
Digital
Oscilloscope

Adapter unit for a
PC

Final Report

 BY :

 Dursun BARAN / Murat KEBELİ

 Ahmet TUTUŞ /Ömer Faruk ÖZDEMİR

 Submitted to :

 EMO(İstanbul Branch)
 Due to :

 June 21th, 2007
 Principal Investigator :
 Prof. Avni MORGÜL
 Co-Principal Investigators :
 Prof. Ömer Cerid

 Asc. Prof. Şenol Mutlu

A report submitted for EE491 (or EE492) senior design

project class in partial fulfillment of the requirements for
the degree of Bachelor of Science

(Department of Electrical and Electronics Engineering) in
Boğaziçi University

 i

PC İÇİN SAYISAL OSİLOSKOP ADAPTÖRÜ

Murat KEBELİ

Ahmet TUTUŞ

Ömer Faruk ÖZDEMİR

Dursun BARAN

Prof. Avni MORGÜL

21 Haziran 2007

EMO İstanbul Şubesi

 ii

1) GİRİŞ

Projenin en temel amacı analog bir sinyali gerçek zamanlı olarak bilgisayar ortamında
görebilmektir. Analog sinyal digital karşılığına çevrildikten sonra USB üzerinden
bilgisayara aktarılır ve çizdirme işlemi yapılr.Çizdirme işlemi devamlı ve kullanıcının
rahatlıkla takip edebileceği bir şekilde yapılır. Projenin diğer önemli bir amacı
aktarılan bilgi paketlerinin bilgisayar ortamında kayıt edilebilmesi ve daha sonra
tekrar bilgisayar üzerinde kullanılabilmesidir.

Tasarlanan ürünün hem taşınabilir olması hem de USB’ den beslenebilir olması,
ürünü önceki ölçüm aletlerinden farklılaştıran iki özelliğidir. Elektronik derslerinde
kullandığımız ölçüm aletleri dışardan beslenmesi gereken ve taşınması oldukça güç
olan tasarımlardır.

Proje kapsamında kullanıcının rahatlıkla öğrenebileceği ve birçok işlemi rahatlıkla
yapabileceği bir kullanıcı arayüzü geliştirildi. Zaman(time) ve büyüklük(magnitude)
eksen ölçeği değiştirme, ekrandaki sinyali dondurma ve tekrar çizdirmeye devam
etme, aktarılan sinyali aynı zamanda kaydetme ve daha önce kaydedilen sinyali tekrar
okuma gibi daha bir çok işlem arayüz sayesinde yapılabilmektedir.

Projenin gerçeklenmesinde ilk olarak, yoğun bir araştırma süreci yaşadık ve bu
süreçten sonra blokları belirledik ve her bloğu ayrı ayrı çalıştırdık ve test ettik.
Blokların gerçeklenmesi bittikten sonra, blokları birbirine bağladık ve ürünün son
halini test ettik. Ürünün problemli taraflarını tespit ettik ve bunları gerekli
diğişiklikleri yaparak düzelttik.

Proje gerçeklenmesi sürecinde, gömülü C(embedded C), Eagle and C# programları
kullanılmıştır.

2) DONANIM

Giriş bölümde bahsedildiği üzere proje iki ayrı ana koldan oluşmaktadır. Birincisi
olan donanım bu bölümde anlatılacaktır. Aşagıdaki figürde donanım blok
diagramı verilmiştir.

 iii

Giriş sinyalinin büyüklüğünü ADC’ye uygun hale getirmek için sinyal ilk olarak
zayıflatıcıya(attenuator) girer. Zayıflatıcı en basit anlamda, sinyalinin büyüklüğünü
belli oranda küçültür. Zayıflatıcı, büyüklüğü fazla olan sinyaller için kullanılır.

İkinci basamak olarak, sinyal kazanç katına girer. Bu katın tasarım amacı, büyüklüğü
oldukça az olan sinyalleri daha iyi örneklenmesini ve aktarılmasını sağlamaktır.
Kazanç katından çıkan sinyal diferansiyel kazanç katına girer. Bu katın kazançı 1’dir
ve gelen sinyale DC potansiyel ekler. Devrede kullanılan ADC pozitif kaynaktan
beslenmekte ve negatif sinyalleri örneklemek için diffarensiyel katına ihtiyaç
duyulmaktadır.

Diferansiyel katın çıktısı ADC’ye girer ve örnekleme işlemi başlar. Örnekleme işlemi
clok ile yapılır ve clock dışardan verilir. Diferansiyel kazanç katının çıktısı ADC’nin
giriş sinyal sahasına uygun olmalıdır. Bu şart, zayıflatıcının ölçeğini ayarlayarak
sağlanabilir. ADC 10 bit sayısal çıktı verir.

ADC’nin çıktısı USB mikrodenetleyiciye girer. ADC’den gelen sayısal çıktılar
mikrodenetleyicideki hafızaya(FIFO) yazılır ve burdan paketler halinde bilgisayara
USB üzerinden aktarılır. ADC çıktısının hafızaya yazılma işlemi clok ile olur ve bu
clock mikrodenetleyici tarafından üretilir. ADC’nin kullandığı clock
mikrodenetleyicinin kullandığı clock’un ters çevrilmiş(inverted) halidir. USB
mikrodenetleyicinin çıktısı(D+ ve D-) USB bağlayıcı ile bilgisayarın USB port’una
bağlanır.

