Reliable Address Translation for Instructions

Ismail Kadayif, Bora Ugurlu

Department of Computer Engineering, Canakkale Onsekiz Mart University, Canakkale, Turkey
kadayif @comu.edu.tr, boraugurlu@comu.edu.tr

Abstract

As a result of technology scaling, spatial multi-bit soft errors
have been becoming a big concern for SRAM-based stor-
age structures, such as caches, buffers, and register files, in
the design of reliable computer systems. Conventional tech-
niques, such as bit interleaving or stronger coding, cannot
provide the designers with effective solutions to the prob-
lem of reliable address generation in instruction translation
lookaside buffers (iTLB) because of high power and/or la-
tency overheads. In this study, we aim to generate reliable
address translation for instructions without compromising
either on performance or on power consumption. To do
so, we propose to use a pair of identical registers storing
the last address translation, which are referred to as con-
text frame registers (CFR). As long as the control flow of
programs stays in the same page, address translations are
supplied by these two registers, instead of the iTLB. Since
two CFRs keep the same address translation, spatial multi-
bit errors are detected by comparing their contents. If their
contents do not match, we obtain the address translation
from the iTLB as usual, which uses strong coding for error
detection and correction.

1. Introduction and Background

Soft errors (transient errors) are single event upsets and, in
concurrent with continuous technology scaling, have been pos-
ing a significant concern for reliable computing systems. Their
two primary sources are alpha particles released from packag-
ing materials caused by the effect of excessive heat and highly
energetic neuron particle strikes from cosmic rays. These par-
ticle strikes can change the minimum charge required to flip
the state of devices, resulting in wrong outputs in SRAM-based
hardware components such as caches and TLBs.

The need to cope with soft errors have been lead to the de-
velopment of various approaches for reliable system designs.
The hardware-level approaches can be roughly classified into
three categories: process technology, circuit, and architectural
solutions [1]. The solutions relying on the process technology
make use of silicon-insulator (SOI) to protect devices against
soft errors. Due to their thinner silicon layer, SOI devices col-
lect less amount of charge from radiation, making strikes less
likely to flip the state of SRAM cells. In circuit techniques,
radiation-resisted devices are designed by adjusting their ca-
pacitance and/or supply voltage, raising the level of the mini-
mum charge required to change the value stored in the cells [2].
There are a wide variety of solutions to mitigate the effects
of soft errors at architectural level, including integrity check-
ing techniques such as parity check and error correcting codes
(ECCO) [3], p bit [4], replicating components such as N modular
redundancy (NMR), and bit interleaving [5].

While only single-bit soft errors were a major concern

762

for previous technology generations, spatial multi-bit soft er-
rors (a single particle strike can upset multiple neighbouring
SRAM cells) have also been becoming a concern for the cur-
rent technology generation and the next technology generations
as well [6]. Compared to single-bit soft errors, handling spa-
tial multi-bit errors introduces significant performance, power
and/or area overheads. For example, a popular ECC technique
is SECDED (single error correct double error detect) and im-
plemented by maintaining extra 8-bits for protecting each 64-bit
entry. While SECDED can correct single-bit errors, it is not ap-
propriate to be applied into frequently accessed processor com-
ponent such as L1 caches and TLBs since it may put memory
references into critical path —causing performance degradation—
and may increase power consumption budget as well. The
stronger codes, such as DECTED (double error correct, triple
error detect) and TECQED (triple error correct, quad error de-
tect) may present the similar concern, even with more severity.

Another solution proposed to handle spatial multi-bit soft
errors is interleaved ECC. In this approach, the data bits belong-
ing to different ECC check words are physically interleaved so
that at most one data bit belonging to the same ECC check word
is affected by soft errors. Thus, with N-way degree of interleav-
ing, spatial multi-bit errors upsetting up to N continuous bits
can be tolerated. However, a prior study shows that interleaving
approach cannot be applied to L1 caches in practice because of
excessive power requirements [5].

In modern processors, TLBs are used to accelerate virtual-
to-physical address translations by keeping recent translations.
When an address translation is required, the processor first
looks the translation up in the TLB. If there is a hit in the TLB,
the translation is supplied from there; otherwise, the page table
in the RAM is searched for the address translation under the
control of the operating system. Since translations are found
in the TLB with a great probability, the operating system’s in-
volvement is not required most of the time, making fast address
translation possible. Like other SRAM-based structures, TLBs
are also vulnerable to high energetic particle strikes causing spa-
tial multi-bit errors. If TLBs are not protected against such par-
ticle strikes, severe consequences may emerge; for example, for
the iTLB the program control flow can change inadvertently,
causing erroneous program outputs or even program crashes.

