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Abstract 
High Dynamic Range (HDR) imaging captures fine details in 
both bright and dark regions, closely mimicking the sensitivity 
of human vision. Traditional HDR methods rely on multiple 
exposures but often face motion artifacts, hardware 
constraints, and high computational costs, limiting their real-
world use. This study proposes an attention-augmented 
autoencoder (AE) with a U-Net-like structure for 
reconstructing HDR images from a single Low Dynamic Range 
(LDR) input. Five attention mechanisms Spatial, Channel, 
Bottleneck, Squeeze-and-Excitation (SE), and Self-Attention 
were individually integrated, forming distinct model variants. 
Experiments on the DrTMO dataset show that Spatial Attention 
achieves the best performance, improving SSIM from 0.9130 
to 0.9310, PSNR from 21.50 dB to 22.30 dB, and reducing 
LPIPS from 0.1090 to 0.0928. These results highlight the 
effectiveness of attention mechanisms in enhancing both 
structural fidelity and perceptual quality for single-image 
HDR reconstruction. 
 
Keywords: HDR Reconstruction, Autoencoder, Attention 
Mechanisms 

1. Introduction 
Visual scenes in the real world are characterized by broad 

luminance ranges, often containing both intense highlights and 
deep shadows within the same frame. Capturing this complexity 
requires imaging systems that exceed the limitations of standard 
sensors. High Dynamic Range (HDR) techniques have emerged 
as essential tools in modern vision applications, enabling 
enhanced detail retention across diverse lighting conditions. 
Low Dynamic Range (LDR) images often fail to preserve subtle 
contrast, while HDR imaging offers superior visual fidelity. 
This makes HDR crucial in areas like digital cinema, medicine, 
automotive vision, and surveillance [1–3]. Traditional HDR 
synthesis pipelines are based on fusing multiple exposures of 
the same scene. Although effective in static environments, these 
methods struggle with dynamic content, often suffering from 
motion-induced artifacts and hardware constraints [4–5]. 
Recent advances in deep learning have introduced multi-
exposure HDR models that mitigate ghosting, but they still 
depend on multiple aligned inputs. As a more practical 
alternative, single-image HDR reconstruction has gained 
momentum by eliminating exposure alignment and sensor 
requirements while maintaining computational efficiency [6–

7]. One of the pioneering models in this domain utilizes a 
Convolutional Neural Network (CNN) to predict HDR scenes 
from a single low-exposure LDR image [7]. Encoder-decoder 
structures, especially autoencoders, have shown promise in 
extracting compact representations for HDR restoration [8]. 
Symmetric autoencoder (AE) architectures, such as U-Net, 
have become popular for minimizing detail loss by enriching 
feature flow through skip connections [9-10]. However, 
traditional AE models often fail to assign appropriate attention 
to semantically important regions in the scene, resulting in 
color distortion, contrast loss, and the omission of critical 
details. Recent works have enhanced AE-based models with 
attention layers, enabling more selective focus on semantically 
rich image regions. In this context, five distinct attention 
mechanisms spatial, channel, bottleneck, squeeze-and-
excitation, and self-attention have been individually integrated 
into the proposed model, each forming a separate variant. 
In this study, a U-Net like AE architecture is designed by 
extending a previously proposed baseline model [1]. Five 
attention mechanisms Spatial, Channel, Bottleneck, SE, and 
Self-Attention were added individually and evaluated 
separately. Experimental results on the DrTMO dataset 
demonstrate that the Spatial Attention variant outperforms the 
others across SSIM, PSNR, and LPIPS metrics. The main 
contributions of this work are summarized as follows: 

 Five different attention mechanisms (Channel, 
Spatial, SE, Bottleneck, and Self-Attention) were 
independently integrated into a U-Net like autoencoder 
architecture. Each variant was tested separately to 
complete missing scene details and improve HDR 
reconstruction quality. 
 The integration of spatial and channel attention 
mechanisms effectively preserved critical visual content 
in both bright and dark regions of the scene, directly 
enhancing color consistency, brightness balance, and 
structural coherence. 
 Self-attention, bottleneck, and SE modules helped 
the model better capture long-range dependencies, 
compress representations, and enhance channel-wise 
information flow. These improvements led to higher 
contextual awareness and better learning capacity. 