2) FİRMWARE

USB mikrodenetleyicinin hafızasına sayısal çıktıları yazma, yazılan bilgileri
kaybetmeden bilgisayara aktarma, bilgisayar ile uygun bir iletişim yolu oluşturma gibi
işleri yerine getirmek için USB mikrodenetleyici uygun bir kod ile
programlanmalıdır. Bu görevleri yerine getirmek için firmware geliştirildi ve bu kod,
ürünü kullanmadan önce USB mikrodenetleyiciye gömülmelidir. Gömülme işlemi

 iv

USB üzerinden, geliştirilmiş olan kullanıcı arayüzü ile çok kısa bir sürede
yapılabilmektedir. Aşağıda USB kısmın blok digramı verilmiştir.

Geliştirilmiş olan kod, USB üzerinden USB mikrodenetleyicinin RAM’ine yazılır ve
kod buradan koşmaya başlar. USB mikrodenetleyicinin hafızasına(FIFO) yazılmış
olan sayısal bilgiler ‘CY USB 1.1/2.0 Engine’ ve ‘USB 2.0 XCVR’ ile uygun D+ ve
D- sinyallerine çevrilir ve bu sinyaller ile bilgi aktarımı sağlanmış olur. Firmware, bu
aktarılma işlemini kontrol eder ve gerekli olan yerlerde müdahale eder.

4) YAZILIM

Projenin diğer önemli kolu yazılımdır. Proje kapsamında, uygun bir yazılım
geliştirilmiş ve bu yazılım sayesinde USB üzerinden gelen bilgiler okunarak uygun
şekilde ekrana bastırılabilmektedir. Yazılım geliştirme ortamı olarak C# dili
kullanılmıştır. Donanım ile haberleşmek için uygun bir sürücü dosyası gerekmektedir
ve bu dosya USB mikrodenetleyici üreticisi(Cypress Semiconductor) tarafından
sağlanmaktadır.

Geliştirilmiş olan kullanıcı arayüzü sayesinde, kullanıcı USB mikrodenetleyiciyi
kolayca programlayabilmekte ve ürünü kullanıma hazır hale getirebilmektedir. USB
mikrodenetleyiciye gömülecek kod .HEX uzantılı olmalıdır ve uygun .HEX file
geliştirilmiş ve yazılım ile birlikte verilmektedir.

Kullanıcı arayüzü öğrenmesi ve kullanması kolay olacak şekilde tasarlanmış ve aynı
zamanda fonksiyonel olmasına dikkat edilmiştir. Kullanıcı gerçek zamanlı olarak
sinyali ekranda görebilmekte ve istediği zaman ekranı dondurabilmektedir. Dondurma
işleminden sonra istediği zaman gerçek zamanlı aktarma işlemine devam
edebilmektedir. Büyüklük ve time ekseni en uygun olacak şekilde kullanıcı tarafından
ölçeklendirilebilmektedir.

 v

Gerçek zamanlı aktarılan sinyal bilgisayara kaydedilebilmekte ve daha sonra bu sinyal
tekrar arayüz sayesinde kullanılabilmektedir. Kayıt yapılacak yer kullanıcı tarafından
belirlenir ve kullanıcı durdurana kadar kayıt işlemi devam eder. Kayıt edilen bilgi
paketi sayısı kullanıcıya bildirilir. Kayıt edilmiş bir sinyal, kullanıcı arayüzünü
kullanarak açılabilmekte ve gerçek zamanlı bir şekilde çizdirilmektedir. Gerçek
zamanlı aktarma işleminde kullanılabilen bütün fonksiyonlar açma işleminde de
kullanılabilmektedir.

5) SONUÇ
Projenin sağlayacağı en önemli faydalardan bir tanesi, ölçmek istenilen bir sinyal
bilgisayarda görülebilecek ve gelen sinyal üzerinde istenilen değişiklik kolayca
yapılabilecektir. Ölçülen sinyalin birçok özelliği otomatik olarak bilgisayar tarafından
hesaplanabilecek ve bu sayede hesaplama hataları büyük ölçüde aşılabilecek.

Diğer bir önemli faydası, ölçülen sinyalin bilgisayar ortamında kaydedilebilmesidir.
Bu sayede, kaydedilen bir sinyal daha sonra tekrar açılarak çizdirebilmektedir.
Bilgisayar ortamında bilgi aktarımı oldukça kolay bir işlem olduğundan, kaydedilen
bilgiler kolayca farklı ortamlara taşınabilmekte ve farklı yerlerde kullanılabilmektedir.
Taşıma işlemi sırasında herhangi bir bilgi kaybı olmadığından çizdirme kalitesi
düşmemektedir.

Ürünün kolayca taşınabilir ve USB üzerinden beslenebilir olması, ürünün kullanılması
kolay kılan özelliklerdendir. Bu sayede, ölçüm işleri kolayca ve kısa sürede
sonuçlandırılabilmektedir.

Ürünün son hali test edildi ve başarılı sonuçlar elde edildi. Sinyal üreticisi ile
sinüs,üçgen ve kare dalga elde edildi ve bu sinyaller, kullanıcı arayüzü kullanılarak
çizdirildi. Aynı sinyaller analog osiloskop ile de ölçüldü ve elde edilen çizimler
karşılaştırldı. Çizimlerin yaklaşık aynı olduğu ama bilgisayardan elde edilen çizimler
üzerinde küçük karıncalanmalar olduğu tespit edildi. Bu karıncalanmaların devreden
kaynaklanan gürültülerden olduğu anlaşıldı.

