level and the algorithm stop to remove
nodes when it can not pass this amount error or vertices up
to an average cost value are removed in a level and the
algorithm stops when there is no more removal on the
boundary.

II.3 Mesh Interior Simplification

The simplest method for 3D mesh simplification is to
select a subset of nodes of the finer level mesh according
to an importance criterion associated with each vertex, and
employ Delaunay triangulation of the selected subset at a
given level to obtain the coarser mesh. This method,
however does not provide a hierarchy in the topology in
the sense that tetrahedra of one level are not necessarily a
subset of those of the previous finer detail level. If a
hierarchy in both node positions and topology is desired,
then a coarse-to-fine design strategy where tetrahedra of
the coarser mesh are subdivided. However, this approach
usually results in poor aspect ratio tetrahedra. To this
effect, we choose an approach where some part of the mesh
topology is maintained between successive levels of
resolution. This is achieved by starting with the finest
resolution mesh, and removing an independent set of
vertices at each level.
An “independent” set is a set of vertices among which no
two vertices are adjacent to each other. The removal of an
independent set of nodes implies that the bounding
polygons of the removed nodes can be preserved from one
level to the next. Retriangulation of the interior of each
bounding polygon using the Delaunay criterion completes
the mesh definition at each level.

The aim of the simplification of the interior of a mesh
is to remove the maximum number of independent vertices.
The general idea is to retain the vertices which are
expected to be important, going from one hierarchy level to
the next.

II.1.1 Importance Value Function

The importance (IP) value for an interior node is defined
as the ratio of the sum of its neighbors' volume to its
volume.

This IP stress on the connectivity of the mesh and try to retain

(2.4)
detailed regions' vertices of the volume data.. Degree(n) is
criterion of  the connectivity of relevant vertex vn. It represents
how many edges are connected to the vertex. From equation
(2.4) it is obvious that more smaller the volume(n) and
more larger the sum of  volume(i) is more higher the
importance value of  relevant vertex  because small volume
represents a more detailed region and vertex in this region
is more important.

II.3.1.a The Computation of Importance Value

Before the calculation of the importance value function,
the volumes of the tetrahedrons and the neighbor vertices
and tetrahedrons of each vertex has to be determined.
The volume of a tetrahedron is computed using the
following formula:

volume = (1/6) a •  ( b x c )   (2.5)
where a is the vector from v0 to v1, b is the vector from v0
to v2, c is a vector from v0 to v3,  in the tetrahedron T (v0,
v1, v2, v3). Using this formula, the volumes of the
tetrahedrons can be calculated by an algorithm with a
complexity of O(number of tetrahedrons). After the
volumes of the tetrahedrons are calculated and the
neighbors of each vertex are known, the importance value
can be computed by the algorithm given below.

II.4. Interior Vertex Remove Algorithm

The interior vertex remove algorithm is a simple Greedy-
type algorithm that removes the vertex having the smallest
importance value among the unprocessed ones, and keeps
its neighbor vertices. A fast implementation of quicksort
algorithm is used to sort the importance values of the
vertices.

III. EXPERIMENTAL RESULTS AND
CONCLUSIONS

Experimental results related to boundary and interior vertex
simplification are given for "Torus" and "Cat" volume data.
Boundary node simplification is accomplished for  "Torus" with
Dmax = 3.0 and Dmax = 2.0  for "Cat".  "Cat" volume data has a
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boundary consisted of concave and convex regions so its
boundary has to be processed carefully for its global shape
information. That is why a low Dmax value is chosen for "Cat".
"Torus" volume data has instead a more uniform shape and a
higher value of Dmax is suitable for it. In fact, this reasoning
coincides with the uniform distribution of the vertices on the
boundary on in the interior of the volume data modeled by a 3D
Delaunay mesh. We end up with  four levels of hierarchy  for
"Torus "  volume data where the stopping criterion  that there is
no more removed vertices on its boundary is applied (Figure 2-
16). For "Cat" volume data, we have a huge amount of vertices at
the finest level and only three levels of hierarchy is shown in
Figure 2-5 Our criteria for the formation of hierarchy of 3D
meshes is to remove the maximum number of independent
vertices. This will help us in handling huge amount of volume
data and so higher compression ratios can be obtained. The
tradeoff  between maximum removal of vertices and quality of
the so formed hierarchy meshes is accomplished by allowing
removal of maximum number of vertices so that the formed
coarser mesh has an acceptable value for the minimum of the
solid angles. In 3D, Delaunay meshes do not satisfy the
maximization of the minimum angle criterion. 3D Delaunay
tetrahedralizators often produce tetrahedra having faces with fine
minimum angle values, but are still badly shaped, just like the
sliver. Instead of the minimum angles of the faces, minimum
solid angles of the tetrahedra are used to guarantee the existence
of the Delaunay property.

Table 1. "Cat" data hierarchy levels vs solid angles
Hierarchy Level Average of the minimum solid angles

Original Finest 0.016755

First coarser 0.023105

Second 0.026592

Coarsest 0.029761

 The average of the minimum angles of the tetrahedra is
calculated at each hierarchy level to give an idea of the
quality of the mesh produced. The solid angles of a
tetrahedron are equal to each other and have a value of
0.551286, which is the maximum value that the minimum
of the solid angles may have.

Table 2. "Torus" data hierarchy levels vs solid angles
Hierarchy Level Average of the minimum solid angles

Original Finest 0.06752

First coarser 0.06940

Second 0.07267

Third 0.079

Coarsest 0.080

The result for "Cat" and "Torus" given show that the
quality of the 3D Delaunay mesh is not satisfactory, but the
simplification algorithm discussed in this paper improves
the quality.
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Figure 2 - Original volume graphics model-3D Delaunay Mesh l0
, alpha = 0.0223, total vertex number = 10000 boundary vertex
number = 1973



Figure 3 - 3D Delaunay Mesh l1alpha = 0.028938, removed
interior vertex number = 3785, removed boundary vertex number
= 1221

Figure 4 - 3D Delaunay Mesh l2 alpha = 0.061, removed interior
vertex number = 1304, removed boundary vertex number = 491

Figure 5 - 3D Delaunay Mesh l3alpha  = 0.098, removed interior
vertex number = 810, removed boundary vertex number  = 305

Figure 6 - Original volume graphics model - 3D Delaunay Mesh
l0 , alpha = 19.6261 ,total vertex number = 288 , boundary vertex
number = 180

Figure 7 - 3D Delaunay Mesh l1 , alpha = 37.649 , removed
interior vertex number = 25 ,removed boundary vertex number =
25

Figure 8 - 3D Delaunay Mesh l2, alpha=37.5246, removed
interior vertex number=18, removed boundary vertex number= 5

Figure 9 - 3D Delaunay Mesh l3 , alpha=41.802 , removed
interior vertex number=14 , removed  boundary vertex number=1

Figure 10 - 3D Delaunay Mesh l4 , alpha=41.832 , removed
interior vertex number=11 ,removed boundary vertex number= 0
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