2. Related Works 
HDR imaging is a key topic in image processing. It aims to 

generate visuals that match human perception by representing 
both bright and dark areas together. As a result, HDR synthesis 
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techniques especially with the rise of deep learning have 
gained substantial attention in tasks such as image generation, 
quality enhancement, and scene representation [1]. Traditional 
HDR synthesis methods are typically based on fusing multiple 
images captured at different exposure levels. While these 
approaches yield satisfactory results in static scenes, their 
applicability is limited due to sensitivity to motion, exposure 
synchronization issues, and hardware dependencies [2-3]. 
Single-image HDR methods have emerged as practical 
alternatives, with lower computational cost and no need for 
extra hardware [4-5]. One of the earliest deep learning-based 
methods in this domain aimed to reconstruct missing 
brightness and detail components from a single low-exposure 
LDR image. Using CNNs, this method enabled more accurate 
estimation of scene illumination [5]. Following this 
advancement, autoencoder (AE)-based architectures built on 
encoder-decoder designs have gained popularity as powerful 
tools for learning compact scene representations and 
recovering missing information. In AE-based models, 
symmetric structures and skip connections allow joint 
processing of high- and low-level features, improving 
reconstruction accuracy. In this context, U-Net is widely used 
in image processing. It can convert abstracted encoder features 
into detailed representations [6]. Moreover, segmentation-
inspired architectures have been employed to capture semantic 
relationships within a scene, contributing to improved 
contextual consistency in HDR synthesis [7]. Recent studies 
have also introduced HDR synthesis approaches guided by 
scene-derived semantic information, showing significant 
improvements in terms of color fidelity, structural consistency, 
and visual realism [8]. These models enable multi-scale 
contextual representation learning, allowing for the generation 
of more detailed HDR scenes. Furthermore, AE-based 
architectures enhanced with attention mechanisms have shown 
notable improvements in preserving details in semantically 
dense regions [9]. Some recent approaches have proposed 
multi-task HDR systems that jointly handle inverse tone 
mapping and super-resolution. Such frameworks offer flexible 
and comprehensive solutions by simultaneously addressing 
various aspects of image quality [10]. Additionally, deep 
neural networks used for general image enhancement such as 
contrast stretching and low-light restoration have also provided 
a foundational basis for HDR reconstruction tasks [11]. 
In summary, many existing HDR generation models 
incorporate attention mechanisms such as spatial, channel, 
squeeze, bottleneck, and self-attention either in a limited 
capacity or in isolated configurations. In contrast, the proposed 
method systematically integrates each attention type into the 
architecture as a separate model variant, enabling a 
comparative evaluation of their individual contributions. The 
proposed framework offers deeper architecture and more 
complete comparisons than previous works. 

3. Proposed Method 
In this study, we propose a multi-module deep learning 

architecture enhanced with attention mechanisms for generating 
high-quality High Dynamic Range (HDR) scenes from a single 
Low Dynamic Range (LDR) image. The core framework is 
built upon a U-Net like autoencoder structure [1] and 
comprises three primary sub-networks: HDR Encoding 
Network (𝒩𝒩1) ,Up-Exposure Network (𝒩𝒩2) ,and Down-
Exposure Network (𝒩𝒩3). These sub-networks are designed to 
simulate virtual exposure diversity of a scene and reconstruct 

accurate HDR representations [6]. To address the common 
limitations observed in the literature, such as contextual 
awareness deficiency and loss of detail, five different attention 
mechanisms have been integrated into the architecture: Spatial 
Attention, Channel Attention, Bottleneck Attention, Squeeze-
and-Excitation (SE) Attention and Self-Attention.To analyze 
their individual contributions, five attention types were applied 
separately within the encoder and decoder blocks, resulting in 
modular model variants. The performance of each variant was 
systematically evaluated [9]. Additionally, the training of the 
proposed model was guided by four complementary loss 
functions aimed at preserving both structural and perceptual 
consistency: reconstruction loss, perceptual loss, total variation 
loss, and representation loss. This combination of losses 
improves pixel fidelity while enhancing visual realism and 
semantic consistency. 

3.1. General Structure of the Model 

The proposed architecture is designed around three 
dedicated modules to address information loss associated with 
exposure variability. Each sub-network targets the recovery of 
scene details corresponding to different exposure conditions, 
thereby contributing to the final HDR synthesis. 

3.1.1. HDR Encoding Network (𝒩𝒩1) 

The HDR Encoding Network is an encoder–decoder 
architecture that transforms an input LDR image into an 
exposure-independent scene representation. Exposure-
normalized feature representations are obtained by scaling 
encoded features relative to their corresponding exposure times 
(Δt), enabling consistent modeling across varying lighting 
conditions. The encoder compresses feature information via 
convolutional layers into latent representations, which the 
decoder then reconstructs into exposure-sensitive intermediate 
forms. 
Given two differently exposed input images 𝐼𝐼1 and 𝐼𝐼2, 
encoding is performed as follows: 

𝑋̂𝑋1 =  𝒩𝒩1(𝐼𝐼1) (1) 

𝑋̂𝑋2 =  𝒩𝒩1(𝐼𝐼2) (2) 
 
These encoded features are normalized based on their exposure 
ratios to simulate exposure diversity: 

𝑍𝑍1 =  𝑋̂𝑋1 (∆𝑡𝑡2
∆𝑡𝑡1

) (3) 

𝑍𝑍2 =  𝑋̂𝑋2 (∆𝑡𝑡1
∆𝑡𝑡2

) (4) 

 
Here, Δ𝑡𝑡𝑖𝑖 represents the exposure time of the corresponding 
image. The encoder utilizes Conv + ReLU + BatchNorm layers, 
while the decoder uses upsampling + convolution + activation 
structures. Attention modules are integrated to enhance spatial 
awareness in the encoder and preserve contextual and structural 
integrity in the decoder. 