Giriş sinyalinin frekansı ve büyüklüğü değiştirilerek, bilgisayar üzerindeki değişimler
gözlendi. Ürünün tepki süresi, kabul edilebilir sınırlar içerisinde olduğu belirlendi.
Uygulanan sinyallere ofset verilerek, bilgisayar üzerindeki değişim gözlendi ve doğru
sonuçlara ulaşıldı.

 vi

ACKNOWLEDGEMENTS

This special project which is given by the department of Electrical and Electronics
Engineering aims to increase the experience of the students. First, it is a necessity to
state the desire and diligence of each group member to the project. Each group
member spends a large amount of efforts and time on this project and therefore, we
thank all group members for their continuous contribution to the project. All barriers
that we have encountered overcame by means of the involvement of the group
members and it is clear to comprehend what each member of the group worked for the
sake of the success of the project.

First, we appreciate the endless contribution of the principal investigator Prof. Avni
Morgül to the project. He was always available to ask questions about the project and
he has an incredible amount of the experience about the schematic drawings and PCB
preparation process. Our project necessitates a complex layout and we could not
overcome the problems about the PCB without the support of Prof. Avni Morgül.

We thank to the co-principal investigator Prof. Ömer Cerid for his supports about the
code writing and circuit schematic drawings. He is an expert about the
microcontroller programming and the circuit construction and it is unbelievable
chance for us to become a member of this project. He has provided insights about the
solution of the problems to us, and his suggestions always responded our questions.
We also appreciate the help of Mr. Cerid in choosing the components of our
hardware.

We think that it is important to point that the component support of some IC
producers are pleased us. Maxim-IC, Cypress, Analog Devices and Texas-Instruments
are our IC suppliers and none of them want any payment for their support.

Finally, we want to thank to Prof. Şenol Mutlu for his help about the documentation
and report format. He always supported us about which way we should follow to
overcome the barriers. He has always found enough time and effort for our questions.

 vii

ABSTRACT

This project aims to solve the problem of the reading and the storing of an analog
signal. As we know from our electronic courses, the reading an analog signal is a
quite important problem. In order to solve the problem of reading and the storing of
the analog signal, we try to design an adapter unit that is capable of the transferring
of analog data to computer in digital form via USB interface. In addition to data
transfer, our design includes adjustments of the received data.

The approach that we have followed is first search, then implement and finally test the
device. Therefore, we conducted a big amount of research about the project and then,
we tried to construct the blocks of the implementation and finally we constructed the
blocks. After this step, we tried to connect each blocks in order to complete the
untested implementation. Eventually, we test the device to see faulty sides of the
implementation and makes changes if necessary.

In the implementation of the blocks, we have made use of some the programs namely
embedded-C(C18), layout program(Eagle) and object oriented program (C#). The
outputs of each block were measured by an analog oscilloscope and a debugger.

