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Abstract

In this paper, continuous genetic algorithms (CGAs) along 

with distance algorithm are used to solve the path planning 

generating problem for collisions-free robot manipulators. 

For the distance algorithm, built upon especial models for 

obstacles and manipulator link, a spherical and cylispherical 

models were chosen for obstacles and links respectively. 

Based on the distance between the obstacle and the link, a 

robot collisions-free motion was generated. In order to 

obtain the desired path, the CGAs were employed. 

Simulation results show that the combined distance 

algorithm and CGAs provide the robot with the desired path 

along with obstacle avoidance. This algorithm has been 

applied to the PUMA 560. 

1. Introduction 

Over the last decades, robot manipulators have received 

much of the research community attention due to their wide 

applications in industry for many tasks [1,2]. Obstacle 

avoidance is one of the key technology areas that must be 

developed in order to allow the application of robotics to 

continue to grow and for robots to operate effectively in 

cluttered environments. 

Different approaches have been used to plan manipulator 

motion. For the optimum motion planning, it is well know that it 

is vital in industry since it improves the productivity and the 

precision of robot systems [2,3]. The precision of the process 

(quality) may be improved at the programming level by defining 

the Cartesian path with more path points and employing a more 

sophisticated path planning method, while the production rate 

(productivity) is improved by incorporating an efficient 

trajectory generation algorithm which results in time-optimal 

trajectories and correspondingly increases the production rate. 

A great deal of work has been devoted to solve the motion 

planning problem, as extensively seen in [2,4]. However, many 

weaknesses have been observed as investigations took a place 

[5]. Genetic algorithms, on the other hand, have received a 

considerable attention in robotics [6,7,8]. However, generally 

they could not fully exploit the abilities of GAs and has the 

different drawbacks [3]. To overcome such problems, we used 

Continuous Genetic Algorithms (CGAs), which were developed 

by Abo-Hummour [9] as an efficient method for the solution of 

optimization problems in which the parameters to be optimized 

are correlated with each other or the smoothness of the solution 

curve must be achieved. CGAs have been successfully applied 

in the motion planning of robot manipulators [2] and in the 

numerical solution of two-point boundary value problems [10]. 

Also, they have been applied in the solution of fuzzy differential 

equations [11]. For more details on the CGAs including their 

justification for use, conditions on smoothness of the functions 

used in the algorithms, etc., please refer to [2,10].  

In this paper, we extend the work of [10] to solve the path 

generation problem in the case of stationary obstacles in the 

workspace. Geometric representations of the obstacles and 

robot-obstacle distance measurements are incorporated in the 

CGA in order to generate an accurate, collision-free path for the 

manipulator.

2. Modeling and Distance Calculation 

There has been a lot of obstacle avoidance research that uses 

simple, often smooth modeling primitives. Perry and Tesar [12] 

chose to use three different obstacle models. Wherever it was 

practical, simple shapes (spheres or cylispheres) were used to 

model obstacles. More complex shapes were modeled using 

superquadric surfaces. In this paper, manipulators are modeled 

using cylispheres (i.e. cylinders with hemispherical ends) and 

obstacles are modeled using spheres. The sphere, as shown in 

Figure 1, is the simplest shape that can be used to model a 3D 

object. The symmetric properties of a sphere eliminate all 

orientation issues. Two pieces of information completely 

specify the location of a sphere. These are the center point and 

the radius. 

Fig. 1. Sphere model [4].

To successfully determine the minimum distance between a 

manipulator and an obstacle, one must model the manipulator as 

well as the obstacle. The cylisphere, as shown in Figure 2, is a 

natural extension of a sphere. It is a cylinder with hemispheres 

at each end, and is symmetrical about its ‘long’ axis. Three 

pieces of information completely specify the location and 

orientation of a cylisphere. These are the two endpoints and the 

radius.