In this study, we propose a mechanism at architectural level
for reliable address translations for instructions without com-
promising on either power consumption or performance. To
this end, we use two identical CFRs (context frame registers) to
store the last address translation. These two CFRs always store
the same translation. As long as the control flow of the pro-
gram stays in the same page, address translations are supplied
from these two CFRs. With our approach, the error check is
carried out by comparing the contents of the CFRs. If the exe-
cution stays within the same page and the contents of the CFRs
conform to each other, it means the address translation can be

safely obtained from the CFRs. It is extremely rare for two dif-
ferent particle strikes to affect exactly the same bit positions in
the two CFRs during the small period when the execution stays
in the same page, which makes error detection possible. On the
other hand, if the contents of the CFRs do not match, it means
at least one of the CFRs is affected by soft errors, so we must
not trust the translation stored in either of them. In this case, the
translation is supplied from the iTLB as usual. Since we assume
that the iTLB is protected against soft errors with strong coding
such as TECQED, the translation obtained from the iTLB will
be always correct. Moreover, because of the infrequent iTLB
accesses in our approach, protecting the iTLB against soft er-
rors introduces negligible performance overheads.

The rest of this paper is organized as follows. The structure
of the CFRs and their management is introduced in the next
section. In Section 3, we explain how reliable address transla-
tion can be done by using the CFRs. Our experimental setup
is explained in Section 4. We present our experimental results
in Section 5. Finally, our concluding remarks are given in Sec-
tion 6.

2. Structure of CFRs and Their
Management

In our design, the two identical CFR registers store the last
address translation and are managed by the hardware intelli-
gently. A similar CFR concept was used in several previous
studies. It was used in [7] to reduce the power consumption of
dTLB (data TLB) and in [8] to mitigate the performance over-
head of process variations on instruction fetches. The structure
of a CFR in our work is different from the one used in prior
studies in that we need to keep only the physical frame number
(PFN) and some protection bits (PB) belonging to the current
page in CFRs, as depicted in the following.

[< Physical FrameNumber < ProtectionBits >]

The CFRs can be regarded as a part of the context of a pro-
cess and saved/restored during the context switch, like regular
registers and the program counter. Their content is very similar
to a page table entry, except that they do not store virtual frame
numbers. Whether the address translation should be obtained
from the CFRs or the iTLB is decided by hardware intelligently
under the control of the software, as explained in detail next;
this is why we do not keep the virtual frame number of the cur-
rent page in the CFRs.

To manage the CFRs intelligently at run-time, instructions
are annotated to give a hint to the hardware where the address
translation must be obtained. For this aim, we can use some un-
used bit positions (slots) of instructions in the ISA to encode the
source of address translation. Some of the architectures have al-
ready been ported to 64-bit platforms, and there are also consid-
erable on-going efforts to port most of the rest of architectures
to 64-bit platforms. So, finding such unused bit slots in the ISAs
of modern architectures is not a concern.

According to our scheme, there are two distinct sources
where the address translations for instructions can be obtained.
The first one is the iTLB, and it is accessed only when the con-
trol flow of the program leaves the current page. The CFRs con-
stitute the second source of address translations. As long as the
program execution stays in the same page, address translations
are supplied from CFRs. Since there are two distinct sources of
address translations, only one empty bit position in instructions
is needed to encode where the address translation for the suc-
ceeding instruction must be obtained: O indicates the address

763

translation is supplied from the CFRs, and 1 indicates the ad-
dress translation is obtained from the iTLB. During run-time, at
instruction fetch pipe stage the hardware decide the source of
address translation for the succeeding instruction based on this
particular annotated bit.