 viii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. I

ABSTRACT..VII

TABLE OF CONTENTS ..VIII

LIST OF FIGURES ..X

LIST OF TABLES ...XII

LIST OF APPENDICES ...XIII

INTRODUCTION..1

CHAPTER 1: HARDWARE IMPLEMENTATION2

1.1. OVERALL WIEV OF HARDWARE..2

1.2. DC-TO-DC CONVERTER...3

1.3. BUFFER..5

1.4. AMPLIFIER WITH A GAIN...6

1.5. DIFFERENTIAL AMPLIFIER ...9

1.6. ANALOG TO DIGITAL CONVERTER ..10

1.7. PRINCIPLES OF OPERATION..12

1.8. PCB LAYOUT ...22

1.9. TEST RESULTS ..25

CHAPTER 2: USB FIRMWARE...26

2.1. GENERAL USB SPECIFICATIONS..26

2.2 USB 2.0 VERSUS USB 1.1:..27

2.3 DATA BANDWIDTH...27

2.4 ENUMERATION..29

2.5 USB DESCRIPTORS ...31

2.6. ENDPOINTS ..33

CHAPTER 3: EZ-USB DEVELOPMENT KIT CY3684...37

3.1. CY7C68013A:...38

3.2. EZ-USB FIRMWARE...40

CHAPTER 4:USER INTERFACE ..46

 ix

4.1. WHY .NET ENVIRONMENT AND C#..46

4.2. CYPRESS LIBRARIES ..46

4.3. SOME SCREENSHOTS FROM THE GUI..47

4.4. ALGORITHM..51

APPENDICES..56

APPENDIX A:FIRMWARE CODE..567

APPENDIX B: INTERFACE CODE...85

APPENDIX C: SCHEMATIC..116

BIBLIOGRAPHY..119

 x

LIST OF FIGURES

Figure 1.1.1: OVERALL BLOCK DIAGRAM OF HARDWARE IMPLEMENTATION............................3

Figure 1.2.1: PIN DIAGRAM OF MAX660 AND ITS CONFIGURATION FOR +5V TO -5V

CONVERSION ...4

Figure 1.3.1: PIN DIAGRAM OF OPA656 AND ITS CONFIGURATION FOR

A UNITY-GAIN BUFFER ...5

Figure 1.4.1: PIN DIAGRAM OF OPA657 AND ITS CONFIGURATION FOR A LP FILTER OF

GAIN 10V/V...7

Figure 1.5.1: THS4141 PIN DIAGRAM ..9

Figure 1.5.2: THS4141 CONFIGURATION TO DRIVE AN ADC...9

Figure 1.6.1: PIN DIAGRAM OF THS1030 ADC ...11

Figure 1.6.2: PIN DESCRIPTIONS OF THS1030 ...12

Figure 1.7.1: ANALOG INPUT SIGNAL FLOW ..13

Figure 1.7.2: OPERATION OF THS1030 ..13

Figure 1.7.3: OUTPUT ENABLE TIMING DIAGRAM..14

Figure 1.7.4: THE SUMMARY OF MODES OF OPERATION OF THS1030 ...16

Figure 1.7.5: REFTF AND REFBF REFERENCE VOLTAGES OF THS1030...16

Figure 1.7.6: DIFFERENTIAL MODE 2V REFERENCE VOLTAGE CONFIGURATION OF

THS1030 ...17

Figure 1.7.7: EFFECTIVE NUMBER OF BITS OF SAMPLING FREQUENCY GRAPH18

Figure 1.7.8: CIRCUIT DIAGRAM ...21

Figure 1.8.1: PCB LAYOUT OF CIRCUIT..24

Figure 1.9.1: -3dB FREQUENCY GRAPH ..25

Figure 2.5.1: USB DESCRIPTOR TREE ...32

Figure 2.6.1: LOGICAL ENDPOINT CONNECTION TREE ...33

Figure 3.2.1: USB SYSTEM.. 40

 xi

Figure 3.2.2:IFCLK CONFIGURATION ...42

Figure 3.2.3: USED CLOCKS BY THE EXTERNAL INTERFACE AND ADC42

Figure 3.2.4: PROGRAMMING WARNING MESSAGE .. .44

Figure 3.2.5: DEVICE REMOVAL MESSAGE...45

Figure 3.2.6: DEVICE ARRIVAL MESSAGE...45

Figure 4.3.1: INITIAL PAGE OF THE GUI...47

Figure 4.3.2: GUI WHEN ACQUIRE BUTTON IS CLICKED...48

Figure 4.3.3: GUI WHEN CURSOR BUTTON IS CLICKED...48

Figure 4.3.4: GUI WHEN DISPLAY BUTTON IS CLICKED..49

Figure 4.3.5: GUI WHEN DISPLAY TYPE BUTTON IS CLICKED...49

Figure 4.3.6: GUI WHEN DISPLAY GRID-AXIS BUTTON IS CLICKED...50

Figure 4.3.7: GUI WHEN PROGRAM FX2 ITEM IS CLICKED ...50

 xii

LIST OF TABLES

Table 3.2.1: IFCONFIG REGISTER41

Table 3.2.2:EP2CFG ...43

Table 3.2.3: ENDPOINT TYPE..43

Table 3.2.4: BUFFERING...43

 xiii

LIST OF APPENDICES

Appendices

Appendix A:FIRMWARE CODE.. .57

Appendix B:INTEFACE CODE ...85

Appendix C:SCHEMATIC ...116

 1

INTRODUCTION

This project aims to solve the problem of the reading and the storing of an analog

signal. As we know from our electronic courses, the reading an analog signal is a quite

important problem. In order to solve the problem of reading and the storing of the analog

signal, we try to design an adapter unit that is capable of the transferring of analog data to

computer in digital form via USB interface. In addition to data transfer, our design includes

adjustments of the received data.

The approach that we have followed is first search, then implement and finally test the

device. In last semester, we conducted a big amount of research about the project and then, we

tried to construct the blocks of the implementation and finally we constructed the blocks.

After this step, we tried to connect each blocks in order to complete the untested

implementation. After the implementation of all blocks, we made all tests of our circuit last

semester and now, we are aware of the impossibility of implementing all of the circuit without

any mistake or error. Therefore, this semester we changed our problem solving approach. We

began to implement independently each block of the circuit and test each block independent

of other blocks. This method provides us with finding the source of the problem easily if it

occurs, and changing it without affecting other parts of the circuit. Eventually, we test the

each block of our circuit to see faulty sides of the implementation and makes changes if

necessary.

In the implementation of the blocks, we have made use of some the programs namely

C# (object oriented programming language) and layout program (Eagle). Overall Flow Chart

of the signals and system is below:

 2

CHAPTER 1: HARDWARE IMPLEMENTATION

1.1. OVERALL WIEV OF HARDWARE

In the first semester, the circuit we designed didn’t work although we made lots of

changes on it. Therefore, we thought we should change it before it is too late. The problems

we have investigated in that circuit were the amplifier and ADC. The amplifier was giving

different results when we fed it from a different source (We mean with a different source, in

fact, inputs having different resistances). This is actually a result of lack of a buffer. We, then,

thought that we should use a buffer in order input not to change for different sources. The

problem with ADC was more severe but, we could never make it work. After a detailed

analysis of ADC’s on the internet, we found that most of ADCs need amplifiers in order to

work properly. With amplifiers, we add common mode voltages to ADCs because again most

of ADCs do not convert negative voltages. Their ranges are generally defined positive, e.g., 0-

2V. So, because we want to convert analog voltages in the range between -1 and +1 V, we

should add at least +1V (It depends on other things also.) common mode voltage to incoming

voltage. With these two big problems, it seemed to us, we should create a new PCB by taking

into consideration these problems and solutions we found for those problems.

We designed a new circuit with 5 main blocks: An attenuator, a buffer, an amplifier

for gain, a DC-to-DC converter, a differential amplifier in order to add a common mode

voltage to ADC, an ADC.

