
A PATH PLANNING METHOD FOR AUTONOMOUS MOBILE ROBOTS

Ognyan B. Manolov
e-mail: omanolov@bas.bg

Laboratory for Autonomous Mobile Robots, Institute of Control and System Research, Bulgarian Academy of Sciences
P. O. Box 79, 1113 Sofia, Bulgaria

Key words: Environment model, data structure, visibility graph, path planning.

ABSTRACT

Mobile robots often find themselves in a situation
where they must find a trajectory to another position
in their environment, subject to constraints posed by
obstacles and the capabilities of the robot itself. This is
the problem of planning a path through a continuous
domain, for which several approaches have been
developed. A method for autonomous mobile robot
path planning is presented. Initially, the environment
model, given as a closed chain of polygonal obstacles,
is transformed into a visibility graph of obstacle
vertices with a minimum number of links. An
additional visibility graph of obstacle is formed
simultaneously. The given initial point and destination
point are presented as obstacles with a single vertex
and are added to the determined graphs as vertices
and as obstacles correspondingly. The extended
graphs are updated and in the first step a shortest
path from initial point to destination point through the
obstacles is searching for. By this method a subset of
obstacles is selected. On this basis from the visibility
graph of obstacle vertices a sub-graph is detached,
containing only the vertices of obstacles, belonging to
the selected subset. We search the detached sub-graph
to find the shortest path between the given points. For
determination of the visible obstacle vertices a fuzzy
logic algorithm is implemented

I. INTRODUCTION
The path-planning problem is as old as mobile robots and
is a fundamental problem to the adaptation of artificial
intelligence technology to robotics, but is not one that has
found a universal solution. A single definition of the
“path-planning problem” or the “obstacle-avoidance
problem” does not exist. There is an ensemble of
techniques that assume varying degrees of knowledge
about the external world [1, 2, and 5]. This family of
problems might be summarised as the generation and
execution of action in order to move the mobile robot to
the desired position and orientation without violating
certain physical constraints. One of the relatively recently
developed tools that may help tackle the problem of real-
time path planning are Rapidly-exploring random trees

(RRTs) [3]. RRTs employ randomization to explore large
state spaces efficiently, and can form the basis for a
probabilistically complete though non-optimal
kinodynamic path planner [4]. Their strengths are that
they can efficiently find plans in high dimensional spaces
because they avoid the state explosion that discretizations
faces. Most current robot systems that have been
developed to date are controlled by heuristic or potential
field methods at the lowest level, and many extend this
upward to the level of path navigation [5]. Since the time
to respond must be bounded, reactive methods are used to
build constant or bounded time heuristics for making
progress toward the goal. One set of reactive methods that
have proved quite popular are potential fields and motor
schemas [6]. Although they meet the need for action
under time constraints, these methods suffer from the lack
of look ahead, which can lead to highly non-optimal paths
and problems with oscillation [7].

The path planning in a 2D world with polygonal obstacles
has received considerable attention as a part of the general
problem of mobile robot motion planning, which has a
number of competitive solutions. More of the known
methods involve using graph search algorithms to find the
minimum distance path in the graph of the possible paths.
Generally, the graph of possible paths is a “visibility
graph”, or V-Graph of the obstacle vertices, where an arc
connects two vertices if and only if they are visible from
one another. A vertex V is defined as being visible from a
vertex W if the segment VW does not intersect any
obstacle edges in the planning space [8, 14].

An algorithm for solving the shortest-path problem is
known, which is based on Dijkstra’s algorithm, [9], and
uses a full visibility graph in O (n2) time, where n is the
number of obstacle vertices. In [10] a “Sector theory” is
given, where in a result, at most two vertices per obstacle
being included in the search graph. Several facts as local
tangency and “overlapping obstacle profiles” are used in
[11, 15], and as it is noted in [12], they can be applied
substantially to reduce the search graph.
In [12], the problem of path planning, in the sense given
above, is considered as a problem of the level of a

hierarchy of control. An algorithm, which requires O (n2)
time for generated visible vertices to given vertex, is
presented in [13]. The path planning algorithm integrates
some pruning rules of the search graph size reducing, with
a hierarchical set of tests for a candidate vertex visibility.

