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Abstract - The Webb, Mclntyre, Conradi
(WMC) distribution has been often used to
approximate the APD (avalanche photodiode)
receiver output statistics. In this paper we
present some interesting properties of WMC
distribution which shed new light on the
subject .A recursion relation for calculating
the probability distribution for gains in
physical avalanche diode is derived.

1. INTRODUCTION

The introduction of the WMC distribution
greatly simplifies the APD model. Recently it has
been shown, [9], [10], that the WMC distribution and
inverse Gaussian distribution are of the same type. By
using this fact Dumaf2] (1996) and Tang and Letaief
[1] (1998) have obtained expressions for the moment
generating function (MGF) and cumulant generating
function (CGF) of WMC distribution, a key element
which is needed in various BER (bit-error-rate)
evaluation methods [ 1] and to estimate the sensitivity
of backscattering technique [2].This paper presents
new properties of the WMC distribution which allows
certain comparison with normal distribution and exact
distribution for secondary electrons generated in APD.

2. APD MODEL

The avalanche detector is a device in which
thermally or optically generated hole-electron pairs
generate additional hole-electron pairs through
collision ionizations. This statistical process is called
avalanche multiplication.

Consider the probabilities P(m/n) that n initial
carriers will result in a total of m pairs. P(m/n) had
been originally derived from special cases by
MclIntyre [4] and verified experimentally by Conradi ,

and was rigorously proven by P.Balaban,
P.E Fleischer, and H.Zucker [8].
Personick [3] has shown that the moment

generating function

a0
M(e* )= P(m/1)e™” o)
m=1
of the gain g of the diode is given implicitly by

s =ln1\/1—1—1k In[(Fa)M+ra]

where
a= ﬂ_(._cj—_l)

G
in terms of the average gain of the diode G=E(g) and
k- the ionization ratio of holes to electrons.
P(m/n) is the n-fold convolution of P(m/1) with
itself:
P(m/ny=P™"(m/). 3)
Let M,(°) be the moment generating function of
P(m/n):

an
My )= Pimmne™ @)
m=0
Using (3) one can write M, (z)=M"(z) where z=¢".
From (2) and (4) Balaban, Fleischer and Zucker [8]
obtain P(m/n):

oG D)
P(m/n) = G

o m 1+k(G-1)
] F(T_'E)[g‘

(1 -k)c(m —n)![(c)

]C
G ®)

_n+k(m-n)
] 1-k
n=1, which describes the gain g distribution has been
derived by Mazo and Salz [12].

Consider a point process representing the primary
(photon-generated) carriers. Let the number of these

carriers generated within the time interval [0, A ) be
described by the discrete random variable N Ar- Let

where: ¢ .The special case of the

g, = Pr(N A= n). If the detector is illuminated
by incident power p(t) then the average number of

electron-hole pairs 77 generated in time Af is

7i =L p(t)At + A At
hf
where /10 is the dark current in number of pairs /sec.,
[ is the optical frequency, 77 is the quantum
efficiency and 4 is Planck’s constant.

The electron count m generated over the Af
second observation time is a random variable
governed by the randomness of the field

314




"ELECO'99 INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING"

photodetection and avalanche amplification. The
probability distribution of m electrons occurring after
avalanche multiplication is given by

Pmy=Y g, POnln).  ®
n=0

If the actual number of electron-hole pairs
generated in time AZ is a Poisson process, where

m)"e™"
Qn=—
n!

the random variable m is characterized by the Conradi
distribution

B _—n,—\n
e (n
P(m)= Z#P(m/n)_ 10
n!
n=1
Standard system analysis is complicated by the
complexity of the counting model in (2). A useful
approximation is given by Webb, Mcintyre, and
Conradi [7 ] as

—2
~ 1 1 (m—m)
min)= = = 8
i = o gm 20271+ =M N
[1 il m]i’ oh
where  k=effective ionization ratio, G=average

avalanche gain, m = G ,o? =AG*F R

F=kG+[2-G™"HY(1-k)]
1
A=@F)2/(F-1).
For the APD model the current i(?) is

. me
f) = —
it) e

where e is the charge of an electron. The WMC
probability density function for the output current of
diode i(?) is (9):

.f

1 1 (y-M)?
Ply) = expq -
J2ro; 3 2 y-M
J = 2, | —
[1+y_M]2 d" 5 CI'M.
O’,‘.l
e ne
where o, = 0-—, M =—(G =mean output
At At
current.