 3

The block diagram of new circuit is shown below.

Figure 1.1.1: Overall Block Diagram of hardware implementation.

Up to now, we mentioned about why we needed to design a new circuit for our project

and how we implemented this circuit. Now we are going to analyze the main blocks of new

circuit in detail.

1.2. DC-TO-DC CONVERTER

In real life, we don’t have negative power supplies. Therefore, we have to convert

positive power supply to negative, because most of our components work with dual supplies.

For this purposes, we used MAX660 converter of Maxim Integrated Products which is used to

convert +5V to -5V.

 4

Below are the characteristics of this IC.

• 0.65V Typical Loss at 100mA Load
• Low 120µA Operating Current
• 6.5Ω Typical Output Impedance
• Guaranteed ROUT < 15 Ω for C1 = C2 = 10µF
• Inverts or Doubles Input Supply Voltage
• Selectable Oscillator Frequency: 10kHz/80kHz
• 88% Typical Conversion Efficiency at 100mA (IL to GND)

As is seen from its characteristics it is a very suitable IC for our purposes. Below are

its pin diagram and configuration for +5V to -5V conversion.

Figure 1.2.1: Pin Diagram of MAX660 and its configuration for +5V to -5V conversion.

Although we used it to convert +5V to -5V, MAX660 voltage inverter can convert a

+1.5V to +5.5V input to a corresponding -1.5V to -5.5V output. With a typical operating

current of only 120µA provides ideal performance for board level voltage conversion

applications. MAX660 can also double the output voltage of an input power supply.

1

1

+5V

Power Supply

 5

A frequency control (FC) pin which we didn’t use selects either 10kHz or 80kHz

(40kHz min) operation to optimize capacitor size and quiescent current. The oscillator

frequency can also be adjusted with an external capacitor or driven with an external clock.

As we stated in its characteristics, depending on the load, the error of the output

voltage of MAX660 changes. Therefore, we thought it is better to measure what it gives

actually. Below is the result.

Vout = 4.80V

1.3. BUFFER

As we discussed before, a buffer to the input of the circuit is necessary because of

loading effect. We used an OPAMP in voltage follower mode. The Op-Amp we used is

OPA656 IC of Texas Instruments.

Below are the characteristics of this IC.

• 500MHz Unity-Gain Bandwidth
• Low Input Bias Current: 2pA
• Low Offset and Drift: ±0.25mV, ±2μV/ºC
• Low Distortion: 74dB SFDR at 5MHz
• High Output Current: 70mA
• Low Input Voltage Noise: 7nV/√Hz

It is a very suitable Op-Amp for our circuit. (High bandwidth, low input bias current,

offset voltage and distortion, etc.) Below is its pin diagram and configuration for a unity gain

buffer.

 6

Figure 1.3.1: Pin Diagram of OPA656 and Its Configuration for a Unity-Gain Buffer.

The OPA656 combines a very wideband, unity-gain stable, voltage-feedback Op-Amp

with a FET-input stage to offer an ultra high dynamic-range amplifier. Extremely low DC

errors give good precision in applications. The high unity-gain stable bandwidth and JFET

input allows exceptional performance in high-speed. The high input impedance and low bias

current provided by the FET input is supported by the ultra-low 7nV/√Hz input voltage noise

to achieve a very low integrated noise in wideband applications. Broad transimpedance

bandwidths are achievable given the OPA656’s high 230MHz gain bandwidth product.

1.4. AMPLIFIER WITH A GAIN

This part is needed because of 2 reasons. First reason is to amplify small signals. In

order to display small signals in the μV range more accurately we have to amplify them.

Other reason is that we need a LP filter to prevent aliasing in the circuit. As we will see in

ADC part, ADC can work up to 30Msps. Therefore, signals with frequency of greater than

15MHz will cause aliasing according to well-known sampling theorem. Consequently, in this

amplifier, we implemented both a gain of 10V/V and a LP filter of 20MHz cut-off frequency.

The amplifier we designed is a multiple feedback LP filter which is a commonly used

amplifier.

 7

To implement this amplifier, we used OPA657 Op-Amp of Texas Instruments. It is

almost the same as OPA656 which we used to implement a buffer.

Below are the characteristics of this IC.

• High Gain Bandwidth Product: 1.6GHz
• High Bandwidth: 275MHz (G = +10V/V)
• Low Input Offset Voltage: ±0.25mV
• Low Input Bias Current: 2pA
• Low Input Voltage Noise: 4.8nV/√Hz
• High Output Current: 70mA
• Fast Overdrive Recovery

It is a very suitable Op-Amp for our circuit. (High bandwidth, low input bias current,

offset voltage and distortion, etc.) Below is its pin diagram and configuration for a LP filter of

gain 10V/V.

Figure 1.4.1: Pin Diagram of OPA657 and Its Configuration for a LP Filter of Gain 10V/V.

The OPA657 combines a high gain bandwidth, low distortion, voltage-feedback op

amp with a low voltage noise JFET-input stage to offer a very high dynamic range amplifier

V

 8

for high precision applications. Very low level signals can be significantly amplified in a

single OPA657 gain stage with exceptional bandwidth and accuracy. Having a high 1.6GHz

gain bandwidth product will give > 10MHz signal bandwidths up to gains of 160V/V (44dB).

The very low input bias current and capacitance will support this performance even for

relatively high source impedances. The JFET input contributes virtually no current noise

while for broadband applications; a low voltage noise is also required. The low 4.8nV/ Hz

input voltage noise will provide exceptional input sensitivity for higher bandwidth

applications.