3.1.2. Up-Exposure Network (𝒩𝒩2) 

The Up-Exposure Network aims to recover details lost in 
underexposed (dark) regions. It receives as input the exposure-
normalized representation 𝑋̂𝑋1, derived from the HDR Encoding 
Network: 
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𝐼𝐼2 =  𝒩𝒩2 =  𝒩𝒩2 (𝑋̂𝑋1 (∆𝑡𝑡2
∆𝑡𝑡1

))  (5) 

This sub-network, based on an encoder–decoder design, 
enhances dark scene features in the encoder, while the decoder 
synthesizes brighter representations with improved clarity. 
Skip-connections similar to those in U-Net help preserve fine-
grained detail. 

3.1.3. Down-Exposure Network (𝒩𝒩3) 

The Down-Exposure Network addresses information 
saturation in overexposed regions. It takes as input the 
normalized high-exposure representation 𝑋̂𝑋2 from the HDR 
Encoding Network: 

𝐼𝐼1 =  𝒩𝒩3 =  𝒩𝒩3 (𝑋̂𝑋2 (∆𝑡𝑡1
∆𝑡𝑡2

))  (6) 

The encoder re-encodes structural features from saturated 
regions, while the decoder restores balance by integrating these 
features into the HDR output. U-Net-inspired skip-connections 
are also employed here. 
In summary, the architecture composed of these three modules 
reconstructs HDR scenes more accurately by utilizing multiple 
exposure levels generated from a single LDR image. The 
overall model structure is illustrated in Figure 1. 
 

 
 
Figure 1. Overall architecture of the HDR Attention Network 

(HDR-AttNet). 
Overview of the proposed HDR-AttNet architecture composed 
of three interconnected modules HDR Encoding, Up-Exposure, 
Down-Exposure. Attention modules are highlighted in purple. 

3.2. Integration of Attention Mechanisms 

In this study, five different attention mechanisms Spatial, 
Channel, Bottleneck, Squeeze-and-Excitation (SE), and Self-
Attention were integrated into the architecture to enhance 
contextual awareness and reduce detail loss. These 
mechanisms were individually applied to the encoder and 
decoder layers, resulting in independent model variants [12]. 
The five attention mechanisms employed in this study were 
deliberately selected to represent a diverse set of attention 
strategies with proven success in various vision-related tasks. 
Instead of using one attention type, this study examines how 
each affects single-image HDR reconstruction. Spatial and 
Channel Attention were chosen due to their widespread 
effectiveness in enhancing local and global feature 
representations in convolutional networks. Bottleneck 
Attention was included to evaluate the role of compact feature 
modulation, especially relevant in encoder–decoder 
transitions. SE modules are well-regarded for their lightweight 
yet powerful channel-wise recalibration, while Self-Attention, 
inspired by Transformers, offers insights into global 
dependency modeling. By evaluating these varied mechanisms 

within a unified architecture, this study seeks to provide a well-
rounded understanding of the practical contributions of 
attention in HDR synthesis and identify which strategies yield 
the most significant improvements. 

3.2.1. Spatial Attention 

The spatial attention mechanism enhances the modeling of 
structurally prominent regions within the scene by emphasizing 
local details. It operates by concatenating average and 
maximum pooled feature maps along the channel axis and 
applying a convolutional operation. The mechanism is 
formulated as follows: 

𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
=  𝜎𝜎(𝑓𝑓3𝑥𝑥3([𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐹𝐹); 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐹𝐹)]))  (7) 

 
Here  𝑓𝑓3𝑥𝑥3  denotes a 3x3 convolution filter, [] represents 
concatenation along the channel dimension, and σ is the 
sigmoid activation function. This design strengthens the 
representation of spatially salient areas within the scene [13-
14]. 

3.2.2. Channel Attention 

The channel attention mechanism models the relative 
importance of each feature channel to improve color fidelity 
and brightness accuracy. It utilizes global average pooling to 
extract channel descriptors and is defined as: 

𝑍𝑍 =  𝜎𝜎(𝑊𝑊2. 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑊𝑊1. s))  (8) 
 
In this expression In this expression, 𝑠𝑠  is the channel-wise 
pooled descriptor, 𝑊𝑊1 and 𝑊𝑊2 are the weight matrices of fully 
connected layers, and σ represents the sigmoid activation 
function [15]. 

