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Abstract
In military and defense communication systems, frequency
hopping technique is considered one of the most effective elec-
tronic protective measurements to avoid jamming. Frequency
hopping is performed by rapidly changing carrier frequencies
during the communication. With the rapid growth of frequency
hopped wireless networks, frequency detection and jamming
has become a challenging task. In this paper, we propose a
novel algorithm for frequency detection in a frequency hopping
system, by using bandpass sampling technique. Bandpass sam-
pling downsamples the signal below the Nyquist frequency as
a result of which, copies of signal are received at frequencies
around carrier frequency which are integral multiple of the sam-
pling frequency. The resulting copies are then used to detect the
carrier frequency. The performance of the proposed algorithm
is analyzed in Stanford University Interim (SUI) channel mod-
els. The proposed technique provides fast frequency detection
with low probability of error and low computational complexity.

1. Introduction
Frequency-hopping is a technique to transmit radio signals

by switching the carrier frequency rapidly among different fre-
quencies. This is sometimes done by using a pseudo-random
sequence, which is known to both the transmitter and receiver.
The reason to introduce frequency hopping was to counter un-
intentional interferences like multiple access interferences and
to avoid frequency jamming as it was considered harder to find
the hopping characteristics. Military radios use cryptographic
techniques for the generation of channel sequence. It is con-
trolled by secret transmission security key, which is shared by
the sender and receiver in advance.

In today’s world, frequency hopping (FH) is no more a
complete protective technique against jamming. Different al-
gorithms for the frequency de-hopping have been developed.
The efficiency of these algorithms is computed on the basis of
high measurement resolution, large dynamic range and fast fre-
quency detection. Hence, frequency identification plays a key
role in frequency jamming. A process to detect and character-
ize a frequency hopping signal is known as frequency identifi-
cation. Thus research on effective estimation of FH parameters
is a challenging task. Frequency Identification is a key step of
frequency de-hopping, once a carrier frequency is identified and
the hopping pattern is traced, it is no more a big deal to block
or jam the frequency.

Different algorithms and methods for frequency analysis
are present in the literature. Some of them were based on initial
random guesses or reference signals, but some extra bandwidth
is required for reference signals. So, to keep the bandwidth
efficiency high, no reference signal is used and blind estima-
tion is made. Generally, maximum likelihood based algorithms

perform well but ML-estimation faces difficult non-linear nu-
merical problem. So, iterative methods are followed because
direct greedy search method has large computational cost. A
reversible jump Markov chain Monte Carlo based algorithm for
the identification of frequency is proposed in [2]. It uses two
hop model with unknown dwell time. For a frequency hopped
signal, original Bayesian model is formulated. However, it re-
quires the advance knowledge of hyper parameter which is not
always possible.

In [3], expectation maximization algorithm and an antenna
array for the estimation and blind hop timing of multiple FH sig-
nals are used, with possible mismatch of bandwidth. The initial-
ization of this algorithm was given by data spectrogram. It was
considered to perform better even at low SNR but it is computa-
tionally very extensive. The method of matching pursuit is fol-
lowed in [4] for frequency detection. In this method, the signal
is decomposed into linear expansion of time-frequency compo-
nents. For practical implementation of this algorithm, selection
of discrete subset out of possible dictionary functions was re-
quired. A joint frequency and hop-time estimation method is
proposed in [5]. It is based on dynamic programming coupled
with 2-D harmonic retrieval by using antenna arrays. It works
even with unknown hop rates, asynchronous environment.