Having these very special characteristics, we configured this Op-Amp as a LP filter of

gain 10V/V. Below are equations for this configuration and component values.

H0LP= - R3/R1,

f0= 1/2π(R2R3C1C2)0.5,

Q= (C1C2) 0.5/ [(R2R3/R1
2)0.5 + (R3/R2) 0.5 + (R2/R3)0.5],

C1= 10pF,

C2= 10pF,

R1= 100Ω,

R2= 1kΩ,

R3= 1kΩ,

According to these component values, gain and f0 of filter is found below.

H0LP= - 1k/100=-10V/V,

f0= 1/2π(1kx1kx10px10p)0.5= 15.92MHz,

 9

1.5. DIFFERENTIAL AMPLIFIER

We mentioned before why we needed a differential amplifier. We used THS4141

differential amplifier of Texas Instruments. Luckily, there is an application of this IC as an

ADC driver in its datasheet.

Below are the characteristics of this IC.
• High Performance

 – 160 MHz –3 dB Bandwidth (VCC = ±15 V)

 – 450 V/μs Slew Rate

 – -79 dB, Third Harmonic Distortion at 1 MHz

 – 6.5 nV/√Hz Input-Referred Noise
• Differential Input/Differential Output

 – Balanced Outputs Reject Common-Mode Noise

 – Reduced Second Harmonic Distortion Due to Differential Output
• Wide Power Supply Range

 – VCC = 5 V Single Supply to ±15 V Dual Supply
• ICC(SD) = 880 μA in Shutdown Mode

The THS4141 is one in a family of fully differential input/differential output devices

fabricated using complementary bipolar process. The THS4141 is made of a true fully-

differential signal path from input to output. This design leads to an excellent common-mode

noise rejection and improved total harmonic distortion which an essential part of our project.

Below is its pin diagram and configuration to drive an ADC.

Figure 1.5.1: THS4141 Pin Diagram.

 10

Figure 1.5.2: THS4141 Configuration To Drive an ADC.

The THS4141 can also work with a single power supply, but circuit diagram for that

configuration is more complex. Therefore we used it with dual power supplies.

If nothing is connected to its VOCM pin, it is automatically set to arithmetic mean of

power supplies.

0.1μF capacitor is a bypass capacitor for stability. In addition, if we choose 4

resistances equal, the gain of this amplifier will be 1V/V. Therefore, we used 1kΩ resistances

for those 4 resistances.

1.6. ANALOG TO DIGITAL CONVERTER

After all steps up to here, the signal is now ready to be converted. We used THS1030

ADC of Texas Instruments.

Below are the characteristics of this IC.

• 10-Bit Resolution, 30 MSPS Analog-to-Digital Converter
• Configurable Input: Single-Ended or Differential
• Differential Nonlinearity: ±0.3 LSB
• Signal-to-Noise: 57 dB
• Spurious Free Dynamic Range: 60 dB
• Adjustable Internal Voltage Reference
• Out-of-Range Indicator
• Power-Down Mode

 11

The THS1030 is a CMOS, low-power, 10-bit, 30 MSPS ADC that can operate with a

supply range from 3 V to 5.5 V. The THS1030 has been designed to give circuit developers

flexibility. The analog input to the THS1030 can be either single-ended or differential. The

THS1030 provides a wide selection of voltage references to match the user’s design

requirements. For more design flexibility, the internal reference can be bypassed to use an

external reference to suit the dc accuracy and temperature drift requirements of the

application. The out-of-range output is used to monitor any out-of-range condition in

THS1030’s input range. The THS1030 is characterized for operation from 0°C to 70°C.

Below is its pin diagram.

Figure 1.6.1: Pin Diagram of THS1030 ADC.

 12

Figure 1.6.2: Pin Descriptions of THS1030

1.7. PRINCIPLES OF OPERATION

The analog input AIN is sampled in the sample and hold unit which is shown in the

figure below, the output of which feeds the ADC core, where the process of analog to digital

conversion is performed against ADC reference voltages, REFTF and REFBF.

Connecting the MODE pin to one of three voltages, AGND, AVDD or AVDD/2 sets

up operating configurations. The three settings open or close internal switches to select one of

the three basic methods of ADC reference generation. Depending on the user’s choice of

operating configuration, the ADC reference voltages may come from the internal reference

buffer or may be fed from completely external sources. Where the reference buffer is

employed, the user can choose to drive it from the onboard reference generator (ORG), or

may use an external voltage source. A specific configuration is selected by connections to the

REFSENSE, VREF, REFTS and REFBS, and REFTF and REFBF pins, along with any

external voltage sources selected by the user.

 13

Figure 1.7.1: Analog Input Signal Flow.

The ADC core drives out through output buffers to the data pins D0 (LSB) to D9

(MSB). The output buffers can be disabled by the OE pin. A single, sample-rate clock (30

MHz maximum) is required at pin CLK. The analog input signal is sampled on the rising edge

of CLK, and corresponding data is output after following third rising edge which is shown

below.

Figure 1.7.2: Operation of THS1030

D0

D9

.

.

.

 14

Figure 1.7.3: Output Enable Timing Diagram

The STBY pin controls the THS1030 power down. The user-chosen operating

configuration and reference voltages determine what input signal voltage range the THS1030

can handle.