3.2.3. Bottleneck Attention 

Bottleneck attention aims to suppress redundant 
information by reducing feature dimensionality and 
emphasizing critical representations. This mechanism is 
especially effective at encoder–decoder transitions and is 
expressed as: 

𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =  𝜎𝜎(𝑊𝑊2. 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑊𝑊1. 𝑀𝑀))  (9) 
 
It provides an efficient way to filter out noise and irrelevant 
features, ensuring a more focused information flow [16]. 

3.2.4. Squeeze-and-Excitation (SE) Attention 

The SE module adaptively recalibrates channel-wise 
feature responses by learning the relative importance of each 
channel. It is mathematically defined as: 

𝑀𝑀𝑆𝑆𝑆𝑆 =  𝑀𝑀 ⊙ 𝜎𝜎(𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑀𝑀))  (10) 
 
Here, 𝑓𝑓dense  denotes the fully connected network responsible 
for the squeeze and excitation operations, and ⊙ represents 
element-wise multiplication along the channel dimension. This 
mechanism contributes to improved color consistency and 
luminance balance [17-18]. 
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3.2.5. Self-Attention 

The self-attention mechanism captures long-range 
dependencies between distant pixels in a scene, thereby 
enabling global contextual awareness. Based on the 
Transformer architecture, it is defined by the following 
equation: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉)

=  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑄𝑄. 𝐾𝐾𝑇𝑇

√𝑑𝑑𝑘𝑘
) V (11) 

Where: 
 
-Q (Query): linear projection of the current spatial location in 
the feature map 
-K (Key): encodes the semantic content of all positions in the 
feature map 
-V (Value): provides the contextual feature vectors used for 
weighted aggregation 
In the context of image data, these matrices are derived via 1×1 
convolutions over the input feature map and enable global 
pixel-level interaction across the spatial domain. Here,𝑄𝑄, 𝐾𝐾, 
and 𝑉𝑉 are the query, key, and value matrices, respectively, and 
𝑑𝑑𝑘𝑘 is a scaling factor. This approach allows the network to build 
a more holistic representation by considering the entire scene 
context [19].  

3.3. Loss Functions 

In this study, four different loss functions were jointly 
utilized during training to ensure structural consistency, 
perceptual accuracy, and smooth reconstructions. Each loss 
function targets a different aspect of HDR synthesis, 
contributing to both pixel-level fidelity and global perceptual 
realism. 

3.3.1. Reconstruction Loss 

The reconstruction loss evaluates the pixel-wise similarity 
between the predicted LDR image and the ground truth LDR 
image with the target exposure. To this end, the ℓ1   (Mean 
Absolute Error) is employed: 

ℒ𝑟𝑟𝑟𝑟𝑟𝑟 =  ‖𝐼𝐼  − 𝐼𝐼‖1  (12) 
 
Here, 𝐼𝐼  denotes the pseudo LDR image generated by the 
model, while  𝐼𝐼  represents the ground truth LDR image with 
the target exposure. The pseudo LDR image refers to the 
model’s output that approximates an LDR exposure level, used 
for training supervision in lieu of ground-truth HDR data. This 
approach is widely used in HDR image reconstruction literature 
for its robustness and simplicity. 

3.3.2. Perceptual Loss 

Perceptual loss targets both pixel accuracy and visual 
distinctiveness of generated images. It utilizes feature maps 
extracted from pre-trained layers of the VGG-19 network to 
compute perceptual differences: 

ℒ𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟 = ∑‖𝜙𝜙𝑙𝑙(𝐼𝐼) − 𝜙𝜙𝑙𝑙(𝐼𝐼) ‖2
2

𝑙𝑙
  (13) 

Here, 𝜙𝜙𝑙𝑙 denotes the feature map extracted from the 𝑙𝑙𝑡𝑡ℎ  layer 
of the VGG network. This loss encourages the generated 
images to maintain semantic and structural consistency. 

3.3.3. Total Variation Loss 

Total variation loss aims to reduce sharp transitions and 
undesired artifacts in the reconstructed image, resulting in 
smoother outputs. It is particularly effective in minimizing 
checkerboard patterns and artificial noise in HDR 
reconstructions: 

ℒ𝑡𝑡𝑡𝑡 = ∑ (|𝐼𝐼𝑖𝑖+1,𝑗𝑗 − 𝐼𝐼𝑖𝑖,𝑗𝑗|2

𝑖𝑖,𝑗𝑗

+ |− 𝐼𝐼𝑖𝑖,𝑗𝑗|2) 
(14) 

This formulation minimizes brightness discontinuities between 
neighboring pixels in both horizontal and vertical directions. 