A blind maximum likelihood based iterative algorithm for
the estimation of frequency is proposed in [6], by using two hop
model. The first order Taylor expansion was used as approxi-
mation and for reduction of computational complexity. How-
ever, the initial estimates were required to start the iterations
and method to obtain those estimates was not discussed by au-
thors. It is indicated in [3] that this approach would not guaran-
tee the frequency estimation. It would propose more than one
solution hence the problem of convergence to correct solution
would raise. Another blind estimation scheme for assessment
of frequency and estimation of transition time without utilizing
reference indicators is proposed in [7]. The scheme is robust
as it can avoid unbalanced sampling block problem which was
faced in previous maximum ML-based schemes, which causes
failures in estimates of frequency. An efficient method for fre-
quency detection is given in [8] that can converge to global
maximum without any requirement of initial guesses. It was
based on divide and conquer’ approach. Iterative disassem-
ble and assemble (IDNA) algorithm was proposed to show a
unique global maximum for proposed objective function. This
scheme disassembles a higher order objective function polyno-
mial into several simple monomial functions. The solutions to
those monomial functions are computed iteratively and then as-
sembled to get final result.

Time frequency analysis was considered to be a powerful
tool for the analysis of signals with time-varying content. Fre-
quency Hopping signal is a non-stationary signal, whose param-
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eters can be obtained by this method. In this technique a signal
is being studied in both time and frequency domain simulta-
neously [9]. An Algorithm was introduced in [10] to estimate
the signal’s hopping characteristics named Winger-Ville distri-
bution (WVD). This distribution in particular was supposed to
be efficient for the estimation of FH signals. But In multi-
component signals, the frequencies change non-linearly along
time axis. So WVD leaded to serious cross-term interference. A
Smoothed Pseudo Winger Ville Distribution is proposed in [11]
to get fewer interference terms and high resolution. Hence lo-
calization of frequency hopping signal components is improved.
The proposed method does not assume any initial value for hop-
ping frequency, hopping duration or synchronization. The paper
emphasizes on joint estimation of signal parameters including
the modulation type as well. By introducing the first and sec-
ond moments of SPWVD, estimation of hopping frequencies,
hopping sequence and hopping rate is done. The method basi-
cally includes two main steps. In first step by utilizing time fre-
quency estimation, joint signal parameters are estimated which
include hopping frequency, hopping rate and hopping sequence.
In second step maximum likelihood (ML) method is adopted to
recognize MSFK modulation type. So, for frequency hopping
signal parameters we used reassigned SPWVD within Cohen’s
class of time-frequency distribution. For recognition of MFSK
and modulation type, ML method was used by recognizing the
likelihood function.

This paper proposes a novel scheme for the detection of the
frequencies in a frequency hopped system, by using band-pass
sampling technique. Bandpass sampling downsamples the sig-
nal below the Nyquist frequency as a result of which, copies of
signal are received at fc ± n ∗ fs, where fc is the carrier fre-
quency, fs is the sampling frequency and n = 0, 1, 2, 3, .....
The resulting copies are then used to detect the carrier fre-
quency. It provides fast frequency detection with low proba-
bility of error and low computational complexity.

2. Bandpass Sampling
According to the Nyquist criteria, the reconstruction of

original signal is possible if the sampling frequency of the sig-
nal is greater than or equal to twice the maximum frequency in
the signal spectrum [12].

fs ≥ 2fH (1)

where, fs is the Nyquist rate and fH is the maximum frequency
of the signal. Bandpass sampling allows the band limited signal
to be sampled at a rate below the baseband Nyquist rate, and
still allow the signal reconstruction.

The bandwidth B can be defined as

B = fH − fL (2)

According to the bandpass sampling theory, the sampling rate
should be greater than twice analog bandwidth B.

fs > 2B (3)

Bandpass sampling allows us to reduce the sampling rate signif-
icantly and still avoid aliasing. To achieve this alias free spec-
trum, certain limits have to be applied on fs, which are given
as

2fH
n

≤ fs ≤ 2fL
n− 1

(4)

Where,

1 ≤ n ≤ fH
B

(5)

 

Figure 1. Aliasing and alias free zonesLet us consider a band limited signal with carrier frequency, �� = ����� , and bandwidth,      

B = 5MHz 

 

Figure 4:  Band-pass Signal Spectrum    

 

