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Abstract 
 

This paper investigates the effect of time delays on the 
stability of a two-area automatic generation control (AGC) 
system. The time delays are due to the use of measurement 
devices and communication links for sending and receiving 
control signals. The maximum amount of time delay known 
as the delay margin that the system can tolerate without 
becoming unstable is determined using Matlab/Simulink. 
The effect of integral controller gain on delay margin is 
analyzed. 
 

1. Introduction 
 

With use of open communication infrastructure and phasor 
measurement units (PMU) in the wide-area 
measurement/monitoring systems (WAMS), time delays have 
become inevitable, and raise concerns about the system dynamic 
response [1, 2]. The total time delay consisting of measurement 
and communication delays in power systems has a destabilizing 
impact, reduces the effectiveness of control system damping and 
leads to unacceptable performance such as loss of synchronism 
and instability [3-6]. In this paper, we focus on the effects of 
time delays on the stability performance of automatic generation 
control system (AGC). In an interconnected power system 
consisting of several pools, the primary role of the AGC is to 
divide the loads among system, stations, and generators to 
achieve maximum economy and correctly control the scheduled 
interchanges of tie-line power flow while maintaining a 
reasonably uniform frequency [7]. 

Traditionally, dedicated communication links were used to 
send AGC control signals. For this reason, in stability analysis it 
was reasonable to neglect the time delays associated with the 
communication network. However, the communications delays 
significantly increase when an open and distributed 
communication network is used to send AGC control signals [3, 
4]. It was reported that communication delays in AGC systems 
can be in the range of 5-15 sec [6].  

The size of communication delays in WAMS mainly 
depends on the physical media of communication (such as fiber-
optic-cables, digital microwave links, power line, telephone 
lines and satellite links [1]) as well as several other factors 
including the phasor package size, transmission protocol 
employed and communication network load (congested or idle). 
As a result, these delays may fluctuate randomly in a certain 
range. Therefore, it is essential to estimate the maximum 
amount of time delay known as the delay margin that the system 
could tolerate without becoming unstable. Such knowledge on 

the delay margin (upper bound in the time delay) will be helpful 
in the controller design for cases where uncertainty in the delay 
is unavoidable.  

Delay margins of the AGC system for a certain set of 
parameters could be determined either by using theoretical 
methods reported in the literature or by a time-domain 
simulation approach. The common starting point of theoretical 
methods is the determination of all the imaginary roots of the 
characteristic equation. The existing procedures can be 
classified into the following five distinguishable approaches: i) 
Schur-Cohn (Hermite matrix formation) [8-10]; ii) Elimination 
of transcendental terms in the characteristic equation [11]; iii) 
Matrix pencil, Kronecker sum method [8-10, 12]; iv) Kronecker 
multiplication and elementary transformation [13]; v) Rekasius 
substitution [14-16]. These methods demand numerical 
procedures of different complexity and they may result in 
different precisions in computing imaginary roots. A detailed 
comparison of these methods, demonstrating their strengths and 
weakness can be found in [17]. Among these methods, only two 
of them have been recently applied to the stability analysis of 
time-delayed power systems. The method reported in [9] was 
effectively used to estimate the delay margin for automatic 
generation control systems with commensurate time delays [6]. 
The exact method based on Rekasius substitution presented in 
[15] is applied into small-signal stability analysis of power 
system to compute delay margins [18]. 

In this paper, a time-domain simulation approach is 
implemented by using MATLAB/SUMULINK [19] to 
determine the delay margin for several values of integral 
controller gain. The results indicate how the delay margin 
decreases as the integral control gain increases, an indication of 
a less stable operation. The main contribution of this paper is the 
qualitative analysis of the relationship between the delay margin 
and integral controller gain, which has not been reported in the 
literature. 