Here a path planning method is presented, which is based
on a two-steps graph search. Initially the given
environment model is transforming as a set of polygonal
obstacles into a visibility graph of obstacle vertices. It will
be shown that such a graph with a minimum number of
links exists there, which provides the minimum Euclidean
distance path between the given initial and destination
points. The visibility graph of obstacles will be
determined simultaneously. Preparing the initial data ends
with determination of these two graphs. The given initial
and destination points are presented as polygons with
single vertex and are added to the determined graphs as a
vertex and as an obstacle, correspondingly. The extended
graphs are updated and in the first step a rough shortest
path from initial point to destination point through the
obstacles is searched for. By this method a subset of
obstacles is selected. It will be claimed the shortest path
from the initial point to the destination point in this
environment to pass through the vertices of this subset
only. On this basis, from the visibility graph of obstacle
vertices a sub-graph is detached, containing only the
vertices of obstacles belonging to the selected subset. The
detached sub-graph is searching to find the shortest path
between the given points. Finally, the process of planned
path execution, which is based on the fuzzy approach,
described in [18], is implemented.

II. AN ENVIRONMENT MODEL
The environment model as a closed chain of polygonal
obstacles is given. Every obstacle is presented by a closed
chain of its vertices. Since there is no principal difference
between the obstacles and there is no need to assign a
number to each of them – obstacle1, obstacle2,… The
same is valid for obstacle vertices except that they are
ordered clockwise or counter clockwise.

II.1. The Data Structure of the obstacles
The structure of the obstacle is formed by a closed chain
of structures from Vertex type. There is no first vertex
since they are “equal in rights”. That is why there are no
numbers in the corresponding cells, presented in Figure 1.
The first element of structure Vertex is k-triple of the
vertex parameters, including its Cartesian coordinates and
the type of the vertex that means the vertex can be
temporary or permanent, in the sense given in [12]. In
such a way this structure can be use in case of operating in
an unknown or partially known environment. The closed
chain of vertices is formed by the next two elements in the
structure: a pointer to the next vertex and a pointer to the
previous vertex. To ensure the independence from the
direction of passing through the vertices two pointers are
used. It is useful to have the passing opportunity toward

both directions in the future data processing. The next
pointer in this structure, pointer to corresponding node,
provides an interaction between the environment-model
data structure and the V-Graph structure of the obstacle
vertices. The last element in the structure Vertex is a
marker that is used for the data processing.
The environment is presented as a closed chain of
structures from type Obstacle as it is shown in Figure 1.
The structure Obstacle is analogous to the structure
Vertex, but its elements have different function.

Figure 1. The Environment-Model Data Structure

The obstacle’s parameters involve its barycentre Cartesian
coordinates and its type, which indicates if the obstacle is
“closed” or “open”, when it is partially or completely
inspected. The next element is the pointer to the following
obstacle in the chain. Since the obstacle vertices are
“equal in rights” it does not matter which vertex will be
directed to the next pointer. The next pointer in the
Structure Obstacle is the pointer to corresponding Node.
It provides the interaction with the environment-model
data structure and the structure of the V-Graph of
obstacles. The marker has the same function as in the
structure Vertex.

II.2. The V-Graph Data Structure
There are many ways of graph representation. We propose
the representation given in Fig. 2., where two main
structures are used: Node and V-Node. The Structure
Node forms the chain of graph nodes. The Structure V-
Node is used to represent the nodes that are connected

Obstacle

Obstacle

Obstacle

Vertex

Vertex

Vertex

Structure Obstacle
 { Obstacle Parameters;
 Pointer to Next Obstacle;
 Pointer to Some of the
 Obstacle Vertices;
 Pointer to Corresponding
 Node;
 Marked – yes or no;
 }

Structure Vertex
 { Vertex Parameters;
 Pointer to Next Vertex;
 Pointer to Prev. Vertex;
 Obstacle Vertices;
 Pointer to Corresponding Node;
 Marked – yes or no;
 }

with a given node. The Structure Node consists of the
following elements:
- the pointer to some of the corresponding V-nodes (it
does not matter to which of the nodes connected to the
treated node this pointer is directed);
- the pointer to the next node in the graph (to form the
chain);
- and the pointer directed to the node data structure, either
to the structure Obstacle or Vertex, if we deal with the
obstacle V-Graph or the vertex V-Graph, respectively .