A. Avalanche Gain Statistics

Taking the derivative in (2) we obtain(10)

%[a(l—k)— k(1-2)M] = M2(1 - k)(I - a) + a(l - k)M]

Note that (10) is singular when
a 1-k
M =

(5c) 1-a &

beyond which M(s) does not exists.Clearly, for s>s,
dM/ds<0, which leads to a contradiction. Notice also
that dM/dsToo as sTs, (InM is said to be steep).

Using (10) after multiplication by M™' and
integration we find:

(e/m)M'(s)-(b/(n+ 1)M" (s)=r/MM ds+efMf'ds  (11)

with r=(1-a)(1-k), b=(1-a)k and e=a(1-k).
Substituing M,(¢"), given by (1) and M'=M, given

in (4), in (11) it is easy to obtain the following

recurrence relations (rellabelling P(m/n)= P,, and
P(m/1)=pp):

i-n

Z piP

Jj=1

o bl ® N |

YOG m)y(ne 1)e

(12)

i—j,n

In the particular case »=1 one obtains

Pu=(QE-D)eY' Qre2lbYpl 124 ppart.... 4 Pripr1 )
(12)
Pt 1=Qle) (QI+1D)b+2rXp \partpopani ... +ppi-1)

From (5) one easily obtains P,,=a™'". We can
find P, , in another way. We write (2) as follows:

5 s{n—1)
&= M =Pn,n e Pn—l,n € [
n n

((1-ayM-a)'* ((1-a)yM+a)' ¥

If s> -, we obtain P,,=a"""Y; M(s)—>0 when
§S—>-00,
Similarly, an equivalent form of (12) result:

i-n

- n ; .
Pi,n—»—' : c Z (bj.‘r)-pj'Pifj,n

(12)

This result is consistent with (5). For the particular
case n=1 the equivalence was demonstrated by D-R.
Popescu of Bucharest University [14]. We hope that
these results can reduce the computing time and
improve the accuracy.

The probabilities P(my1) and

P(mV5)k=00333, G=50

I T EEEEE ETLE]

P(ov1 PS5}
=)

Fig. 1 The probability distribution of APD gain whwn
G is 50 and k=0.0333..
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B. Cumulants of P(m)-Conradi distribution.

Let g, be gain for the k-th incoming electron, » the

Poison distributed number of primary electron emitted
in an interval A ¢ and m the number of electrons after

multiplication
n
m=> g
1

Let now M(') be the generating function of
P(m/1),N(€’) that of the Poisson distribution and Q(e®)
for P(m). We define the cumulant generating functions
Ku(s)= InM(€), Kn(s)= InN(€") and Kp(s)= InQ(e).

It can be shown that Kp(s)=KMKj(s)). Since

* Kns)=n(e® —1) one obains:

K(s)= n(M(e®) -1).

This implies
d'Kp(s); = d'M(s)
ds’ s=0 ds’ s=0

Thus the cumulants of P(m) are ZE(gj ) where

E(gj ) are the moments of g. These can be
calculated from the following recursive relations

21-1
Iy J
E(g')=) 4;G
j=1
Vi={Avs, Agtyeer Az}
Vi.i=ViAd
where
a; ajp a3 0 ; 0 0
] 281 2&2"' 23; . 0 0
A={0 0 3a 3ay-2 . 0 )
6 0 0 4, .. (2A-2as 0
o o0 0 0 .. (A-Dag-21+2 {(20-1De;

and a,=k—1, a;=2(1-k), 03=k.