For annotation, we make use of a compiler analysis to build
the control flow graph (CFG) of the application and encode the
source of address translation for the succeeding instruction. As
long as two successive instructions are on the same instruction
page, the preceding instruction is annotated with O to inform
the hardware at run-time that the address translation for the
successive instruction will be obtained from the CFRs. On the
other hand, there are two ways by which the program execution
moves from one page to another: branch instructions whose tar-
get is in a different page; and two successive instructions strad-
dling a page boundary, that is, one is the last instruction of a
page, and the following instruction is the first instruction of the
next page (we refer to this as the BOUNDARY case). In the
first case, we try to analyse the target of branch instructions.
If a branch instruction is analysable, that is, its target address
can be determined at static time, and the target of the branch
instruction do not cross the page boundary, the corresponding
branch instruction is annotated with O to tell the hardware to
obtain the address translation from the CFRs for the target in-
struction. Otherwise, the branch instruction is annotated with 1
to tell the hardware to trigger an iTLB lookup for the address
translation of the instruction at the branch instruction’s target.
For the BOUNDARY case, the compiler always annotates the
preceding instruction with 1 to trigger an iTLB lookup for the
address translation for the succeeding instruction.

3. Reliable Address Translations in a
System with CFRs

In this section, we explain how reliable address translation
can be done in a system using our scheme. Figure 1 depicts
how our scheme works. The key issue of our scheme is that
where the address translation will be supplied from for an in-
struction is encoded into its immediately preceding instruction
using an empty bit slot. In Figure 1, this particular bit is denoted
by A (annotated bit). Although our scheme is explained here
for a scalar microprocessor (a microprocessor that is capable of
fetching and issuing only one instruction at a time), our scheme
can be extended to be applied to superscalar machines (micro-
processors that can fetch and issue more than one instruction
at simultaneously) in a natural way. The only requirement for
this is that cache blocks be aligned with page boundaries, that
is, a cache block stores instructions from only one page. Some
compilers meet this requirement by providing special pragmas
for this purpose. Since a cache block cannot span two pages,
the instructions fetched at once in a superscalar machine will
belong to the same page, thereby address translation for them
can be supplied from the same resource, either the iTLB or the
CFRs.

3.1. Error Detection

In our scheme, error detection during address translations is
done as follows. If the address translation is supplied form the
CFRs, their contents first compared. Since in our technique we
use two identical CFRs, it can be classified into the category of
NMR (N modular redundancy) at architectural level. However,
in contrast to traditional NMR approaches, such as triple mod-
ular redundancy [9], which introduces huge area overheads, the

Previous A PFN B PEN PB
R CFR1 [I]

Page

VPN Offset

Decoder

Block
Offset

Tag Index

Yes

to Register Files

Figure 1. Reliable addres translation for instructions in a sys-
tem with two CFRs.

area overhead of our technique is negligible, only the two CFRs.
As long as the contents of the two CFRs match each other, we
assume that we are using reliable address translations. There is
very little likelihood that two distinct soft errors corrupt exactly
the same bit positions in the two CFRs during a small time pe-
riod, which makes spatial multi-bit error detection possible. If
either the contents of the CFRs are different or the control flow
of the program moves to a different page (the A bit is 1), the
address translation is done via the iTLB as shown in Figure 1,
which provides strong coding for detecting spatial multi-bit er-
rors. Since the frequency of soft errors is rare and the frequency
of execution moving one page to another is very low, the per-
formance overhead caused by the error detection mechanism of
the iTLB will be negligible, as shown in our experiments next.

3.2. Error Correction

Whenever spatial multi-bit errors are detected in the CFRs,
by realizing that their contents are not the same, the iTLB
lookup is triggered by the hardware. Even if the entry stor-
ing the same address translation in the iTLB is also affected by
soft errors, the error correction mechanism of the iTLB can cor-
rect the corresponding multi-bit soft error, and then the iTLB
and the CFRs are updated with the corrected address transla-
tion. Since the error correction mechanism of the iTLB, like the
error detection mechanism, is exercised very infrequently, there
will be negligible overheads in terms of performance and power
consumption as well.

4. Experimental Setup

We evaluated our technique by modifying the SimpleScalar
3.0 simulator [10]. As a commonly used tool set in academic
circles, SimpleScalar can simulate application programs on a
range of processors and systems using a fast execution-driven
simulation, and outputs execution statistics, such as the dynamic
number of accesses to components in the memory hierarchy as
well as execution cycles. In this study, the sim-outorder compo-
nent of the SimpleScalar tool set was modified to simulate the
integration of our technique into an Alpha-like platform. All
compiler analyses regarding extracting the CFG and determin-

764

Table 1. Major processor configuration parameters and their
values used in our experiments.

