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ABSTRACT 

Mobile robots often find themselves in a situation 
where they must find a trajectory to another position 
in their environment, subject to constraints posed by 
obstacles and the capabilities of the robot itself. This is 
the problem of planning a path through a continuous 
domain, for which several approaches have been 
developed. A method for autonomous mobile robot 
path planning is presented. Initially, the environment 
model, given as a closed chain of polygonal obstacles, 
is transformed into a visibility graph of obstacle 
vertices with a minimum number of links. An 
additional visibility graph of obstacle is formed 
simultaneously. The given initial point and destination 
point are presented as obstacles with a single vertex 
and are added to the determined graphs as vertices 
and as obstacles correspondingly. The extended 
graphs are updated and in the first step a shortest 
path from initial point to destination point through the 
obstacles is searching for. By this method a subset of 
obstacles is selected. On this basis from the visibility 
graph of obstacle vertices a sub-graph is detached, 
containing only the vertices of obstacles, belonging to 
the selected subset. We search the detached sub-graph 
to find the shortest path between the given points. For 
determination of the visible obstacle vertices a fuzzy 
logic algorithm is implemented 
 

I. INTRODUCTION 
The path-planning problem is as old as mobile robots and 
is a fundamental problem to the adaptation of artificial 
intelligence technology to robotics, but is not one that has 
found a universal solution. A single definition of the 
“path-planning problem” or the “obstacle-avoidance 
problem” does not exist. There is an ensemble of 
techniques that assume varying degrees of knowledge 
about the external world [1, 2, and 5]. This family of 
problems might be summarised as the generation and 
execution of action in order to move the mobile robot to 
the desired position and orientation without violating 
certain physical constraints. One of the relatively recently 
developed tools that may help tackle the problem of real-
time path planning are Rapidly-exploring random trees 

(RRTs) [3]. RRTs employ randomization to explore large 
state spaces efficiently, and can form the basis for a 
probabilistically complete though non-optimal 
kinodynamic path planner [4]. Their strengths are that 
they can efficiently find plans in high dimensional spaces 
because they avoid the state explosion that discretizations 
faces. Most current robot systems that have been 
developed to date are controlled by heuristic or potential 
field methods at the lowest level, and many extend this 
upward to the level of path navigation [5]. Since the time 
to respond must be bounded, reactive methods are used to 
build constant or bounded time heuristics for making 
progress toward the goal. One set of reactive methods that 
have proved quite popular are potential fields and motor 
schemas [6]. Although they meet the need for action 
under time constraints, these methods suffer from the lack 
of look ahead, which can lead to highly non-optimal paths 
and problems with oscillation [7].  
 
The path planning in a 2D world with polygonal obstacles 
has received considerable attention as a part of the general 
problem of mobile robot motion planning, which has a 
number of competitive solutions. More of the known 
methods involve using graph search algorithms to find the 
minimum distance path in the graph of the possible paths. 
Generally, the graph of possible paths is a “visibility 
graph”, or V-Graph of the obstacle vertices, where an arc 
connects two vertices if and only if they are visible from 
one another. A vertex V is defined as being visible from a 
vertex W if the segment VW does not intersect any 
obstacle edges in the planning space [8, 14]. 
 
An algorithm for solving the shortest-path problem is 
known, which is based on Dijkstra’s algorithm, [9], and 
uses a full visibility graph in O (n2) time, where n is the 
number of obstacle vertices. In [10] a “Sector theory” is 
given, where in a result, at most two vertices per obstacle 
being included in the search graph. Several facts as local 
tangency and “overlapping obstacle profiles” are used in 
[11, 15], and as it is noted in [12], they can be applied 
substantially to reduce the search graph. 
In [12], the problem of path planning, in the sense given 
above, is considered as a problem of the level of a 



hierarchy of control. An algorithm, which requires O (n2) 
time for generated visible vertices to given vertex, is 
presented in [13]. The path planning algorithm integrates 
some pruning rules of the search graph size reducing, with 
a hierarchical set of tests for a candidate vertex visibility.   
 