3.3.4. Representation Loss 

Representation loss is defined to ensure consistency between 
the latent features extracted by the HDR Encoding Network 
(𝒩𝒩1)  from two inputs captured at different exposure levels. It 
penalizes deviations between the encoded representations using 
the ℓ2 norm: 

ℒ𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝑋̂𝑋1  −  𝑋̂𝑋2‖2
2  (15) 

 
where 𝑋̂𝑋1  = 𝒩𝒩1(𝐼𝐼1) and 𝑋̂𝑋2  = 𝒩𝒩1(𝐼𝐼2). This constraint ensures 
semantic coherence and structural alignment between feature 
representations from the HDR Encoding module. 

4. Experimental Results 
This section presents the experimental results of the 

proposed HDR-AttNet model, trained with different attention 
mechanism variants. The training configurations, quantitative 
metric comparisons, qualitative visual analyses, and ablation 
studies are thoroughly examined. 

4.1. Training Configuration and Computational 
Environment 

The HDR-AttNet model, designed for high dynamic range 
(HDR) scene reconstruction, was trained on the DrTMO dataset 
[1]. The dataset was synthesized from 1,043 collected HDR 
images with nine exposure values, resulting in 46,935 LDR 
images for training and 6,210 LDR images for testing, each 
with a resolution of 512×512 pixels. During training, random 
pairs of differently exposed images were sampled from the 
dataset. The training process was configured to run for a total 
of 200,000 steps, spanning approximately 6 epochs, with each 
epoch consisting of around 31,500 steps on average. The 
training durations for each model variant were measured under 
the same hardware configuration (NVIDIA Tesla V100-SXM2 
GPU, 16 GB). The results showed notable differences in time 
efficiency among the attention mechanisms. The Self-Attention 
variant required the longest training time at approximately 28.5 
hours, followed by Squeeze-and-Excitation 24.7 hours, 
Bottleneck Attention 21.3 hours, Spatial Attention 19.5 hours, 
and Channel Attention 18.2 hours. These outcomes reflect the 
computational complexity of each mechanism, with Self-
Attention demanding more resources due to its global context 
modeling capabilities. The entire training pipeline was 
implemented using the PyTorch deep learning framework. The 
Adam optimizer was employed for model optimization, and 
four distinct loss functions were incorporated with specific 
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weights. The training configuration and selected 
hyperparameters are summarized in Table 1. 

Table 1. Training Configuration and Hyperparameter Settings 

Parameter Value 
Training Dataset DrTMO 
Total Training Steps 200,000 
Total Epochs 6 
Steps per Epoch ~31,500 
Batch Size 8 
Optimizer Adam 
Learning Rate 0.0001 
Loss Weights λ₁=100.0, λ₂=1.0, λ₃=0.1, 

λ₄=0.00001 
Hardware NVIDIA Tesla V100-

SXM2 (16 GB) 
Framework PyTorch 

Each sub-network in the proposed model (HDR Encoding Net, 
Up-Exposure Net, Down-Exposure Net) adopts a 7-level U-
Net-like encoder-decoder architecture. At each level, two 
convolutional layers (3×3 kernels) are applied, followed by 
batch normalization and ReLU (or Leaky ReLU) activation. 
The input features are progressively increased from 16 to 256 
channels (HDR Encoding Net) and from 32 to 512 channels 
(Up/Down-Exposure Nets). Sub-pixel convolution is used for 
upsampling, which is more efficient than traditional 
deconvolution. The total number of layers per sub-network is 
28, excluding skip connections and normalization layers. 
Although the exact GFLOPs were not calculated, the 
architecture is designed to be lightweight and suitable for real-
time inference. 

4.2. Performance Evaluation and Metric Comparisons 

To objectively evaluate the quality of the generated HDR 
scenes, several metrics were employed that assess both 
structural and perceptual fidelity. In this study, three primary 
metrics were used to analyze the accuracy of model outputs: 
PSNR (Peak Signal-to-Noise Ratio), SSIM (Structural 
Similarity Index), and LPIPS (Learned Perceptual Image Patch 
Similarity) [20-22]. Each metric focuses on evaluating different 
aspects of the HDR results generated from a single LDR input 
image. PSNR quantifies the pixel-level difference between the 
predicted and reference HDR images, offering a measure of 
structural fidelity [20]. This metric is particularly indicative of 
brightness accuracy and overall structural consistency. In 
contrast, SSIM evaluates visual coherence by simultaneously 
considering luminance, contrast, and structural components in 
a manner more aligned with human visual perception [21]. On 
the other hand, LPIPS is computed using deep feature 
representations learned by neural networks, providing a 
perceptual similarity assessment that better reflects human 
visual judgment. This metric plays a crucial role in evaluating 
visual realism and the preservation of scene details [22]. 