Figure 2. The V-Graph Data Structure

The Structure V-Node forms the chain of nodes that are
connected with a given node. It consists of a pointer to the
next node in the chain of the nodes that are connected to
the given, the pointer to the self node in the chain of the
Structure Node, the Euclidean distance to the given node,
and a marker.

II.3. Obstacles Descriptions
Consider the relations between two obstacles Oi and Oj as
they are shown in Figure 3. There are four common
tangents between them in the condition that obstacles are
convex. The method used to determine the “upper” and
the “lower” tangents is given in [16].

Figure 3. The relations between two obstacles.
Let Vi be a vertex of the obstacle Oi and Vj be a vertex of
the obstacle Oj. Let there be no vertex of Oj visible from
Vi and no vertex of Oi visible from Vj. There are four

ways of going around both obstacles. Therefore the
shortest path between Vi and Vj will contain one of the
four common tangents. The found endpoints of the
common tangents are checked for visibility by using of a
coordinate transformation only in accordance with [12]
but modified, as it will be shown below. The vertex V-
Graph with the minimum number of links is the graph
with nodes in case of the obstacle vertices and two nodes
are connected with an arc, if and only if:
 1) they are visible and the connecting segment is a
common tangent to the corresponding obstacles, or
 2) they are connected with an obstacle edge.
The obstacle V-Graph is defined as a graph with nodes in
case of the obstacle vertices and two obstacles are
connected with an arc if and only if there exists at least
one vertex from the first obstacle and at least one vertex
from the second obstacle, such that they are connected
with an arc of the vertex V-Graph. The algorithm for
determination of the vertex V-Graph with the minimum
number of links, [17], and the obstacle V-Graph
simultaneously determination is formulated as follows:

1. Create a basic vertex V-Graph with nodes all vertices
 and with arcs the corresponding obstacle edges;
2. Partition all non-convex obstacles into convex ones;
3. Sort the obstacles in ascending Xmin order;
4. For each pair of obstacles:
 a. Determine the “interesting” obstacles:
 b. Determine the common tangents;
 c. If the corresponding vertices are visible
 { update vertex V-Graph;
 if obstacle V-Graph is not updated
 (update V-Graph); }

It has to note here some of the main algorithm’s features.
First of all, a hierarchical test to reduce the search space is
used. The processing of non-convex obstacles is difficult,
especially when their convex hulls are intersected, [16].
By reason of this, the second feature is that every non-
convex obstacle is partitioned into convex one. This
approach is illustrated in Figure 4., which shows the
principle of partitioning the non-convex polygon ABCDE
into convex polygons AFE and BCDF.

Figure 4. Partitioning of the obstacle
More detailed description of this method is given in [17].
Further it will be supposed that all obstacles are convex.
The obstacles are sorted in ascending Xmin order using
standard Quick Sort procedure in time O (log n), where n

Node

Node

Node

V-Node

V-Node

V-Node

Structure Node
 { Pointer to Some of
 V-Nodes;
 Pointer to Next Node;
 Pointer to Node Data
 (Vertex or Obstacle);
 Marked – yes or no;
 }

Structure V-Node
 { Pointer to Next V-Node;
 Pointer to Self Node;
 Distance to Parent Node;
 Marked – yes or no;
 }

Oi

Vi

Oj

Vj

A B

C D

F

E

is the total number of the vertices of both obstacles. With
this step the following data processing became easier.
An obstacle is defined to be “interesting” if the following
conditions are fulfilled:

Xmin ≤ Right , Xmax ≥ Left ,

 Ymin ≤ Up , Ymax ≥ Down ,

Where Right, Left, Up and Down are the Cartesian
coordinates X and Y of the boundaries corresponding to
the enveloping rectangle of the treated obstacles, as it is
shown in Figure 5.