We can see that 

�� = �� +
�
�� 				Equation 7 

And  

�� = �� −
�
�� 			Equation 8 

So, ��=22.5MHz and ��=17.5MHz 

To fulfill the nyquist criteria  

�� ≥2*��=45MHz 

And to fulfill Band-pass criteria 

�� ≥2*B=10MHz 

Let us now set the sampling frequency �� = ��=17.5MHz which fulfills Equation 3. The 

resulting Spectrum is 

Figure 2. An Example Band-pass Signal Spectrum

So, for different values of n, we get different ranges of possi-
ble sampling frequencies fs. The acceptable and unacceptable
sets of sampling frequencies are shown in the figure 1. Figure
1 clearly shows that the allowable sampling frequencies lie be-
tween the shaded regions. So, the signals existing in these re-
gions will be recovered back without distortion/aliasing.

After downsampling the received signal, the copies of orig-
inal signal are generated at

fnew = fc ± (n ∗ fs) (6)

Where n is a positive integer. The copies will be received at
fc+fs, fc−fs, fc+2fs, fc−2fs and so on. Let us consider a
band-limited signal with carrier frequency, fc = 20MHz, and
bandwidth, B = 5MHz, as shown in figure 2. We can see that

fH = fc +
B

2
= 22.5MHz

and

fL = fc −
B

2
= 17.5MHz

To fulfill the Nyquist criteria, we must choose

fs ≥ 2 ∗ fH = 45MHz

and to fulfill Band-pass sampling criteria,

fs ≥ 2 ∗B = 10MHz

is sufficient. Let us now set the sampling frequency fs = fL =
17.5MHz, which fulfills 3 and 4. The resulting Spectrum is
shown in figure 3. Hence, we can still get alias free results
without fulfilling Nyquist criteria.
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Figure 5:  Signal spectrum with sampling rate fs=17.5MHz    

So, the original spectral components are still at the same position ± �� and their replicas are 

located at �� ± ��  and −�� ± ��, Hence we can get alias free results without fulfilling nyquist 

criteria. 

By using Equation 5, we can find the value of “n” i.e 

 1 ≤n≤ 4.5   

but n is a positive integer so   

1 ≤n≤ 4 

 Computing ��	by using Equation 4 

 

 

n=1     ����� ≤ �� ≤ ���� 

n=2     ��. ���� ≤ �� ≤ ����� 

n=3     ����� ≤ �� ≤ ��. ���� 

n=4     ��.����� ≤ �� ≤ ��. ����� 

 

Figure 3. Signal spectrum with sampling rate fs=17.5MHz

3. Proposed Algorithm
3.1. Computation of New Sampling Frequency

The first step of the proposed frequency identification algo-
rithm is the computation of sampling frequency. The received
signal is then required to be downsampled using the computed
sampling frequency. Let us define,

flower =
2fH
n

and
fupper =

2fL
n− 1

So that, the allowable range of sampling frequencies will be

flower ≤ fs ≤ fupper (7)

The problem is that the computation of flower and fupper re-
quires fL and fH , which require fc and B to be known. The
bandwidth B for narrowband frequency hopping waveforms is
usually known, but fc is the unknown parameter to be identified.
As a solution to this problem, by changing different carrier fre-
quencies, bandpass theory was applied and sets of possible sam-
pling frequencies were computed. Those frequency sets were
then keenly observed and some common sampling frequencies
were selected. The finally selected sampling frequencies are 6
MHz, 8 MHz and 10 MHz. These frequencies are then kept
fixed for further research.

3.2. Downsampling

The received signal is then downsampled on the fixed se-
lected frequencies. The downsampled signal corresponding to
each selected frequency is analyzed in frequency domain. Mul-
tiple copies of the signal are created on fc ± (n ∗ fs).

3.3. Finding fc

To identify the current hop frequency fc, the location of
peak in the magnitude frequency response of the downsampled
signal is found. Let this frequency be fpeak. Once fpeak is
known, the hop frequency f ′c for the first sampling frequency
can be found by reverse of 6.

f ′c = fpeak ± (n ∗ fs) (8)

This process of finding f ′c is repeated for all the three downsam-
pled signals. Their results are finally compared with each other
and the common frequency is considered as the detected carrier
frequency.