Processor Core

Functional Units 4 Integer ALUs, 2 Integer mult./divide,
4 FP add, 2 FP multiply, 2 FP divide/sqrt
256 instructions

64 instructions

4 instructions/cycle

8 instructions

RUU size

LSQ size
Fetch/Decode/Issue/Commit width
Fetch queue size

Cache and Memory Hierarchy

L1 instruction cache 64KB, 4-way (LRU), 64 byte blocks,
three stage pipelined with 3-cycle latency
64KB, 4-way (LRU), 64 byte blocks,

three stage pipelined with 3-cycle latency

L1 data cache

L2 cache 8MB unified, 8-way (LRU),

128 byte blocks, 12-cycle latency
Memory 300-cycle latency
Page size 8K

Branch Prediction

Branch predictor Combined, Bimodal 4K table, 2-level 2K table,
8-bit history, 4K chooser
Branch target buffer (BTB) 4K-entry, 4-way

Return-address stack 32

Table 2. Benchmarks used in our experiments and their impor-
tant characteristics.

Benchmark Number of Execution Number of iTLB
Name Cycles (in millions) Accesses (in millions)
lucas 278.93 236.24

apsi 210.51 189.12

vpr 435.30 307.14

crafty 254.15 150.76

soplex 130.27 109.44

tonto 180.91 107.59

mcf 612.61 548.34

astar 212.18 143.05

ing the type of branch instructions as well were done based on
pre-compiled Alpha binaries.

In our experiments, we considered a three-stage pipelined
cache model which was suggested in [11]. According to this
model, set address is decoded in the first stage. Wordline driv-
ing, bitline precharging, and monitoring the voltage difference
between a pair of bitlines by sense amplifiers take place in the
second stage. Driving the output multiplexors and the selected
data out of the cache is carried out in the last stage. Since Sim-
pleScalar only simulates nonpipelined caches, we modified its
cache.c and cache.h components to handle pipelined caches.

Table 1 lists the major simulation parameters of our target
processor. Our simulated microprocessor is four-issue super-
scalar machine capable of executing Alpha-like ISA. In our ex-
perimental results, we used lucas, apsi, vpr, and crafty appli-
cations from the SPEC2000 suite and soplex, tonto, mcf, and
astar from the SPEC2006 suite [12]. Since it takes very long
time to run any of these applications to completion in the simu-
lation platform taken into consideration, we used the SimPoint
Analysis Toolkit [13] to generate some simulation points. The
SimPoint Analysis Toolkit is a collection of tools and can be
integrated with the SimpleScalar simulator to determine where
the simulator should spend its time to get fast, accurate, and
representative results. For each benchmark, we fast forwarded
a specific number of instructions, as suggested by Sherwood et
al. [13], and then simulated the next 500 million instructions on
predetermined simulation points.

Table 3. The percentage of CFR updates for each application
program with the CFR Scheme.

Benchmark | Number of CFRs
Name Updates
lucas 1.67%

apsi 1.05%

vpr 2.80%
crafty 3.87%
soplex 4.14%

tonto 3.07%

mcf 3.48%

astar 5.62%

Table 2 lists the number of execution cycles and the number
of iTLB accesses for these benchmarks under the configuration
parameters listed in Table 1.

5. Experimental Results

Before presenting our experimental results, we want to ex-
plain three experimental setups whose results are under consid-
eration.

e Base Scheme: This reflects the case where soft errors
do not pose any threat —even single-bit soft errors are
not a concern— so the iTLB is not protected against soft
errors. This setup corresponds to ideal case. The results
given in Table 2 belong to this scheme. We compare the
experimental results of other schemes to those of it and
assess them accordingly.

o [TLB with strong coding (iTLB-SC Scheme): The iTLB is
protected with some error coding technique against soft
errors, such as DECTED, TECQED or any other strong
coding. Since in each iTLB access the data read out is
checked with error detecting codes, one extra cycle delay
is incurred. Thus, in this setup we assume that each iTLB
access completes in two cycles.

o CFR Scheme: It is our proposed scheme in this study.
As discussed before, there are two identical CFRs in the
hardware, and these two CFRs always keep the same
virtual-to-physical address translation, which is the cur-
rent translation. If the execution stays in the current
page, they provide the address translations. Error check-
ing is done by comparing their contents. As long as
the execution stays in the same page and their contents
match, the address translation takes only one cycle, as in
the Base Scheme. Otherwise, the iTLB is accessed and
the address translation completes in two cycles, as in the
iTLB-SC Scheme. As will be explained next, since pro-
gram execution moves from one page to another very in-
frequently and soft errors are very rare events, an address
translation takes just one cycle in the common case.