The analog input signal AIN is applied to the AIN pin, either dc-coupled or ac-

coupled. The differential sample and hold processes AIN with respect to the voltages applied

to the REFTS and REFBS pins, to give a differential output VP+ − VP− = VP given by:

For single-ended input signals, VM is a constant voltage; usually the AIN mid-scale

input voltage. However if MODE = AVDD/2 then REFTS and REFBS can be connected

together to operate with AIN as a complementary pair of differential inputs. In all operating

configurations, VP is digitized against ADC reference voltages REFTF and REFBF, full-scale

values of VP being given by:

 15

VP voltages outside the range VPFS− to VPFS+ lie outside the conversion range of

the ADC. Attempts to convert out-of-range inputs are signaled to the application by driving

the OVR output pin high. VP voltages less than VPFS− give ADC output code 0. VP voltages

greater than VPFS+ give output code 1023.

Combining the above equations, the analog full scale input voltages at AIN pin which

give VPFS+ and VPFS− at the sample and hold output are:

The analog input span (voltage range) that lies within the ADC conversion range is:

Therefore REFTF and REFBF voltage difference sets the device input range.

The THS1030 has three primary modes of ADC reference generation, selected by the

voltage level applied to the MODE pin. Connecting the MODE pin to AGND gives full

external reference mode. In this mode, the user supplies the ADC reference voltages directly

to pins REFTF and REFBF. This mode is used where there is need for minimum power drain

or where there are very tight tolerances on the ADC reference voltages. Only single-ended

input is possible in this mode. Connecting the MODE pin to AVDD/2 gives differential mode.

In this mode, the ADC reference voltages REFTF and REFBF are generated by the internal

reference buffer from the voltage applied to the VREF pin. This mode is suitable for handling

differentially presented inputs, which are applied to the AIN and REFTS/REFBS pins.

Connecting the MODE pin to AVDD gives top/bottom mode. In this mode, the ADC

reference voltages REFTF and REFBF are generated by the internal reference buffer from the

voltages applied to the REFTS and REFBS pins. Only single-ended input is possible in

 16

top/bottom mode. When MODE is connected to AGND, the internal reference buffer is

powered down, its inputs and outputs disconnected, and REFTS and REFBS internally

connected to REFTF and REFBF respectively. These nodes are connected by the user to

external sources to provide the ADC reference voltages.

Figure 1.7.4: The Summary of Modes of Operation of THS1030.

Figure 1.7.5: REFTF and REFBF Reference Voltages of THS1030.

We used THS1030 in differential mode, therefore we should examine this mode in

detail.

When MODE = AVDD/2, the internal reference buffer is enabled, its outputs

internally switched to REFTF and REFBF and inputs internally switched to VREF and

AGND. The REFTF and REFBF voltages are centered on AVDD/2 by the internal reference

 17

buffer and the voltage difference between REFTF and REFBF equals the voltage at VREF.

The internal REFTS to REFBS and REFTF to REFBF switches are open in this mode,

allowing REFTS and REFBS to form the AIN− to the sample and hold. Depending on the

connection of the REFSENSE pin, the voltage on VREF may be externally driven, or set to an

internally generated voltage of 1V, 2V, or an intermediate voltage. Below is the configuration

for 2V reference voltage which is used in our circuit.

Figure 1.7.6: Differential Mode 2V Reference Voltage Configuration of THS1030.

Now, we are ready to specify operating values of THS 1030 based on figures and

formulas we gave up to now.

From figure 13, we see that (REFTF-REFBF) = 2V in differential mode and when

REFSENSE = GND. Therefore, VPFS = ±(REFTF-REFBF)/2=±1V.

In summary,

MODE= AVDD/2,

REFSENSE= 0V,

VREF=2V,

(REFTF-REFBF)=2V,

VPFS=±1V,

 18

As operating frequency increases, some of the output bits of ADC changes randomly.

Therefore, we have to take into account this for a precise measurement. Below is the graph

taken from datasheet of THS1030 which shows the relationship between frequency and

effective number of bits.

Figure 1.7.7: Effective number of bits of Sampling Frequency Graph.

As is seen from, for full scale speed of conversion of ADC, effective number of bits is

around 8.75.

To show whether incoming input signal is in the range or not, we connected a LED to

OVR pin with a 1kΩ resistance. If applied signal is not in the range, OVR pin will be high

and LED will glow. This will be a warning to the user, implying to switch the attenuator to a

higher or a lower range.

Final Circuit Diagram

We examined the main blocks of the circuit in detail, therefore we are now ready to

connect these parts. In fact, once we know the parts separately, it is very straight forward to

connect them.

 19

We added all positive and negative power supply pins of ICs’ 0.1μF capacitor in order

to smooth DC voltage applied. In addition, as is recommended in datasheets, we connected a

common 6.8μF capacitor to power supplies. These capacitors are for smoothing purposes.

In order to make MODE = VDD/2, we used two 1kΩ resistances as a voltage divider

one of them is connected to VDD and the other is connected to GND.

In the successive two pages, the final circuit diagram drawn in Eagle program is

represented:

 20

 21

Figure 1.7.8: Circuit Diagram.

 22

1.8. PCB LAYOUT

After we drew the circuit diagram, now we should prepare the PCB layout of the

circuit. We designed PCB layout of it in the Eagle layout program which is a very commonly

used layout program. Therefore, a little summary about this program will be useful.