Fig. 2. Cylisphere model [4]. 
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The locations of the cylispheres used to model a manipulator 

are determined based on the forward kinematics for that 

manipulator. The forward kinematics provides transformation 

matrices from predetermined points on the manipulator to the 

global coordinate frame. The endpoints for each cylisphere have 

a fixed offset from one of these predetermined points. 

Therefore, the endpoints of the cylispheres move as the 

transformation matrices change due to manipulator motion. A 

more detailed description is found in [13]. 

For obstacle avoidance, it is extremely important to always 

know the minimum distance between a manipulator and all the 

surrounding obstacles. In their research, Perry and Tesar [12] 

developed functions for determining minimum distances 

between a cylisphere and a sphere. Figure 3 shows an 

illustrative graph used to derive the minimum distance between 

a cylisphere and a sphere. In this figure, Line 1 is a cylisphere 

with a zero radius, and point P3 is a sphere with a zero radius. 

The shortest line, Line 2, between Line 1 and point P3 is 

perpendicular to Line 1. Point P4 is the only point on both lines. 

The location of point P4 can be found by representing both lines 

parametrically and then solving for the location of point P4 in 

terms of the location of the other three points: P1, P2, and P3.  As 

a result, it can be easily shown that the minimum distance 

between the cylisphere and the sphere is  
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For a cylisphere and a sphere that both have a non-zero 

radius, the minimum distance is calculated as discussed above, 

then the radii of both cylisphere and sphere (RL and RO, 

respectively) are subtracted from the zero-radius minimum 

distance to give the true minimum distance, , as shown in 

the following equation
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Fig. 3. Distance derivation between the sphere and cylisphere.

3. Formulation of the Path Generation Problem 

Let us consider a robot manipulator with M degrees of 

mobility and N task space coordinates. Assume that a desired 

Cartesian path, Pdc, is given, and the problem is to find the set of 

joint paths, P$, such that the accumulative deviation between the 

generated Cartesian path, Pgc, and the desired Cartesian path, 

Pdc, is minimum. To do that, the desired geometric Cartesian 

path, in our approach, is sampled. The number of sampling 

points (path points or knots) is specified by the programmer and 

depends on the desired accuracy of the generated path. The 

accuracy of the generated path increases as the number of path 

points increases. However, a limiting case for this number is the 

path update rate; that is, we can increase the number of path 

points until we reach the limit using the following equation 

urtK PTN #                         (3) 

where Nk is the number of knots along the geometric path, Tt is 

the total traveling time from the starting configuration to the 

final configuration along the desired path, and Pur is the path 

update rate of the manipulator. 

After sampling the geometric path at the path update rate for 

best accuracy, the generated values of the joint angles using the 

continuous genetic algorithm, P$, are used by the direct 

(forward) kinematics model of the robot to obtain the generated 

Cartesian path given by 

),( $PFP Kgc #                 (4) 

where Fk represents the robot forward kinematics model. 

The deviation between the desired Cartesian path, Pdc, and 

the generated Cartesian path, Pgc, at some general path point, i,

is given as 
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where the accumulative deviation between the two paths is, 

therefore, given by 
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The fitness function developed, a nonnegative measure of the 

quality of individuals, is defined as [14] 
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where P is the penalty function introduced so that the fitness of 

the solution depends on both its closeness to the desired path as 

well as the distance from the obstacles. This penalty is given by 
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where & is a defined threshold,  is the least value of 

 encountered throughout the path, 

AllDmin

minD minD is the average of 

all minimum distances through the path,  is the number of 

collisions, and  is the number of steps. The optimal solution 
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of the problem is obtained when the deviation function, E,

approaches zero, and the penalty function, P, also approaches 

zero. Correspondingly, the fitness function, F, approaches unity. 

As a result, the path generation problem is formulated as 

minimization problems of the deviation and penalty functions or 

as a maximization problem of the fitness function. 