 
2. Small-Signal Stability of Time-Delayed Power 

System 
 

When a time delay is observed in the system, power system 
dynamics should be described by the following time-delayed 
differential-algebraic equation (DAE) model [18]: 
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where nx ∈ℜ  and ( ) nx x t= − ∈ℜτ τ  are the vectors of delay-
free and time-delayed state variables, respectively such as rotor 
angles and control states of exciter and speed governor; 

my ∈ℜ  
and ( ) my y t= − ∈ℜτ τ  are the vectors of delay-free and time-
delayed algebraic variables, respectively such as voltage 
magnitude and phase angles at the load buses; 0>τ  is the 
constant time delay observed in the system. It must be noted that 
all the time delays observed are assumed to be constant and 
equal. k∈ℜβ  is the vector of parameters such as real/reactive 
power demand at the buses, transmission line parameters, and 
control set points and gains. The dynamics of generators, 
control devices (exciter, speed governor, stabilizer) and load 
dynamics together define the set of differential equations. The 
algebraic equations are the power flow equations representing 
real and reactive power balances at the load buses. 

The small-signal stability is the ability of the power system 
to maintain synchronism under small disturbances that occur 
continually on the system because of small variations in loads 
and generation. The disturbances are considered sufficiently 
small for linearization of system equations around an 
equilibrium point to be permissible for the purpose of stability 
analysis [7]. By linearizing (1) at an equilibrium point 0 0( )x , y , 
we can easily obtain the following incremental DAE: 
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are the Jacobian matrices with respect to the state and algebraic 
variables and the time-delayed state and algebraic variables 
evaluated at the equilibrium point 0 0( )x , y . When the algebraic 
Jacobian matrices 0D ,Dτ  are non-singular, the incremental 
DAE of (2) could be reduced to a set of incremental ordinary 
differential equations (ODEs), and local dynamics in the 
neighborhood of the equilibrium point could be investigated by 
the time-delayed ODEs of the form: 

0( ) ( ) ( ) ( ) ( )x t A x t A x t⎡ ⎤ ⎡ ⎤= + −⎣ ⎦ ⎣ ⎦
% %& τ τΔ β Δ β Δ τ  (4) 

where  

[ ] [ ][ ] [ ]-1( ) ( ) ( ) ( ) ( ) ;  0i i i i iA A B D C i ,⎡ ⎤ = − =⎣ ⎦
% β β β β β τ  

The stability of the linear time-delayed system given in (4) is 
determined by the location of system eigenvalues that can be 
obtained from the following characteristic equation: 
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Fig. 1. Illustration of the movement of the characteristic roots with 
respect to the time delay 
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Fig. 2. Block diagram of AGC with time delay for a two-area system 

0( ) ( ) ( ) ( ) ( ) 0s ss, det sI A A e P s Q s e− −⎡ ⎤Δ = − − = + =⎣ ⎦
% % τ τ

ττ β β (5) 

where ( ), ( )P s Q s  are polynomials in s with real coefficients 

determined by the elements of 0A⎡ ⎤
⎣ ⎦
%  and A⎡ ⎤

⎣ ⎦
%
τ  matrices. It is 

obvious that the roots of (5) are a function of the time delay τ . 

Let’s denote these roots by 1 2 ns s ,s ,...,s⎡ ⎤= ⎣ ⎦
τ τ τ τ . Similar to the 

delay-free system ( 0=τ ), if the following condition is held, 
then the system is said to be small-signal stable. 

( )( ) 0 for i imax real s s s< ∀ ∈τ τ τ  or Cis −∀ ∈τ

           
(6) 

In other words, if all the roots are in the negative half part of the 
complex plane, the system is small-signal stable. 
 Depending on system parameters, there are two different 
possible types of asymptotic stability situations due to the time 
delay τ  [8, 11]:  
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i) Delay-independent stability: The characteristic 
equation of (5) is said to be delay-independent stable 
if the stability condition of (6) holds for all positive 
and finite values of the delay, [0, )∈ ∞τ . 

ii) Delay-dependent stability: The characteristic equation 
of (5) is said to be delay-dependent stable if the 
condition of (6) holds for some values of delays 
belonging in the delay interval, [0, )c∈τ τ , and is 
violated for other values of delay c≥τ τ . 