Here a path planning method is presented, which is based 
on a two-steps graph search. Initially the given 
environment model is transforming as a set of polygonal 
obstacles into a visibility graph of obstacle vertices. It will 
be shown that such a graph with a minimum number of 
links exists there, which provides the minimum Euclidean 
distance path between the given initial and destination 
points. The visibility graph of obstacles will be 
determined simultaneously. Preparing the initial data ends 
with determination of these two graphs. The given initial 
and destination points are presented as polygons with 
single vertex and are added to the determined graphs as a 
vertex and as an obstacle, correspondingly. The extended 
graphs are updated and in the first step a rough shortest 
path from initial point to destination point through the 
obstacles is searched for. By this method a subset of 
obstacles is selected. It will be claimed the shortest path 
from the initial point to the destination point in this 
environment to pass through the vertices of this subset 
only. On this basis, from the visibility graph of obstacle 
vertices a sub-graph is detached, containing only the 
vertices of obstacles belonging to the selected subset. The 
detached sub-graph is searching to find the shortest path 
between the given points. Finally, the process of planned 
path execution, which is based on the fuzzy approach, 
described in [18], is implemented. 
 

II. AN ENVIRONMENT MODEL 
The environment model as a closed chain of polygonal 
obstacles is given. Every obstacle is presented by a closed 
chain of its vertices. Since there is no principal difference 
between the obstacles and there is no need to assign a 
number to each of them – obstacle1, obstacle2,… The 
same is valid for obstacle vertices except that they are 
ordered clockwise or counter clockwise. 
  

II.1. The Data Structure of the obstacles 
The structure of the obstacle is formed by a closed chain 
of structures from Vertex type. There is no first vertex 
since they are “equal in rights”. That is why there are no 
numbers in the corresponding cells, presented in Figure 1. 
The first element of structure Vertex is k-triple of the 
vertex parameters, including its Cartesian coordinates and 
the type of the vertex that means the vertex can be 
temporary or permanent, in the sense given in [12]. In 
such a way this structure can be use in case of operating in 
an unknown or partially known environment. The closed 
chain of vertices is formed by the next two elements in the 
structure: a pointer to the next vertex and a pointer to the 
previous vertex. To ensure the independence from the 
direction of passing through the vertices two pointers are 
used. It is useful to have the passing opportunity toward 

both directions in the future data processing. The next 
pointer in this structure, pointer to corresponding node, 
provides an interaction between the environment-model 
data structure and the V-Graph structure of the obstacle 
vertices. The last element in the structure Vertex is a 
marker that is used for the data processing. 
The environment is presented as a closed chain of 
structures from type Obstacle as it is shown in Figure 1. 
The structure Obstacle is analogous to the structure 
Vertex, but its elements have different function.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

 

 

 

Figure 1. The Environment-Model Data Structure 

The obstacle’s parameters involve its barycentre Cartesian 
coordinates and its type, which indicates if the obstacle is 
“closed” or “open”, when it is partially or completely 
inspected. The next element is the pointer to the following 
obstacle in the chain. Since the obstacle vertices are 
“equal in rights” it does not matter which vertex will be 
directed to the next pointer. The next pointer in the 
Structure Obstacle is the pointer to corresponding Node. 
It provides the interaction with the environment-model 
data structure and the structure of the V-Graph of 
obstacles. The marker has the same function as in the 
structure Vertex. 
 

II.2. The V-Graph Data Structure 
There are many ways of graph representation. We propose 
the representation given in Fig. 2., where two main 
structures are used: Node and V-Node. The Structure 
Node forms the chain of graph nodes. The Structure V-
Node is used to represent the nodes that are connected 
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Structure Obstacle 
 { Obstacle Parameters; 
   Pointer to Next Obstacle; 
   Pointer to Some of the 
        Obstacle Vertices; 
   Pointer to Corresponding 
                       Node; 
   Marked – yes or no; 
 } 