4. Continuous Genetic Algorithms (CGAs) 

Genetic Algorithms (GAs) were developed by John Holland 

[14] and are based on principles inspired from the genetic and 

evolution mechanisms observed in natural systems. Their basic 

principle is the maintenance of a population of solutions to the 

problem that evolves towards the global optimum. CGAs, an 

extension to the CA, use smooth operators and avoid sharp 

jumps in the parameter value. CGAs have the same steps as in a 

typical genetic algorithm; the steps of the continuous genetic 

algorithm used in this paper are as follows (for more details, 

please refer to [14]): 

1) Initialization: Randomly generating an initial population 

comprising Np smooth individuals. Two smooth functions 

are proposed for initializing the population: the modified 

Gaussian function and the tangent hyperbolic function [14]. 

The modified Gaussian function is given as follows: 
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while the tangent hyperbolic function is governed by the 

equation:
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for all  and Mh 661 kNi 661 , where Pj(h,i) is the ith

path point angle of the hth joint for the jth parent, !initial(h)

is the initial angle of the hth joint at the initial 

configuration of the end-effector, !final(h) is the final angle 

of the hth joint at the final configuration of the end-

effector, Nk is the total number of knots (sampling points) 

across the Cartesian path, A represents a random number 

within the range [-3R(h), 3R(h)], where 

)()()( hhhR initialfinal $$ !# , / is a random number 

within the range [1, Nk], and .  is a random number within 

the range [1, Nk /6]. The difference between these two 

functions lies in the fact that the modified Gaussian 

function results in an overshoot or an under shoot, while 

the tangent hyperbolic function does not result in either. 

For both functions, / specifies the center of the function, 

while . specifies its degree of dispersion. The two 

initialization functions are shown in Figure 4. 

2) Evaluation: A nonnegative measure of quality (fitness), 

used to reflect the degree of goodness of the individual, is 

calculated for each individual in the population as given in 

140

(7) which is based on (8) and (9) as well.
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Fig. 4. Initialization functions. 

3) Selection: In t ndividuals

receive more copies in subsequent generations so that their 

4)

rmation is shared among the population. It 

),()),(1( ihPihW k!

he selection process, the best i

desirable traits may be passed onto their offspring. This 

step insures that the overall quality of the population 

increases from one generation to the next. Due to the 

probabilistic nature of selection, individuals can merely be 

expected, but not guaranteed, to reproduce in proportion to 

their fitness.

Crossover: Crossover provides the means by which 

valuable info

combines the features of two parent individuals, i.e.,  j and 

k, to form two children individuals, i.e., L and L+1, that 

may have new patterns compared to those of their parents, 

and plays a central role in GAs. The crossover process in 

our algorithm is expressed as 
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for all h M6 61 Pj and Pk
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ce. Generally, over a period of several 
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 and kNi 661 , where 

represen ents  the mating pool, Ct the two par  chosen from L

and CL+1

crossover process, W represents the crossover weighting 

function within the range [0, 1], / is a random number 

within the range [1, N

 are the two children obtained through the 

k], and ! is a random number within 

the range [1, Nv /6]. 

Mutation: Mutation is often introduced to guard against 

premature convergen

generations, the gene pool tends to become more and more 

homogeneous. The purpose of mutation is to introduce 

occasional perturbations to the parameters to maintain 

genetic diversity within the population. The mutation 

process in our algorithm is governed by: 
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where Cj represents the jth child produced through the 

crossover process, Cj
m is the mutated jth child, M is the

 (16) 
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Gaussian mutation function, d represents a random number 

within the range [-range(h), range(h)], with range(h) 

representing the difference between the minimum and 

maximum values of the child Cj, and / and . are as given 

in the crossover process. 

In the mutation process, each individual child undergoes 

mutation with probability P . However, for each child that 

6)

erators to the 

7)

rgence criteria 

B

use oid sharp jumps in the parameter 

va

imulation Results 

As an illustr orithm will be 

implemented for the following desired path and obstacle 

inf

mi

should undergo a mutation process, individual joints are 

mutated with probability Pmj. If the Pmi value is set to 0.5 

and the Pmj value is set to 0.5, then one child out of two 

children is likely to be mutated, and within that child, M/2

of the joints’ paths are likely to be mutated. 