4.2.1. PSNR-Based Performance Evaluation 

PSNR (Peak Signal-to-Noise Ratio) is a widely used 
objective metric that measures the pixel-level fidelity between 
a reconstructed image and its reference counterpart. It is derived 
from the Mean Squared Error (MSE) and expressed in decibels 
(dB). A higher PSNR value indicates better image quality with 

less distortion.  
The PSNR score between a reference image 𝐼𝐼  and a 
reconstructed image 𝐼𝐼 is defined as: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐼𝐼, 𝐼𝐼) = 10. 𝑙𝑙𝑙𝑙𝑙𝑙10 (
(𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼)2

1
𝑚𝑚𝑚𝑚∑ ∑ (𝐼𝐼(𝑖𝑖, 𝑗𝑗) − 𝐼𝐼(𝑖𝑖, 𝑗𝑗))

2𝑛𝑛
𝑗𝑗=1

𝑚𝑚
𝑖𝑖=1

) 

(16) 
 
where: 

 𝐼𝐼(𝑖𝑖, 𝑗𝑗)  is the pixel value at position (𝑖𝑖, 𝑗𝑗)  in the 
reference HDR image. 
 𝐼𝐼(𝑖𝑖, 𝑗𝑗) is the corresponding pixel in the reconstructed 
image. 
 𝑚𝑚  and 𝑛𝑛  are the image dimensions (height and 
width). 
 𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼 is the maximum possible pixel value (e.g., 1.0 
for normalized images or 255 for 8-bit images). 

 
The denominator represents the Mean Squared Error (MSE) 
between 𝐼𝐼 and 𝐼𝐼. As PSNR increases, the reconstructed image 
is considered to have higher visual accuracy and lower pixel-
wise distortion relative to reference. The average PSNR 
performance of each model variant enhanced with different 
attention mechanisms is illustrated in Figure 2. Higher PSNR 
values indicate that the reconstructed HDR images are 
structurally more similar to the reference scenes and contain 
less distortion. This reflects the model’s effectiveness in 
brightness preservation and noise reduction. 

 

Figure 2. Comparison of average PSNR performance across 
model variants. 

4.2.2. SSIM-Based Structural Consistency Analysis 

SSIM (Structural Similarity Index Measure) is an advanced 
image quality metric that measures perceptual similarity by 
comparing the structural information between a reference and a 
reconstructed image. Unlike PSNR, which only considers pixel-
wise differences, SSIM evaluates luminance, contrast, and 
structural components, providing a perceptually relevant 
assessment of visual fidelity. 
The SSIM score between a reference image 𝐼𝐼  and a 
reconstructed image 𝐼𝐼 is defined as: 
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐼𝐼, 𝐼𝐼) =  (2μIμ𝐼𝐼 + 𝐶𝐶1)(2𝜎𝜎𝐼𝐼𝐼𝐼 +  𝐶𝐶2)
(𝜇𝜇𝐼𝐼

2 + 𝜇𝜇𝐼𝐼
2 + 𝐶𝐶1)(𝜎𝜎𝐼𝐼

2 + 𝜎𝜎𝐼𝐼
2 + 𝐶𝐶2) (17) 

where: 
 μI , μ𝐼𝐼 : mean intensities of the reference and 
reconstructed images. 
 𝜎𝜎𝐼𝐼

2, 𝜎𝜎𝐼𝐼
2: variances of the respective images. 

 𝜎𝜎𝐼𝐼𝐼𝐼: covariance between 𝐼𝐼 and 𝐼𝐼. 
 𝐶𝐶1 and 𝐶𝐶2: constants to stabilize the division in case 
of weak denominators. 

 
SSIM values range from 0 to 1, where a value closer to 1 
indicates higher structural similarity and better perceptual 
alignment with the reference image. 
 
The structural consistency of each model variant within the 
scene was evaluated using average SSIM scores, and the results 
are presented in Figure 3. The model configured with the spatial 
attention mechanism demonstrated a clear advantage in 
preserving local details and achieved the highest performance 
in this metric. 

 

Figure 3. Comparative distribution of average SSIM scores 
across model variants. 

4.2.3. LPIPS-Based Perceptual Similarity Evaluation 

LPIPS (Learned Perceptual Image Patch Similarity) is a 
perceptual similarity metric that compares high-level feature 
representations extracted from pre-trained deep neural 
networks. Unlike PSNR and SSIM, which evaluate pixel-level 
differences, LPIPS operates in the feature space and reflects 
how similar images appear to the human visual system. It is 
considered more robust for evaluating perceptual quality in 
deep learning-based image generation tasks. 
The LPIPS score between a reference image 𝐼𝐼  and a 
reconstructed image 𝐼𝐼 is defined as: 
 
𝐿𝐿𝐿𝐿İ𝑃𝑃𝑃𝑃(𝐼𝐼, 𝐼𝐼) =  ∑ 1

𝐻𝐻𝑙𝑙𝑊𝑊𝑙𝑙
∑ ∑ ‖𝑤𝑤𝑙𝑙 ⊙ (𝜑𝜑𝑙𝑙(𝐼𝐼)ℎ𝑤𝑤 − 𝜑𝜑𝑙𝑙(𝐼𝐼)ℎ𝑤𝑤)‖

2

2𝑊𝑊𝑙𝑙
𝑤𝑤=1

𝐻𝐻𝑙𝑙
ℎ=1𝑙𝑙  

(18) 
 
where: 

 φ𝑙𝑙(∙) : feature maps at layer 𝑙𝑙  from a pre-trained 
network (e.g., VGG). 
 𝐻𝐻𝑙𝑙, 𝑊𝑊𝑙𝑙 : spatial dimensions of the feature map at layer 
𝑙𝑙. 
 𝑤𝑤𝑙𝑙 : learned linear weights that calibrate channel 

importance. 
 ⊙: element-wise multiplication. 