In the delay-dependent case, the roots of the characteristic 
equations move as the time delay τ  increases starting from 

0=τ . Fig. 1 illustrates the movement of the roots. Note that the 
delay–free system ( 0=τ ) is assumed to be stable. This is a 
realistic assumption since for the practical values of system 
parameters the AGC system is stable when the total delay is 
neglected. Observe that as the time delay τ  is increased, a pair 
of complex eigenvalues moves in the left half of the complex 
plane. For a finite value of 0>τ , they cross the imaginary axis 
and pass to the right half plane. The time delay value cτ  at 
which the characteristic equation has purely imaginary 
eigenvalues is the upper bound on the delay size or the delay 
margin for which the system will be stable for any given delay 
less or equal to this bound, c≤τ τ . In order to characterize the 
stability property of (5) completely, we need to determine 
whether the system for any given set of parameters is delay-
independent stable or not, and if not, to determine the delay 
margin cτ  for a wide range of system parameters. 
 

3. AGC System Model with Time Delay 
 

The block diagram of a simple AGC for a two-area system is 
shown in Fig. 2. Note that the two areas are interconnected by a 
lossless line. During the normal operation certain amount of real 
power is transferred over this line. The change in the power 
flowing is denoted by 12PΔ . The tie-line power flow begins 
whenever a load increment or decrement occurs in one of the 
areas. The main goals of this system are: i) Keep frequency 
approximately at the nominal value, ii) Maintain tie-line power 
flow at about the scheduled value, iii) Make sure that each area 
should absorb its own load changes [7]. Note that in each 
control area the AGC regulator is designed to respond to Area 
Control Error (ACE), and integral controller is used to eliminate 
ACE used as actuating signals to activate changes the reference 
power set points. The ACE is composed of a linear combination 
of tie-line power flow deviation and the frequency deviation 
weighted by a bias factor, which is called tie-line bias control 
(TBC).  

1 12 1 1

2 21 2 2

ACE P B
ACE P B

= +
= +

Δ Δω
Δ Δω

  (7) 

Note that a time delay block is added to each control area at 
the output of the integral controller. In an open communication 
system, delays can arise during: i) transmission of ACE signals 
from the control center to the individual units and ii) from a 
telemetry delay when Remote Terminal Units (RTUs) send the 
remote signals to the control center. In the model, all such 
delays are aggregated into a single delay from the control center 
[6]. 

The AGC system shown in Fig. 2 could be easily modeled as a 
time-delayed linear time-invariant (TDLTI) system. The state-
space equation model is given as 

0 1 1 2 2( ) ( ) ( ) ( ) ( )x t A x t A x t B u t B u t= + − + +% %& τ τ         (8) 

where the state-space variables are defined as: 
1 1 2 2 3 m1 4 m2 5 V1 6 V2x ,x ,x P ,x P ,x P ,x P= = = = = =Δω Δω Δ Δ Δ Δ  

and 7x  = controller output of area 1, 8x  = controller output of 
area 2, and 9 12 1 L1 2 L2x P ,u P ,u P= = =Δ Δ Δ . The system matrices 
are given in the Appendix. 
 

4. Simulation Results 
 

Simulink model of time-delayed AGC system is realized to 
determine delay margins for a wide range of integral controller 
gains for which the delay-free system is stable. The system 
parameters used in simulations can be found in Appendix. In 
order to clearly see the destabilizing effects of the delay on the 
AGC system, the delay-free system must be stable. For this 
reason, the integral controller gains selected should result in a 
stable operation. The stability range for the integral controller 
gain IK  is found to be 

1 2I I I 0.74K K K= = ≤  using the time-
domain simulation capabilities of Simulink program. Figure 3 
shows the frequency response of the delay-free system for 

I = 0.74K . The sustained oscillations clearly indicate a 
marginally stable operation. Thus, the upper limit for the 
integral controller gain is I = 0.74K . For  I > 0.74K , the delay-
free system will be unstable as shown in Fig. 4 and it will stable 
for I < 0.74K as presented in Fig. 5. 