Replacement: After generating the offspring's population 

through the application of the genetic op

parents` population, the parents` population is totally or 

partially replaced by the offspring's population. This 

completes the “life cycle” of the population.

Termination: The GA is terminated when some 

convergence criterion is met. Possible conve

are: the fitness of the best individual so far found exceeds a 

threshold value, the maximum number of generations is 

reached, or the progress limit (the improvement in the 

fitness value of the best member of the population over a 

specified number of generations being less than some 

predefined threshold) is reached. After terminating the 

algorithm, the optimal solution of the problem is the best 

individual so far found.

ased on the Continuous Genetic Algorithms CGAs, which 

smooth operators and av

lue, the fitness function will be used for the path planning of 

the robot manipulator.  

5.  S
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In addition to that, there are two obstacles in space (x, y, z) at 

the following locations: Obstacle_1 = (-0.2, 0.46, 0)cm; 

 is assumed 

to

UMA

ma

av

sol

Obstacle_2 = (0.1, -0.57, 0)cm. The radii of the obstacles are 5 

cm for Obstacle_1 and 7 cm for Obstacle–2.  

The algorithm is used to solve the path generation problem 

of the PUMA manipulators, in which the link radius

be zero. For this case, N=3, M=3, and the forward kinematics 

model is given in [15]. For this manipulator, the z-coordinates 

are kept at zero in the first path but have a value in the second. 

This degree of freedom is not taken into consideration for the 

planar case. The number of path points, Nk, is 100 points. 

In the simulation results, Figure 5 and Figure 6 show the first 

and second feasible solutions, respectively, for the P

nipulator in the given path. It can be clearly seen that the 

solutions are obstacle free. Figure 7 shows the evolutionary 

progress plots of the best-fitness individual. As can be seen, the 

algorithm takes about 80 generations to reach a near-optimal 

solution with a fitness value of 0.8, while it takes about 170 

generations to reach the optimal solution from the near-optimal 

one. This shows that most of the computational burden of the 

algorithm is spent in the fine-tuning stage whereas the near-

optimal solutions are found very early in the course of the CGA. 

Figure 8 shows the deviations, in the generated path obtained 

using the CGA, from the desired ones. It is clear that the 

erage deviation does not exceed 0.0007m for the PUMA 

configuration, which proves the effectiveness of the CGA in 

generating paths with minimum deviations from the desired 

ones. In addition to that, the generated path does not pass 

through obstacle positions and thus it is a collision-free type. 

The results shown in Figures 7 and 8 relate to the given path 

as given in Equation (15), which has no collisions for all the 

utions. However, the chosen solution will be determined 

based on the maximum fitness as well as the penalty function. 

(a)

(b)

Fig. 5. First feasible solution.

6. Conclusion 

The CGAs along w  approach have been 

applied as a path planner for av ding stationary obstacles in the 

ma

ith the geometry

oi

nipulator’s workspace. For avoiding obstacles using the 

geometry approach, it is important to always know the 

minimum distance between the manipulator links and all the 

surrounding obstacles. This will include modeling of obstacles 

and manipulator’s links in the workspace where obstacles are 

modeled as spheres, while links are modeled as cylisphere. The 

locations of the cylispheres, used to model a manipulator’s 

links, are determined based on the forward kinematics for that 

manipulator. As a result of the presented research, it was found 

that the genetic algorithms can be used as an efficient tool in 

robotics application, which in our case has two aims; first, 

obtaining a path with a minimum deviation from the desired 

one; second, in the case of finding several paths, these paths will 

be reduced when finding obstacle(s) in their ways. 
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(a)

(b)

Fig. 6. Second feasible solution.