Figure 5. The determination of the vertex V-Graph

III. PATH PLANNING METHOD
It is trivial to determine the path when the destination
point is visible from the initial one. In the other hand, the
given initial point (IP) and destination point (DP) both are
presented as polygons with a single vertex. The possible
successors are determined in an analogical way to the
method presented in [12] and are illustrated in Figure 6.

Figure 6. The determination of possible successors.

It can be seen that only the vertices, which satisfy the
explicit conditions, described below, are picked out. For
example, the segment connecting the given point P and
the treated vertex should be tangent to the obstacle. The
found successors are marked with in Figure 6. The
proposed path planning method is realized as algorithm,
described as follows:
1. If DP is visible from IP then exit with path to DP.

2. Determine possible successors from IP and from DP.
3. Update vertex V-Graph and obstacle V-Graph by
adding IP and DP, with the arcs to possible successors,
like a vertex and like an obstacle correspondingly.
3. Search obstacle V-Graph for shortest path.
4. Determine “interesting” obstacles and form a sub-
graph of the vertex V-Graph that contains only vertices of
the “interesting” obstacles.
5. Search the determined sub-graph for shortest path from
IP to DP.

The IP and DP with their successors are added to the
determined vertex V-Graph and obstacle V-Graph as a
vertex and as an obstacle correspondingly. The extended
graphs are updated and in the first step we search for a
rough shortest path from IP to the DP through the
obstacles. We use a modified version of Dijkstra’s
algorithm involving the triangle rule. By this method we
select a subset of obstacles (including IP and DP).
The determination of the “interesting” obstacle in the
described above path planning algorithm is analogous to
the approach for determination of the V-Graph. But here
the bounds of the corresponding rectangles are formed for
every two adjacent obstacles in the selected subset of
obstacles, as it is shown in Figure 7.

The obstacles found to be “interesting” are added to the
selected subset. The next step is to detach from the vertex
V-Graph a sub-graph, which contains only these vertices
that belong to the obstacles in the selected subset. Further,
we search the determined sub-graph to find the minimum-
distance path using a modified version of Dijkstra’s
algorithm.

Figure 7. The path planning method

IV. AN EXECUTION OF THE PLANNED PATH
A fuzzy approach to path control of an autonomous
mobile robot is implemented, which provides robot
movement round the obstacle on a safe distance, until the
obstacle falls out of the path towards the goal [18]. The
control strategies are modelled and represented by if-then

M

N

Right Left

Up

Down

P

M

N

DP

IP

fuzzy rules. The mobile robot has received the mission to
reach a given goal position from given start position
through the shortest path, which has been obtained by the
path planning method, presented above. The robot is
equipped with scanning ultrasonic rangefinder placed on
its platform. The sensor is capable to measure in a set of
symmetric fixed positions relatively to the robot’s
direction, as it is shown in Figure 8. a). The initial heading
of the robot was directed to the goal. A fixed environment
was considered. The both technics, path planning method
and fuzzy approach to path execution control of
autonomous mobile robot have been experimented by
computer simulation experiments on standard PC using
the Fuzzy Logic Toolbox of Matlab. One of the results is
presented in Figure 8.b).

-5 0 5 10 15
-5

0

5

10

15

20

Go al

-5 0 5 10 15
-5

0

5

10

15 Goal

a) b)

Figure 8. Simulation experiments of the robot movement

V. CONCLUSION
The purpose of this work was to provide a suitable and
handy data structure to meet the requirements of path
planning in an environment with polygonal obstacles. The
representation of the search space as a visibility graph of
obstacle vertices with the minimum number of links
reduces considerably the number of alternatives in
searching for the shortest path. Using a two-step graph
search, first in obstacle V-Graph and second in a sub-
graph of vertex V-Graph with the minimum number of
links, greatly reduces the search space. The presented
method is applicable to path planning in a known
environment with polygonal obstacles but the proposed
data structure can be used for operating in an unknown
environment. The method for path planning in unknown
or partially known environment and the integration of
sensor information with the proposed data structure is a
significant step to the autonomous mobile robots
navigation. It will be the purpose for further investigations
and realizations.