Structure Vertex 
 { Vertex Parameters; 
   Pointer to Next Vertex; 
   Pointer to Prev. Vertex; 
       Obstacle Vertices; 
   Pointer to Corresponding Node; 
   Marked – yes or no; 
 } 



with a given node. The Structure Node consists of the 
following elements: 
- the pointer to some of the corresponding V-nodes (it 
does not matter to which of the nodes connected to the 
treated node this pointer is directed); 
- the pointer to the next node in the graph (to form the 
chain); 
- and the pointer directed to the node data structure, either 
to the structure Obstacle or Vertex, if we deal with the 
obstacle V-Graph or the vertex V-Graph, respectively . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. The V-Graph Data Structure 
 
The Structure V-Node forms the chain of nodes that are 
connected with a given node. It consists of a pointer to the 
next node in the chain of the nodes that are connected to 
the given, the pointer to the self node in the chain of the 
Structure Node, the Euclidean distance to the given node, 
and a marker. 
 

II.3. Obstacles Descriptions  
Consider the relations between two obstacles Oi and Oj as 
they are shown in Figure 3. There are four common 
tangents between them in the condition that obstacles are 
convex. The method used to determine the “upper” and 
the “lower” tangents is given in [16].  
 
 
 
 
 
 
 

 
 

Figure 3. The relations between two obstacles. 
Let Vi be a vertex of the obstacle Oi and Vj be a vertex of 
the obstacle Oj. Let there be no vertex of Oj visible from 
Vi and no vertex of Oi visible from Vj. There are four 

ways of going around both obstacles. Therefore the 
shortest path between Vi and Vj will contain one of the 
four common tangents. The found endpoints of the 
common tangents are checked for visibility by using of a 
coordinate transformation only in accordance with [12] 
but modified, as it will be shown below. The vertex V-
Graph with the minimum number of links is the graph 
with nodes in case of the obstacle vertices and two nodes 
are connected with an arc, if and only if: 
 1) they are visible and the connecting segment is a    
common tangent to the corresponding obstacles, or 
 2) they are connected with an obstacle edge. 
The obstacle V-Graph is defined as a graph with nodes in 
case of the obstacle vertices and two obstacles are 
connected with an arc if and only if there exists at least 
one vertex from the first obstacle and at least one vertex 
from the second obstacle, such that they are connected 
with an arc of the vertex V-Graph. The algorithm for 
determination of the vertex V-Graph with the minimum 
number of links, [17], and the obstacle V-Graph 
simultaneously determination is formulated as follows: 

1. Create a basic vertex V-Graph with nodes all vertices 
 and with arcs the corresponding obstacle edges; 
2. Partition all non-convex obstacles into convex ones; 
3. Sort the obstacles in ascending Xmin order; 
4. For each pair of obstacles: 
 a. Determine the “interesting” obstacles: 
 b. Determine the common tangents; 
 c. If the corresponding vertices are visible 
 { update vertex V-Graph; 
    if obstacle V-Graph is not updated  
  (update  V-Graph); } 

It has to note here some of the main algorithm’s features. 
First of all, a hierarchical test to reduce the search space is 
used. The processing of non-convex obstacles is difficult, 
especially when their convex hulls are intersected, [16]. 
By reason of this, the second feature is that every non-
convex obstacle is partitioned into convex one. This 
approach is illustrated in Figure 4., which shows the 
principle of partitioning the non-convex polygon ABCDE 
into convex polygons AFE and BCDF. 
 
 
 
 
 
 
 
 

 
 
 

Figure 4. Partitioning of the obstacle 
More detailed description of this method is given in [17]. 
Further it will be supposed that all obstacles are convex. 
The obstacles are sorted in ascending Xmin order using 
standard Quick Sort procedure in time O (log n), where n 
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is the total number of the vertices of both obstacles. With 
this step the following data processing became easier.  
An obstacle is defined to be “interesting” if the following 
conditions are fulfilled: 
 

Xmin ≤ Right , Xmax ≥ Left , 
 

    Ymin ≤ Up ,     Ymax ≥ Down , 
 
Where Right, Left, Up and Down are the Cartesian 
coordinates X and Y of the boundaries corresponding to 
the enveloping rectangle of the treated obstacles, as it is 
shown in Figure 5. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 5. The determination of the vertex V-Graph  
 

III. PATH PLANNING METHOD  
It is trivial to determine the path when the destination 
point is visible from the initial one. In the other hand, the 
given initial point (IP) and destination point (DP) both are 
presented as polygons with a single vertex. The possible 
successors are determined in an analogical way to the 
method presented in [12] and are illustrated in Figure 6. 
 