3. WMC DISTRIBUTIONS

We seek the statistics of the random total number m
of hole-electron pairs which result ultimately through
collision ionization’s as given by (3), and of the output
current i(2) with pdf given by (4). In (9) it is useful
to make the substitution

B =i 2

ol

or, equivalently
Y=0AU+M-0A=AU+B (13)

One obtains the probability density function for the
random variable U
C(@-1*2 }

A
P(u)—mcxl’ 2

i.e. an inverse Gaussian( Wald) distribution with
parameters b = 12, a=1[11][9).
In[9] the cumulant generating function (14)
1
¥, (1) = iBt+ ¥y (A))=1iBt+ 1—( -2—’:—’-]2

is obtained. The first four cumulants corresponding to
random variable Y are

k, = A+ B= M = mean output current ;
ky = Az/b =0? = variance of the diode
current; k; = 3A3/b? = 36°A7 ,k, =150% 272,
and generally, when 7 > 2
k, =1-3:-5..2r-3)c" 2> (1s)
The first two cumulants of the Conradi distribution
and for the WMC distribution are identical but the
cumulants of order n >3 are entirely different
For the random variable Y the central moments 4,
can be obtained by a recurrence relation starting from
the cumulants £, that is

r—1
.ur+1 =kr+l +Zcr!kj+1#r-j 0 r22 (16)
j=1
with g4, =0and y, =k,.
Using (14) the following property may be shown
P,. When 1,Y,,...,Y, are independent random

variables and Y, is distributed according to (9) with .
parameters M;,0,, A ; then the distribution of

Z = di y, is also of form (9) with
i=1

n n n
M=d) M,,c*=d?*Yy o}, A’ =) A}

i=1 i=1 i=1
This follows from (12) if we note that

A o6l o

— = —— = — = constant.

b 2* 2
(for a given APD). If d=1/n we obtain: the arithmetic
mean of » independent, identically distributed random
WMC variables with pdf (9) has a WMC pdf with
parameters:

M=M, o,’>=6*/n, A,>=n)\? an

We can see that M, o2, A% are proportional to the
average photogenerated charge per pulse when Y,

represents the current of the diode in the i-th Af
interval.

The assumption that the statistical distribution of
the output voltage pulse amplitude can also be
represented by the statistical distribution of the
integrated charge per pulse from the detector itself
(the first central assumption of Conradi in [6] ) is
strictly true only for integrate and dump receiver.
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P2. Let g.be the effective gain of 2 APD
g. = m/n .The distribution of the random variable g,

is WMC.The cumulant generating function may be
calculated to give

_ Al (18)
G, nF .G(F-1)]2
A 9-1-28C -1
¥go () +(F—1)2{ [ = l

F-1

If 7 =1 in (18), then one obtains the expression (5)
in [7] derived by House in his dissertation (see also
{13)).
P3. Using (10) and (11) one obtains the cumulative
distribution function of a WMC distribution (16)
vl A \
Fy(y)=G;y_Q.,1 e |
NA(y-B) | \

2 4 a0
22 -G!-A'y‘A B\|

NA(y- B) }

where 1= ,/ﬁF/(F -1), A=MFAF-1), B=-MAF-1)
and G(-) is the standard gaussian distribution function.

P4. If Y is WMC distributed with parameters M, g, A
then as o7A=G(F-1) approaches 0, the distribution of ¥

becomes normal with mean M and variance o’.
Proof:

! / ; 22 i
m ¥ ()= Gm b1 A AL L
F>1 a,: | b 25 ]
b
0_1’2
lim ¥ (1)y®=iMe- " =
F>1 2

P5. WMC distribution function is an infinitely
divisible distribution.

P6. The saddlepoint approximation for the pdf for the
arithmetic mean of » independent, identically
distributed random WMC variables, is also WMC pdf
with the parameters given by (17).

4. CONCLUSIONS

A number of problems are considerate
relevant to understanding of the exact distribution and
an approximation of the APD statistics which is called
the WMC distribution. In this paper we derived a
recurrence relation for calculating the probability
distribution for APD gain and list some interesting
properties of WMC distribution and exact distribution.
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