 
A lower LPIPS score indicates that the reconstructed image is 
perceptually more similar to the reference, aligning more 
closely with human subjective evaluations.  
The LPIPS results, which measure perceptual similarity, assess 
the alignment of model outputs with the human visual system. 
Lower LPIPS values indicate that the scenes are reconstructed 
in a more natural and visually pleasing manner. The 
corresponding comparisons are presented in Figure 4. 
 

 
 
Figure 4. Comparative graph of average LPIPS scores across 

model variants. 
 

      The results show that integrating attention mechanisms 
significantly improves model performance across all metrics. 
Among them, the spatial attention module achieved the highest 
scores in PSNR, SSIM, and LPIPS. This indicates the model’s 
ability to produce HDR scenes that are both structurally 
accurate and perceptually faithful. PSNR confirms high 
reconstruction quality, and its alignment with LPIPS shows that 
this also reflects improved visual realism. To evaluate the 
effectiveness of the proposed architecture, HDR-AttNet was 
compared both qualitatively and quantitatively with several 
state-of-the-art HDR reconstruction methods.  
 
      The comparative analysis indicates that HDR-AttNet 
consistently delivers superior performance in terms of visual 
fidelity and structural consistency. Unlike traditional 
approaches (e.g., HDRCNN, HDR-DANet, HDRUNet, etc.), 
the integration of attention mechanisms within HDR-AttNet 
enables more precise feature selection and improved contextual 
modeling, which leads to better preservation of fine textures 
and perceptual details. As a result, the model produces more 
balanced and clearer HDR reconstructions, particularly in 
challenging regions affected by overexposure or deep shadows. 
These findings highlight the strength of the proposed attention-
driven design and confirm its advantages over baseline methods 
in high dynamic range image synthesis tasks. 

4.3. Ablation Studies 

In this section, the impact of the five different attention 
mechanisms integrated into the proposed HDR-AttNet 
architecture is comparatively analyzed. Each attention 
mechanism was individually embedded into the base model to 
create distinct model variants. These variants were evaluated 
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using three objective metrics: PSNR, SSIM, and LPIPS. The 
results of the comparative analysis are presented in Table 3. 
 

Table 3. Comparison of model variants based on PSNR, 
SSIM, and LPIPS performance metrics 

 
Quantitative results across datasets and methods for PSNR, 
SSIM, and LPIPS. The best scores are bolded, and the second 
best scores are underlined. 
The results indicate that the spatial attention mechanism 
delivers the highest performance in terms of both structural 
similarity (SSIM) and perceptual quality (LPIPS). In particular, 
the low LPIPS score demonstrates that this module preserves 
visual consistency more effectively. PSNR values further 
support this observation, showing that the spatial attention 
variant achieves the closest reconstruction to the reference 
HDR scenes. Although other attention mechanisms contribute 
positively in specific aspects, the spatial attention module 
consistently provides superior results across all evaluation 
metrics. 

4.4. Visual Comparison 

In addition to the metric-based evaluation, the visual 
quality of HDR images produced by each model variant was 
also examined. Figure 5 presents the HDR outputs produced by 
different attention-based model variants alongside their 
corresponding LDR inputs. Visual enhancements can be 
clearly observed across various regions of the scenes. For 
instance, in the first row, the Spatial Attention variant (column 
c) preserves sharper foliage textures and improves shadow 
detail, offering more natural transitions compared to the 
baseline and other variants. In contrast, the Self-Attention 
model (column g) in the third row appears to underperform in 
reconstructing cloud structures, resulting in a flatter and less 
dynamic sky. In the fourth row, the Channel Attention variant 
(column d) maintains well-defined road edges and smooth 
luminance gradients, contributing to better color stability. 
Similarly, in the fifth row, the SE-integrated model (column f) 
achieves balanced illumination over wooden textures while 
avoiding overexposed highlights and preserving fine detail.  

 
These visual findings align with the overall qualitative and 

quantitative performance trends observed in earlier sections, 
reinforcing the impact of attention mechanisms on perceptual 
quality. While channel attention demonstrates strong 
performance in color balance, the self-attention module 
delivers superior results in maintaining global scene 
consistency. The preservation of visual details is valuable not 
only from a numerical metrics perspective but also in terms of 

human perceptual quality, underlining the model’s potential for 
practical deployment. 