For a L1 0.2P =Δ  pu load increase in area 1, simulations are 
performed and delay margins are obtained for several different 
values of the integral controller gain by investigating the time-
domain response of AGC system. Delay margins are the delay 
values at which sustained (undamped) oscillations are observed 
in the system response. Figure 6 shows the variation of the delay 
margin with respect to the integral controller gain. It is clear that 
the delay margin significantly decreases when the integral 
controller gain is increased, which makes the AGC system less 
stable. To illustrate how the stability of the AGC system 
changes with respect to the time delay, we choose integral 
controller gains of I = 0.25K  for which the delay free system is 
stable and investigate the frequency deviation of the AGC 
system. 

For I = 0.25K , the delay margin is found to be 
5.6725 sc =τ . The frequency deviations of each area for this 

delay value are shown in Fig. 7. It is clear that sustained 
oscillations in system angular frequencies are occurred verifying 
the marginal stability. When the time delay is less than the delay 
margin ( 5.45 s < c=τ τ ), the oscillations are decaying and the 
AGC system is stable, as shown in Fig. 8. When the time delay 
is larger than the delay margin ( 6.2 s > c=τ τ ), the system has 
growing oscillations indicating an unstable operation, as 
illustrated in Fig. 9. 
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Fig. 3. Frequency deviation of the delay-free system for KI = 0.74: 

Marginally stable operation 
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Fig. 4. Frequency deviation of the delay-free system for KI = 0.75: 

Unstable operation 
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Fig. 5. Frequency deviation of the delay-free system for KI = 0.73: 

Stable operation 
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Fig. 6. Variation of the delay margin with respect to the integral 

controller gain 
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Fig. 7. Frequency deviation for KI = 0.25 and τc = 5.6725 s: Marginally 

stable operation 
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Fig. 8. Frequency deviation for KI = 0.25 and τ = 5.45 s: Stable operation 
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Fig. 9. Frequency deviation for KI = 0.25 and τ = 6.2 s: Stable operation 

 
5. Conclusions 

 
This paper studies the destabilizing effects of communication 

delays on a two-area AGC system. Using a simulation approach, 
delay margins for a wide range of controller gains have been 
determined. It has been shown that the delay margin decreases 
significantly as the controller gain changes in a narrow range, 
making the AGC system less stable. Simulation results clearly 
indicate that communications delays must be taken into account 
in the controller design and gain selection. 

In the future, two main assumptions of the paper on constant 
time delay and bifurcation type (Hopf bifurcation) will be 
relaxed, the time-dependency and randomness of 
communication delays will be considered. Moreover, delay 
margins will be computed using two different theoretical 
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methods [11, 15] and results will be verified by the time-domain 
simulations using MATLAB/Simulink. 
 

6. Appendix 
 

The system matrices given in Eq. (8) are defined as follows: 
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Two-area system parameters used in simulations are as follows: 

1 2 1 2

1 2 g1 g2

T1 T1 1 2

L1 L2

0.6, 0.9, 10, 8, 
0.05, 0.0625, 0.2 s, 0.3 s, 

0.5 s, 0.6 s, 20.6 16.9
0.2, 0

D D H H
R R

B ,B ,
P P

= = = =
= = = =

= = = =
= =

τ τ

τ τ
Δ Δ

 

 
 
 
 
 
 
 

7. References 
 

[1] B. Naduvathuparambil, M. C. Valenti, and A. Feliachi, 
“Communication delays in wide area measurement 
systems”, in Proc. 2002 Southeastern Symposium on 
System Theory, vol. 1, University of Alabama, Huntsville, 
AL (USA), pp. 118-122. 