 
 
 
 

 
 

Figure 6. The determination of possible successors. 
 
It can be seen that only the vertices, which satisfy the 
explicit conditions, described below, are picked out. For 
example, the segment connecting the given point P and 
the treated vertex should be tangent to the obstacle. The 
found successors are marked with   in Figure 6. The 
proposed path planning method is realized as algorithm, 
described as follows: 
1. If DP is visible from IP then exit with path to DP. 

2. Determine possible successors from IP and from DP. 
3. Update vertex V-Graph and obstacle V-Graph by 
adding IP and DP, with the arcs to possible successors, 
like a vertex and like an obstacle correspondingly. 
3. Search obstacle V-Graph for shortest path. 
4. Determine “interesting” obstacles and form a sub-
graph of the vertex V-Graph that contains only vertices of 
the “interesting” obstacles. 
5. Search the determined sub-graph for shortest path from 
IP to DP. 

The IP and DP with their successors are added to the 
determined vertex V-Graph and obstacle V-Graph as a 
vertex and as an obstacle correspondingly. The extended 
graphs are updated and in the first step we search for a 
rough shortest path from IP to the DP through the 
obstacles. We use a modified version of Dijkstra’s 
algorithm involving the triangle rule. By this method we 
select a subset of obstacles (including IP and DP). 
The determination of the “interesting” obstacle in the 
described above path planning algorithm is analogous to 
the approach for determination of the V-Graph. But here 
the bounds of the corresponding rectangles are formed for 
every two adjacent obstacles in the selected subset of 
obstacles, as it is shown in Figure 7. 
 
The obstacles found to be “interesting” are added to the 
selected subset. The next step is to detach from the vertex 
V-Graph a sub-graph, which contains only these vertices 
that belong to the obstacles in the selected subset. Further, 
we search the determined sub-graph to find the minimum-
distance path using a modified version of Dijkstra’s 
algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. The path planning method 
 

IV. AN EXECUTION OF THE PLANNED PATH 
A fuzzy approach to path control of an autonomous 
mobile robot is implemented, which provides robot 
movement round the obstacle on a safe distance, until the 
obstacle falls out of the path towards the goal [18]. The 
control strategies are modelled and represented by if-then 
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fuzzy rules. The mobile robot has received the mission to 
reach a given goal position from given start position 
through the shortest path, which has been obtained by the 
path planning method, presented above. The robot is 
equipped with scanning ultrasonic rangefinder placed on 
its platform. The sensor is capable to measure in a set of 
symmetric fixed positions relatively to the robot’s 
direction, as it is shown in Figure 8. a). The initial heading 
of the robot was directed to the goal. A fixed environment 
was considered. The both technics, path planning method 
and fuzzy approach to path execution control of 
autonomous mobile robot have been experimented by 
computer simulation experiments on standard PC using 
the Fuzzy Logic Toolbox of Matlab. One of the results is 
presented in Figure 8.b). 
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a)                                           b) 

Figure 8. Simulation experiments of the robot movement 
 

V. CONCLUSION 
The purpose of this work was to provide a suitable and 
handy data structure to meet the requirements of path 
planning in an environment with polygonal obstacles. The 
representation of the search space as a visibility graph of 
obstacle vertices with the minimum number of links 
reduces considerably the number of alternatives in 
searching for the shortest path. Using a two-step graph 
search, first in obstacle V-Graph  and second in a sub-
graph of vertex V-Graph  with the minimum number of 
links, greatly reduces the search space. The presented 
method is applicable to path planning in a known 
environment with polygonal obstacles but the proposed 
data structure can be used for operating in an unknown 
environment. The method for path planning in unknown 
or partially known environment and the integration of 
sensor information with the proposed data structure is a 
significant step to the autonomous mobile robots 
navigation. It will be the purpose for further investigations 
and realizations. 
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