The percentage of CFR updates for each application pro-
gram with the CFR Scheme is shown in Table 3. These values
in the table also correspond to the frequency of program control
flow moving from one page to another during the run-time. It is
clear that, for each benchmark, the program execution stays in
the same page with a great probability.

The performance effects of protecting the iTLB against spa-
tial multi-bit soft errors are indicated in Figure 2. In the iTLB-
SC Scheme, due to code checking, each iTLB access takes one

765

COBase MITLB-SC

-
N
o

.
o
w

-

=

S)
L

=

o

@
L

-

o

=]
L

©
«
I

Normalized Execution Cycles

lucas apsi vpr crafty soplex tonto mcf astar

Figure 2. Normalized execution cysles when the iTLB is pro-
tected against spatial multi-bit errors with strong error detect-
ing/correcting codes. Each iTLB access takes one extra cycle
for checking soft errors.

[COBase MCFR

N
o
o

-
o
=

100

©
©
I

Normalized Execution Cycles

lucas apsi vpr crafty soplex tonto mcf astar

Figure 3. Normalized execution cysles when the iTLB is pro-
tected against spatial multi-bit errors when the CFR Scheme is
applied. As long as the program execution stays in the sama
page, there is no performance loss in address translations.

extra cycle, completing in two cycles. Delaying address trans-
lations for instructions in turn extends the time required for
instruction cache accesses, resulting in performance degrada-
tion. As can be seen from Figure 2, this performance loss can
be as much as 16.2% for the soplex benchmark. The average
performance loss caused by checking spatial multi-bit soft er-
rors is around 12.1%, which is not acceptable, particularly for
high performance microprocessors. This makes performance-
efficient soft error checking mechanisms a necessity for fre-
quently accessed SRAM-based structures like the iTLB.

The performance values of the CFR Scheme are given in
Figure 3. All values in the figure are normalized with respect
to those of the Base Scheme. When we compare these values
with those presented in Figure 2, we can reach the following
conclusions. First, if the iTLB is integrated with the proposed
CFR Scheme, there will be a huge performance improvement in
address translations for any benchmark. For example, the per-
formance losses for lucas is 13.8% and 0.9% when the iTLB-SC
Scheme and the CFR Scheme are employed, respectively. Sec-
ond, when our scheme is used, there are only two application
programs (soplex and astar) among the eight tested benchmarks
whose performance degradation introduced by checking spatial
multi-bit errors is greater than 1%. Third, while the average
performance loss with the iTLB-SC scheme is around 12.1%,
the average performance loss is around 0.7% when the CFR
Scheme is employed.

OBase MCFR

=
o
]

=
o
=4

=
o
[S]

©
©

Normalized Execution Cycles

lucas apsi vpr crafty soplex tonto mcf astar

Figure 4. Normalized execution cysles of the CFR Scheme
when the page size is raised to 16 KB.

To observe the sensitivity of the performance results of our
CFR Scheme to larger page sizes, we repeated some of our ex-
periments for 16 KB page size. Since the page sizes larger than
16 KB are rarely adopted, we carried out the experiments only
for 16 KB page size. The normalized performance results of
the iTLB-SC Scheme varied negligible, so here we only show
the performance results of the CFR Scheme. The results are
depicted in Figure 4. The performance of the CFR Scheme, in
general, improves for each benchmark when the page size is in-
creased to 16 KB. The reason for this is that the frequency of
program control flow moving one instruction page to another
decreases with increasing page sizes, which improves the effi-
ciency of the CFR Scheme.