3.4. Finding Hop Time

The detection time of the proposed algorithm is given as

Thop =
Nd

fs,min
(9)
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Figure 4. Performance comparison of the proposed algorithm
with some existing techniques by using 3840 samples for detec-
tion

where Nd is the total number of samples used for detection and
fs,min is the minimum sampling frequency used for downsam-
pling.

4. Simulation results
In this section, we present the simulation results of the pro-

posed algorithm. By keeping the total number of samples fixed
at 3840, performance of proposed scheme is compared with
Maximum Likelihood Based detection [6] and Fu’s blind itera-
tive detection [7]. The comparison is shown in figure 4, which
shows that the the proposed algorithm is superior to other two
algorithms in terms of mean square error (MSE) performance.

Figure 4 shows that in the same time duration of 0.64msec
(for 3840 samples and fs,min = 6MHz), the proposed algo-
rithm detects the carrier frequency with minimum mean square
error. As we know that on increasing the number of samples,
performance gets better which can be seen in figure 5, where the
number of samples are increased from 3840 samples to 6000
samples. So, carrier frequency is detected in 1ms and mean
square error of ML-based technique moves from 3.5 × 10−3

to 2.75 × 10−3, whereas mean square error of the proposed
scheme reduces from 2.3 × 10−3 to 1.4 × 10−3. Therefore,
performance improvement is better in the proposed scheme.

With total number of samples equal to 1000, carrier fre-
quency is detected in 0.16ms with mean square error of 2 ×
10−3. When numbers of samples are increased to 7000, car-
rier frequency is detected in 1.16ms with mean square error of
0.58 × 10−3. As total number of samples is increased, Mean
square error is decreased. This is shown in figure 6. For any
count of samples, mean square error is decreased with the in-
creasing Signal to noise ratio, which is shown in figure 7.

Whatever the carrier frequency may be, the response of pro-
posed algorithm for its detection remains almost the same. Fig-
ure 8 shows the performance of the proposed algorithm for car-
rier frequencies of 20 MHz, 25 MHz and 30 MHz. Finally, the
performance of the proposed algorithm is analyzed in Stanford
University Interim (SUI) channel models. These are a set of six
channels modeled for fixed wireless applications [13]. These
six channels model different terrain types depending upon var-
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Figure 5. Performance comparison of the proposed algorithm
with some existing techniques by using 6000 samples for detec-
tion
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Figure 6. Performance of the proposed algorithm by varying
number of samples
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Figure 7. Performance of the proposed algorithm at different
SNRs and number of samples
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Figure 9. Performance of the proposed algorithm in SUI chan-
nel models

ious factors such as line of sight, delay spread, doppler spread,
tree density etc. Terrain A (SUI-5 and 6) represent worst con-
ditions, terrain B (SUI-3 and 4) represent medium conditions
and terrain C (SUI-1 and 2) represent better channel conditions.
Figure 9 shows the mean square error plots for SUI-1, 3, and 6.
For terrain type A (SUI-6), mean square error is the maximum
as it has zero line of sight and large values of delay spread and
Doppler spread. For terrain type C (SUI-1), mean square error
is the minimum because of good channel conditions.

5. Conclusion
A novel algorithm for frequency identification in a narrow-

band frequency hopping system by using bandpass sampling
technique is proposed. Bandpass sampling downsamples the
signal below the Nyquist frequency as a result of which, copies
of signal are received at frequencies around carrier frequency
which are integral multiple of the sampling frequency. The
hop frequency is detected by exploiting this feature of band-
pass sampling technique. The performance of the proposed al-
gorithm is analyzed in Stanford University Interim (SUI) chan-
nel models. The proposed technique provides fast frequency
detection with low probability of error and low computational
complexity.
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