[2] X. Xia, Y. Xin, J. Xiao, J. Wu, and Y. Han, “WAMS 
Applications in Chinese power systems,” IEEE Power and 
Energy Magazine, vol. 4, pp. 54-63, 2006. 

[3] H. Wu, K. Tsakalis, and G. T. Heydt, “Evaluation of time 
delay effects to wide-area power system stabilizer design,” 
IEEE Transactions on Power Systems, vol. 19, pp. 1935–
1941, Nov. 2004. 

[4] X. Yu and K. Tomsovic, “Application of linear matrix 
inequalities for load frequency control with communication 
delays,” IEEE Transactions on Power Systems, vol. 19, pp. 
1508-1515, August 2004. 

[5] S. Bhowmik, K. Tomsovic, and A. Bose, “Communication 
model for third party load frequency control,” IEEE 
Transactions on Power Systems, vol. 19, no.1, pp. 543-548, 
Feb. 2004. 

[6] M. Liu, L. Yang, D. Gan, D. Wang, F. Gao, and Y. Chen, 
“The stability of AGC systems with commensurate delays,” 
European Transactions on Electrical Power 2007, vol. 17, 
pp.615-627, 2007. 

[7] P. Kundur, Power System Stability and Control. New York: 
McGraw-Hill Inc., 1994. 

[8] K. Gu, V. L. Kharitonov, and J. Chen, Stability of time 
delay systems: Boston, MA: Birkhauser, 2003. 

[9] J. Chen, G. Gu, and C. N. Nett, “A new method for 
computing delay margins for stability of linear delay 
systems,” System and Control Letters, vol. 26, pp. 101-117, 
1995. 

[10] P. Fu, S. I. Niculescu, and J. Chen, “Stability of linear 
neutral time-delay systems: exact conditions via matrix 
pencil solutions,” IEEE Transactions on Automatic 
Control, vol. 51, no.6, pp. 1063-1069, 2006. 

[11] K. E. Walton and J. E. Marshall, “Direct method for TDS 
stability analysis,” IEE Proceeding Part D, vol. 134, pp. 
101–107, 1987. 

[12] J. H. Su, “The asymptotic stability of linear autonomous 
systems with commensurate time delays,” IEEE 
Transactions on Automatic Control, vol. 40, pp. 1114-
1117, 1995. 

[13] J. Louisell, “A matrix method for determining the 
imaginary axis eigenvalues of a delay system,” IEEE 
Transactions on Automatic Control, vol. 46, no. 12, pp. 
2008-2012, 1995. 

[14] Z. V. Rekasius, “A stability test for systems with delays,” 
in Proceedings of Joint Automatic Control Conference, San 
Francisco, CA, 1980, Paper No. TP9-A. 

[15] N. Olgac and R. Sipahi, “An exact method for the stability 
analysis of time-delayed linear time-invariant (LTI) 
systems,” IEEE Transactions on Automatic Control, vol. 
47, pp. 793-797, 2002. 

[16] N. Olgac and R. Sipahi, “A practical method for analyzing 
the stability of neutral type LTI-time delayed systems,” 
Automatica, vol. 40, pp. 847-853, 2004. 

[17] R. Sipahi and N. Olgac, “A comparative survey in 
determining the imaginary characteristic roots of LTI time 
delayed systems,” in Proc. 2005 IFAC World Congress, 
Prague, Czech Republic, pp. 118-122. 

[18] H. J. Jia, X. D. Cao, X. D.  Yu, and P.  Zhang, “A simple 
approach to determine power system delay margin,” in 
Proc. 2007 IEEE Power Engineering Society General 
Meeting, Vol. 2. Tampa (USA),  pp. 1-7. 

[19] SIMULINK, Model-Based and System-Based Design, 
Using Simulink, MathWorks Inc., Natick, MA, 2000. 

 

I-69