6. Conclusions

High energetic particle strikes can change the charge stored
in SRAM cells, causing them to flip their outputs. To make
matters worse, the rate of spatial multi-bit errors have been
increasing in concurrent with future technology generations.
The traditional data protection mechanisms are, in general, do
not provide effective solutions to the problem of spatial multi-
bit errors, largely because of their performance, area and/or
power consumption overheads. This is correct especially for
frequently accessed microprocessor units, such as the first level
caches and TLBs. In this study, we try to make address trans-
lations for instructions reliable without compromising on per-
formance degradation, area overhead, or power consumption.
Our proposal consists of having the two CFRs supply address
translations under the control of software as long as the pro-
gram control flow remains in the current page. To this end, the
control flow of applications are extracted and an empty bit slot
in instructions is used to encode where the next address transla-
tion must be obtained, that is, either the CFRs or iTLB. When
address translation is obtained from the CFRs, reliable address
translation is done by comparing their contents. The reliable
address translation is possible since it is extremely rare that two
different particle strikes affect the exactly the same bit positions
in these two registers. Instruction pages present great locality,
so the control flow of programs moves from one page to another
infrequently, which allows translations to be supplied from the
two CFRs with a great probability. Whenever the program exe-
cution moves to another page, which is detected by the hardware
by examining the preceding instruction’s associated bit, the ad-
dress translation is obtained from the iTLB. At the same time,
the contents of the CFRs are also updated with this translation
to allow them to provide address translations in the next. Even

766

if the iTLB is protected against spatial multi-bit soft errors with
a strong coding technique, it does not pose any concern from
the performance point of view because of huge locality in in-
struction pages. Our experimental results are quite promising,
and indicate that while the average performance loss in a sys-
tem with the iTLB protected against soft errors with a traditional
strong coding is around 12.1%, the average performance loss is
less than 1% when the CFRs are employed.

7. References

[1] S.S. Mukherjee, J. Emer, and S.K. Reinhardt, “The soft
error problem: an architectural perspective”, Proc. of the
International Symposium on High-Performance Computer
Architecture, 2005, pp. 243-247.

T. Calin, M. Nicolaidis, and R. Velazco, "Upset hardened
memory design for submicron CMOS technology”, IEEE
Transactions on Nuclear Science, vol. 43, no. 6, pp: 2874-
2878, 1996.

D.K. Pradhan, “Fault-tolerant Computer System Design”,
Prentice-Hall, second print, 2003.

C. Weaver, J. Emer, S.S. Mukherjee, and S.K. Reinhardt,
”Techniques to reduce the soft error rate of a high perfor-
mance computer”, Proc. of the International Symposium on
Computer Architecture, 2004, pp. 264-275.

B. T. Gold, M. Ferdman, B. Falsafi, and K. Mai, "Mitigat-
ing multi-bit soft errors in L1 caches using last-store pre-
diction”, Proc. of the International Workshop Architectural
Support for Gigascale Integration, 2007, pp. 11-18.

K. Osada, K. Yamaguchi, Y. Saitoh, and T. Kawahara,
”SRAM immunity to cosmic-ray-induced multierrors based
on analysis of an induced parasitic bipolar effect”, IEEE
Journal of Solid-State Circuits, vol. 39, no. 5, pp: 827-833,
May 2004.

I. Kadayif, P. Nanth, M. Kandemir, and A. Sivasubrama-
niam, "Reducing data TLB power via compiler-directed ad-
dress generation”, IEEE Transactions on Computer-Aided
Design of Integrated Circuit and Systems, vol. 26, no. 2, pp.
312-324, February 2007.

I. Kadayif, M. Turkcan, S. Kiziltepe, and O. Ozturk, ”Hard-
ware/software approaches for reducing the process varia-
tion effect on instruction fetches”, ACM Transactions on
Design Automation of Electronic Systems, vol. 18, no. 4,
October 2013.

C. Carmichael, "Triple modular redundancy design tech-
niques for virtex FPGAs”, Xilinx Application Notes,
XAPP197 (v1.0.1), pp. 1-37, July 2006.

[10] SimpleScalar LLC, http://www.simplescalar.com.

[11] Z. Chishti and T. N. Vijaykumar, "Wire delay is not a
problem for SMT (in the near future)”, Proc. of the Inter-
national Symposium on Computer Architecture, 2004, pp.
40-51.

[12] SPEC2000 and
http://www.spec.org.

[13] T. Sherwood, E. Perelman, and B. Calder, ”Basic block
distribution analysis to find periodic behaviour and simula-
tion points in applications”, Proc. of the International Con-
ference on Parallel Architectures and Compilation Tech-
niques, 2001, pp. 3-14.

[2

—

(3]

(4]

(]

(6]

(7]

(8]

[91

SPEC2006 Benchmark Suites,

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