ACKNOWLEDGMENT
This result was obtained in the frame of ICSR Project,
founded by BAS, 2003. The author is much obliged to
Prof. M. Isabel Ribeiro from the IST/ISR, Technical
University of Lisbon, and to Prof. M. M. Konstantinov
with the Sofia University of Architecture and Civil
Engineering, for their useful discussions and shared
experience in the field of mobile robotics.

REFERENCES
1. Cox, I. J., G. T. Wilfong (ed.), Autonomous Robot

Vehicles, Springer-Verlag, 1990.
2. Tzaffestas, S. G., Fuzzy and Neural Approaches to

Robot Control, Int. Conf. on Advanced Robotics and
Intelligent Automation, Athens, 1995, pp. 34-54.

3. S. M. LaValle, Rapidly-exploring random trees: A
new tool for path planning. Technical Report No. 98-
11, October 1998.

4. S. M. LaValle and J. James, J. Kuffner, Randomized
kinodynamic planning. Int. Journal of Robotics
Research, Vol. 20, No. 5, p.p. 378–400, May, 2001.

5. J.-C. Latombe, Robot Motion Planning. Kluwer, 1991.
6. R. C. Arkin, Motor schema-based mobile robot

navigation. Int. Journal of Robotics Research, August
1989, 8(4), p.p. 92–112, 1989.

7. J. Bruce, M. Veloso, Real-time Randomized Path
Planning for Robot Navigation. Technical Report
No.3-8, Grant No DABT63-99-1-0013, CSD - CMU,
Pittsburg, PA, USA, 2000.

8. Lizano-Perez T., M.A. Wesley, An algorithm for
Planning Collision-free Paths among Polyhedral
Obstacles. Communications of the ACM, Vol. 22 (10),
1979.

9. Asano T., L. Guibas, J. Hershberger, H. Imai,
Visibility of Disjoint Polygons. Algorithmica, Vol. 1
(1), 1986.

10. Koch E., Planning the Robot Motion in Binary Space.
Master’s thesis, (reprint), Gainesville, FL, 1984.

11. Mitchell J., Planning Shortest Pats. Ph.D. Thesis,
Stanford University, 1986.

12. Montgomery M., D. Gaw, A. Meystel, Navigation
Algorithm for a Nested Hierarchical System of Robot
Path Planning Among Polyhedral Obstacles. Proc. of
IEEE Int. Conf. on Robotics & Automation, Raleigh,
North Carolina, 1987.

13. Meystel A., Knowledge-based Controller for
Intelligent Mobile Robots. Master’s thesis, (reprint),
Drexel University, Philadelphia, PA, 1986.

14. Lizano-Perez T., Automatic Planning of Manipulator
Transfer Movements. IEEE Trans. on SMC, Vol.
SMC-11, 1981.

15. Narshing Deo, Chi-yin Pang, Shortest-Path
Algorithms: Taxonomy and Annotation. Networks,
Vol. 14, 1984.

16. Aggarwal A., Computational Geometry - Lecture
notes. Massachusetts Institute of Technology, 1988.

17. Raitchev R., E. Neitchev, Transformation of the
Environment Model into V-Graph with Minimum
Number of Links. Problems of Engineering
Cybernetics & Robotics, Vol. 35, Bulg. Academy of
Sciences, 1989.

18. Stanev P., E. Enchev, Sv. Noikov, O. Manolov, J.
Zaprianov, Fuzzy Control and Reflexive Behaviour of
an Autonomous Vehicle in an Unknown
Environment. Proc. of 3rd IFAC Symposium on
"Intelligent Autonomous Vehicles", March 25-27,
1998, Madrid, Spain.