Fig. 7. Evolutionary progress for the best individual 

Fig. 8. Path point deviations. 

of

no.

[5] K.S. Fu, R.C. otics: control, 

sensing, vision, and intelligence", McGraw-Hill, New 

York, 1987. 

Part II 

[7] 

9, 2007. 

l

[9] 

plications in the motion planning 

akistan, 2002. 

erical Methods 

[11] 

. thesis, University of Jordan, Amman, 

[12] 

thesis, 

[13] 

[14]

of Robot Manipulators Using 

[15]

7. References 

[1]  C. Belta and V. Kumar, "Motion Generation for 

Formation of Robots: a Geometric Approach", Robotics

and Automation, vol. 18, no. 3, pp. 47-61, 2001.

[2]  Z.S. Abo-Hammour, P. Ji, X-J. Liu, A. S. Morris, C-W.

Park, N-C. Park, B. Subudhi, A.A. Tseng, J. Wang, H. 

Wu, H-S. Yang, and S. Yildirim, "Robot Manipulators: 

New Research", Nova Science Publishers, Inc. New York,

2005.

[3] K. Sugihara, "Genetic algorithms for adaptive planning 

path and trajectory of a mobile robot in 2D terrains", 

IEICE Trans. Inf. & Syst., E82-D(1), pp. 309-317, 1999. 

[4]  R.P. Paul, "Manipulator Cartesian path control", IEEE

Transactions on Systems, Man and Cybernetics, vol. 9, 

11, pp. 702-711, 1979. 

 Gonzalez, C.S.G. Lee, "Rob

[6] G. Zhang, L. Gao, X. Li, and P. Li, "Variable 

Neighborhood Genetic Algorithm for the Flexible Job 

Shop Scheduling Problems", ICIRA 2008,

Springer-Verlag, Berlin Heidelberg, 2008. 

O. Castillo, L. Trujillo, P. Melin,  "Multiple objective 

genetic algorithms for path-planning optimization in 

autonomous mobile robots", Soft Computing, vol. 11, pp. 

269–27

[8] F. Gutierrez, J. Atkinson, "Autonomous Robotics Self-

Localization Using Genetic Algorithms", (ICTAI '09) 21st

International Conference on Tools with Artificia

Intelligence, Newark, New Jersey, Nov. 2-5, 2009. 

Z.S. Abo-Hammour, "Advanced continuous genetic 

algorithms and their ap

of robotic manipulators and the numerical solution of 

boundary value problems", Ph.D. Thesis, Quiad-Azam 

University, P

[10] Z.S. Abo-Hammour, M. Yusuf, N.M. Mirza, S.M. Mirza, 

M. Arif, "Numerical solution of second-order, two-point 

boundary value problems using continuous genetic 

algorithms", International Journal for Num

in engineering, vol. 61, pp. 1219-1242, 2004. 

O.M. Abo-Arqoub, "Numerical Solution of Fuzzy 

Differential Equations Using Continuous Genetic 

Algorithms", Ph.D

Jordan, 2008. 

B.R. Perry and D. Tesar, "The Development of Distance 

Functions and Their Higher-Order Properties for Artificial 

Potential Field-Based Obstacle Avoidance", M.S. 

The University of Texas at Austin, Austin, TS,  1995.

J. Craig, "Introduction to Robotics: Mechanics and 

Control", Addison-Wesley, New York , 1989. 

Z.S. Abo-Hammour, N. Mirza, S. Mirza, M. Arif, 

"Cartesian Path Generation 

Continuous Genetic Algorithms", Robotics and 

Autonomous Systems, vol. 41, no. 40,  pp. 179-223, 2002. 

K.S. Fu and R.C. Gonzalez, C.S.G. Lee, "Robotics: 

Control, Sensing, Vision, and Intelligence", McGraw-Hill, 

New York, 1987. 

ELECO 2011 7th International Conference on Electrical and Electronics Engineering, 1-4 December, Bursa, TURKEY

408