 
(a) (b) (c) (d) (e) (f) (g) 
 

 
 

Figure 5. Comparative visualization of HDR outputs from 
different model variants, highlighting visual quality 

differences. Each column corresponds to: (a) Original LDR 
input, (b) Base Model, (c) Base + Spatial Attention, (d) Base + 
Channel Attention, (e) Base + Bottleneck Attention, (f) Base + 

SE Attention, and (g) Base + Self Attention. The first row 
displays the full-sized images with selected regions marked by 

red rectangles, while the second row presents the cropped 
regions corresponding to those selections. 

5. Discussion 
In this section, the performance of the HDR-AttNet 

architecture under five different attention configurations is 
comprehensively discussed based on both quantitative metrics 
and qualitative visual analysis. Each attention mechanism 
contributed to the overall model performance in distinct ways. 

The Spatial Attention variant demonstrated the most 
consistent and superior performance across all evaluation 
metrics. It achieved the highest SSIM (0.9310), PSNR (22.30 
dB), and the lowest LPIPS (0.0928), indicating its strong 
ability to preserve edges, textures, and fine details. Its localized 
focus helped reinforce salient regions without compromising 
overall scene structure. 

The Channel Attention module exhibited strong 
performance in terms of color consistency and brightness 
calibration. Especially in scenes with high color saturation, it 
maintained perceptual clarity by re-weighting feature channels 
based on semantic importance.  

The Squeeze-and-Excitation (SE) mechanism improved 
the model's channel-wise feature recalibration, resulting in 
stable luminance mapping under diverse lighting conditions. It 
maintained above-average performance across all metrics. 

The Bottleneck Attention variant contributed by reducing 
redundant feature dimensions, which improved computational 
efficiency and reduced noise. However, its gains in fine-

Model PSNR (↑) SSIM 
(↑) 

LPIPS 
(↓) 

Base Model 21.50 0.9130 0.1090 
Base Model + 
Spatial Attention 

22.30 0.9310 0.0928 

Base Model + 
Channel Attention 

22.00 0.9260 0.1030 

Base Model + 
Bottleneck 
Attention 

21.80 0.9290 0.0949 

Base Model +  
SE Attention 

21.80 0.9230 0.1050 

Base Model +  
Self-Attention 

21.20 0.9090 0.1040 
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grained detail and visual sharpness were relatively limited 
compared to spatial or channel-based approaches.  

Although the Self-Attention mechanism theoretically 
excels at modeling long-range dependencies, its performance 
in this context was comparatively weaker. This may be due to 
the relatively shallow depth of the encoder–decoder 
architecture, which limits the scope for capturing global 
relationships. The wide context focus of self-attention may 
weaken essential local structures needed for quality HDR 
reconstruction. As a result, it underperformed in SSIM 
(0.9090) and LPIPS (0.1040) metrics, highlighting the 
importance of local attention in tasks requiring fine spatial 
fidelity. 

5.1.  Limitations and Future Directions 

While the HDR-AttNet architecture demonstrates high-
quality HDR reconstruction through the integration of various 
attention mechanisms, there remain certain areas for potential 
enhancement. Since the model was trained exclusively on 
synthetic HDR data (DrTMO), its generalizability to real-
world scenarios may be limited. Future work could benefit 
from incorporating datasets that include real HDR scenes for 
improved robustness. Additionally, training five separate 
attention-based variants independently has increased 
computational cost. This may require careful consideration in 
terms of scalability. However, this overhead can potentially be 
reduced by employing hybrid or lightweight attention modules. 
Lastly, increasing the depth of the encoder–decoder structure 
and integrating Transformer-based components may offer 
opportunities to enhance global context modeling in future 
architectural designs. 

6. Conclusion 
      In this study, we introduced HDR-AttNet, a novel multi-
branch encoder–decoder architecture tailored for single-image 
HDR reconstruction. The proposed model integrates three 
parallel subnetworks HDR Encoding Net, Up-Exposure Net, 
and Down-Exposure Net which collectively emulate the inverse 
exposure process to recover lost information due to 
overexposure or underexposure. In addition, five distinct 
attention mechanisms were independently incorporated to 
investigate their influence on visual fidelity and structural 
consistency. This modular integration allowed for a detailed 
comparative analysis and revealed that spatial attention, in 
particular, yielded the most visually coherent and perceptually 
faithful results. The outcomes of this work underscore the 
utility of attention mechanisms beyond classification or 
detection tasks, highlighting their relevance in complex image 
reconstruction pipelines. The attention-driven design adopted 
in HDR-AttNet contributes to enhanced detail preservation, 
improved scene balance, and more realistic HDR synthesis. 
Overall, the results validate our method and offer insights for 
designing future HDR systems that balance quality, efficiency, 
and modularity. 
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