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Abstract 
 

The current paper continues the analysis of a completely 
novel method of fluid manipulation technology in micro-
fluidics systems, inspired by nature, namely by the 
mechanisms found in ciliates. More information on this 
subject can be found at http://www.hitech-
projects.com/euprojects/artic/. The paper presents a fast and 
accurate method to model the magnetic behavior of an 
artificial cilium. The method is based on Maxwell equations, 
formulated as integral equations for the magnetization. Also 
this paper consists on assessing magnetic actuation as a 
practical tool for obtaining a consistent one-directional fluid 
flow. The actuation mechanism consists of a bi-directional 
rotating excitation magnetic field. The magnetization 
induced by the magnetic field was calculated in a separate 
routine based on the Integral Nonlinear Equations 
Approach with 1D discretization of wire (cilium). Time 
averaged x-coordinate mass flow rates are computed for 
several cilium configurations resulting.  
 

1. Introduction 
 

The on-going miniaturization in  a variety of scientific 
domains especially biochemistry and medicine requires 
manipulation of smaller and smaller volumes of biological 
fluids such as blood, saliva, urine, or polymer solutions. 
Examples of such applications are micro- channel cooling for 
electronics, inkjet printing for displays and biomedical 
applications, controlled   drug delivery systems and biosensors. 
Also, the n a t u r e  of t h e  m a n i pulation may be quite 
broad: transportation, mixing, sorting, deforming, or rupturing.  
An attractive solution in p a r t i a l  fulfillment of these goals is 
represented by artificial cilia arrays. Cilia are thin hair-like cell 
appendices responsible for many essential biological functions.  
One of the most interesting and useful cilia functionalities is 
propulsion, meaning either self-propulsion of the organism or 
inducing fluid flow around a stationary organism at micron-scale 
dimensions. Theoretical research in this domain has mainly 
been devoted to understanding the biochemical engine driving 
such complex movements and providing valuable insights of 
the interaction between the deformations of the elastic structure 
and the viscous incompressible fluid surrounding it [1, 2, 3, 4]. 
Based on their typical dimensions and physical properties of 

biological fluids we are able to assess that the Reynolds 
number of such flows is of the order of unity or less. In this 
case not only the flow is laminar but it is dominated by 
viscous forces that make it close to a classical Stokes flow. 
On the other hand, the dynamics of such elastic structure lacks 
the inertial term because of the very small characteristic mass. 
The movement of the individual cilia is asymmetric, i.e. a 
deformation cycle consists of an effective stroke and a 
recovery stroke. During the effective stoke the cilium behaves 
like a rigid rod while in the recovery stroke it bends and rolls 
back to the original position so that a resultant fluid transport 
in one direction is induced. Also, cilia operate collectively by 
hydrodynamic interaction that induces mutational coordination, 
a slight phase lag of their movements generating wave-like 
aspect. Such behavior seems to aim at reducing energy 
expenditure per cycle beat. 

Inducing sustainable one-direction flow with artificial cilia has 
several distinctive features comparing to the biological 
counterpart. The main issue is the different way of attaching the 
cilium to the support substrate. Contrary to the upright position of 
the natural cilium, the artificial one was tilted towards horizontal 
plane. The tilt angle may vary between 0 and 10-20 degrees. A 
flow efficiency analysis has showed better performance for an 
asymmetric geometric shape of the cilium associated with a 
harmonic actuation mechanism [5]. In the present paper we are 
proposing to fast and accurate method to model the magnetic 
behavior of the artificial cilium. The movement of the artificial 
cilia can be actively controlled, preferably using a magnetic field 
or an electrical field [6]. In this method, integral equations of the 
electrical and magnetic field are described. Rest of paper consists 
of investigating the main fluid flow features of an array of 
artificial cilia in a semi-infinite domain. As in the previous case 
[5], the actuation mechanism consists of a bidirectional rotating 
excitation magnetic field that interacts with the magnetized cilium. 
Velocity fields and lateral boundaries mass flow rates are 
computed for several cilia array configurations. 

 
2. Physical model 

 
The cilium is modeled as an inextensible cylindrical filament 

of length L and circular cross section of radius a. The 
slenderness of the cilium is defined by ratio � = a / L «1. The 
center line of the filament is parameterized by its arc-length s ( 0 
� s � L ). The null value corresponds to the anchor point where 
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the cilium is attached to the substrate surface; s = L at the distal 
end. Two coordinate systems (CS) are defined, one fixed at the 
anchor and a Lagrangeean one attached to an arbitrary point on 
the cilium. Due to the axial symmetry in the magnetic field 
density we shall restrict our analysis to planar case. Hence, the 
coordinate systems are (x,y), global, and (T,N), local. The angle 
between the tangential direction in local CS and the x axis in 
global CS for each cilium in the array of K cilia is denoted �(k) , 
k = 1,….,K, being a function of arc-length, time and �(k) = �(k) (s 
, t ). The parameterized equations of the center line points are 
given by 
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where x0

(k) stands for the abscissa origin of each cilium of the 
array. The driving engine is represented by the magnetic torque 
C(k) = C(k) (s , t). The response from the elastic structure is 
denoted by the shear force F(k) = F(k) (s , t) and ß(k) = ß(k) (s , t) 
are the viscous forces per unit length (drag forces) exerted by 
the surrounding fluid. Here and in the following the bold 
typeface denotes vector quantities. The velocity of the current 
cross section s of the arbitrary cilium (k) in the array is denoted 
by V(k)= V(k) (s , t). From the mechanical point of view, we 
consider that each cilium is in mechanical equilibrium at every 
moment of time. 

 
2.1. Equations of motion. 

 
Considering a finite volume of an arbitrary cilium along the 

arc-length ds the balance of forces and moments in the local 
Frenet coordinate system reads: 
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where subscripts N, T means normal and tangential components 
and s, t denote arclength and time derivation. smC ,  is the 

derivative of the magnetic torque. The drag force components 
are specified through linear dependence on velocity components 
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where )(k
NG  and )(k

TG are the local CS components of the 
velocity induced at current location by the flow field generated 
by superposition of Stokes equation fundamental solutions and 
their image systems [2]. The normal and tangential specific drag 
coefficients are denoted by NC  and TC . Time differentiation 
of geometrical relations (1) leads to kinematic conditions: 
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3. Integral equations method 
 

Let us consider the cilium as a linear magnetic wire with a 
rectangular cross section placed in a uniform magnetic field 
(Fig. 1). Using a magnetic field computation, the magnetic flux 
density, torque and force in the cilium are obtained.  

 

 
 

Fig. 1. Computation domain of the cilium 
 

Starting from the Maxwell equations, the integral equation 
for magnetization is: 
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where 0H  is the external magnetic field. 

The cilium is divided in n segments (1D finite elements), and 
each parallelepiped element is uniformly magnetised along the 
cilium direction (Fig. 2). Using this assumption, (1) becomes a 
linear system of n equations [7]. 
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Fig. 2. Discretization of the cilium for the magnetic field 
computation 

 
(Fig. 3) shows the magnetic flux density along a right cilium, 

which is discretized in 10 finite elements. The cilium (μr = 100) 
is situated into a uniform magnetic field (B0 =10 mT), oriented 
along the cilium. The cilium has parallelepiped geometry 
(100x20x2μm). 
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Fig. 3. Magnetic flux density along a straight cilium situated in a 
uniform magnetic field 

 
The details of this method and more numerical results for 

different test cases of the cilium will be presented in the full 
paper. 

 
4. Numerical approach 

 
The derivative of magnetic torque used in the equilibrium 

condition (4) provides the active force denoted by 
 

ds
dCS m=    (14) 

 
 

After proper non-dimensionalization a system of integro-
differential equations has to be solved in order to account for the 
fluid structure interaction [2, 5]. Based on an adequate linear 
discretization of the arc-length of each wire (31 segments, for 
example) and using a Crank-Nicholson finite difference scheme, 
the system is solved for the time-depending parameterization of 

the array of artificial cilia ),()()( tskk αα = . The same 
boundary as in [5] is imposed. As for initial conditions, we have 
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a typical discretization of the fluid domain surrounding the 
cilium using a rectangular grid is depicted in (Fig. 4). 
 

 
 

Fig. 4. Geometry and grid. 
 
The velocity field V (v x ,v y) in this domain is calculated based 
on the singular solution of Stokes equation (Stokeslet) for all 
nodes of the grid ),( gg yx  
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Using this velocity field we are able to determine the x-
coordinate mass flow rate generated by the magnetic actuation 
of the cilium in every section ctx =  of the domain. 
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where wρ is the density of water. 
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5. Results 
 

A computer code has been devised in order to perform the 
necessary simulations. All external inputs and other parameters 
range of variation have been imposed such that to ensure 
mechanical and geometrical stability. The external parameters 
are presented in Table 1. A first investigation was performed in 
order to assess the flow field pattern. Snapshots of the 
streamlines distribution have been plotted 
 

 

 

 
 

Fig. 5. Five cilia array streamlines distribution. Spacing 0.21. 
 
in (Fig. 5) at different moments of time for a 5 cilia array 
configuration. 
 

Table 1. External parameters 
 

Parameter L a q f  
Value 100 1 10 25 0.001
Unit m m m Hz Ns/m2

Parameter E Bx=By w 0
Value 106 0.01 1000 4  ·10-7

Unit Pa T kg/m3 H/m
 

As a general trend, fluid flows from right to left over one 40 
ms cycle, but there are instants when a flow reversal is observed. 
On the other hand there is some amount of fluid that crosses the 
top boundary of domain. Also, a consistent vortex is noticeable 
at several moments over the cycle covering the central area 
swept by cilia. We conclude that, in the semi-infinite domain, an 
array of cilia can work both as a tool for fluid transportation 

along x-axis and as a tool for mixing transportation along x-axis 
and as a tool for mixing. In order to distinguish which feature is 

 

 
 
Fig. 6. Averaged x-mass flow rate for different configurations. 

 
prevailing on average and in what amount, we can define the 
transportation efficiency as 
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where superscripts L and R stand for left and right boundaries of 
the computational domain. The time averaged x-mass flow rate 
versus x-coordinate for several configurations and minimum 
spacing is plotted in (Fig. 6) The minimum spacing is 
determined such that mechanical and geometrical equilibrium is 
ensured. The maximum mass boundary is attained for the 
minimum spacing corresponding to the configurations 
considered is illustrated in (Fig. 7). The efficiency x e depends 
on the spacing among cilia àx / L and the number of cilia in 
array. 
 

 
 

Fig. 7. Maximum x-mass flow rate. 
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6. Conclusions 
 

Rotating magnetic field is a viable possibility for actuating a 
battery of cilia in order to produce fluid transportation even in a 
semi infinite domain. We expect better performance in a 
confined geometry. Beside number, cilia spacing is a crucial 
parameter that influences mass flow rate. Odd kinematic 
behavior is noticed for the first cilium in the array closest to the 
inlet boundary (on a time averaged basis). 
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