For PCB layout section we have done lots of works. First of all, we learned a new

program called “Eagle 4.16”. For learning purposes, we have read its tutorial. After a little bit

practice, it was a very easy and useful program to use. It has a very large library which

includes some of ICs we used such as MAX660. But to create a footprint is not a difficult task

also. With Eagle, new footprints can be created very easily. First of all, you open a new

library page and then enter the name for new component. Then, you draw pin diagram of the

IC. Afterwards, you draw the PCB layout of the IC. Finally, pins of these two are connected.

Eagle also has an auto router feature, it tries to connect all of the circuit itself. With proper

positioning of components in the circuit it is able to connect as 90 or 95 % of the circuit. If we

again think about our very complicated circuit, it is a useful feature for us. Moreover, Eagle

program converts PCB layout into a general format called “Gerber Format” which is used in

most of board printing companies.

After a little bit about Eagle, we will continue with PCB considerations which are

taken into account when we are designing PCB layout of the circuit. Some of them are basic

principles of designing layout and some of them are written in the datasheets of the

components.

• DC supply and ground wires in the PCB should be as large as possible. This is a must

for a good grounding and supplying of the circuit.

• The empty areas in the PCB should be filled with ground areas for a good grounding

of the circuit.

• 45 degree-wires should be preferred where possible in the layout.

• The overall PCB drawing should be neat and clear.

 23

• In the areas of the amplifier inputs and output, the ground plane can be removed to
minimize the stray capacitance.

• Use a 6.8-μF tantalum capacitor in parallel with a 0.1-μF ceramic capacitor on each

supply terminal. In addition, the 0.1μF capacitor should be placed as close as possible
to the supply terminal.

• The circuit layout should be made as compact as possible, thereby minimizing the

length of all trace runs. Particular attention should be paid to the inverting input of the
amplifier. Its length should be kept as short as possible.

• Using surface-mount passive components is recommended for high frequency

amplifier circuits for several reasons. First, because of the extremely low lead
inductance of surface-mount components, the problem with stray series inductance is
greatly reduced. Second, the small size of surface-mount components naturally leads
to a more compact layout thereby minimizing both stray inductance and capacitance.
If leaded components are used, it is recommended that the lead lengths be kept as
short as possible.

• For ADC, voltages on AIN, REFTF and REFBF and REFTS and REFBS must all be

inside the supply rails.

• Minimize the distance (< 0.25”) from the power-supply pins to high-frequency 0.1uF

decoupling capacitors.

• Never use wirewound type resistors in a high frequency application. Use smd or metal

film resistors. Since the output pin and inverting input pin are the most sensitive to
parasitic capacitance, always position the feedback and series output resistor, if any, as
close as possible to the output pin.

 24

According to these considerations, we draw our PCB layout of the circuit as is shown

Figure 1.8.1: PCB Layout of Circuit.

 25

1.9. TEST RESULTS

Before we start, we should emphasize that the hardware part is working quite well

except OVR pin of ADC. Although we thought very much about it, we couldn’t find why it is

not working. It does not become high although input we applied is out of range. But,

remaining part is functioning quite well.

First of all, we tested -3dB frequency of the circuit and obtained following graph.

101 102 103 104 105 106 107
1

2

3

4

5

6

7

8

9

10

11
|Gain| vs. Frequncy

Frequency

|G
ai

n|

Figure 1.9.1: -3dB Frequency Graph.

Now, we should give some information about digital outputs of ADC. For signals

above 1V, it gives all bits as 0. For signals less than -1V, it gives all bits 1. For values

between these voltages 4 LSB bits changes continuously, and remaining bits change

according to large variations in the input signal.

 26

CHAPTER 2: USB FIRMWARE

As stated in the project objectives, the data comes from the output of the ADC should

be trasferred to PC over USB. As being easily guessed, the amount of the data processed is

huge and it is a clear and important point to consider that whether USB can support this high

speed transfer or not. In order to answer this critical question, the specification of the USB

will be mentioned first and then making an easy calculation to verify the answer.

2.1. GENERAL USB SPECIFICATIONS

Universal Serial Bus (USB) is a serial bus standard to interface devices. The USB

standard uses the NRZI system to encode data. USB signals are transmitted on a twisted pair

of data cables, labelled D+ and D−. These collectively use half-duplex differential signaling

to combat the effects of electromagnetic noise on longer lines. D+ and D− usually operate

together; they are not separate simplex connections. Transmitted signal levels are 0.0–0.3

volts for low and 2.8–3.6 volts for high [1].

The USB specification provides a 5 V (volts) supply on a single wire from which

connected USB devices may draw power. The specification provides for no more than 5.25 V

and no less than 4.35 V between the +ve and -ve bus power lines. Initially, a device is only

allowed to draw 100 mA. It may request more current from the upstream device in units of

100 mA up to a maximum of 500 mA[1]. The power is supplied to circuit should be +5V and

the current consumption is not more than 100 mA and so, the circuit can be fed from the USB

and without any battery.

 27

The knowledge above is not complex and in the design, it has not be necessary to

think about these electrical specifications because of the fact that a proper USB chip is used

and it can do all the things needed for a successful transfer. It means that all decoding and

voltage level adjustments are made in a single chip and in the project CY7C68013A is used.

This is a USB 2.0 compliant, high speed USB peripheral and discussed next.

2.2 USB 2.0 VERSUS USB 1.1:

A core team from Compaq, Hewlett Packard, Intel, Lucent, Microsoft, NEC and

Philips is leading the development of the USB Specification, version 2.0, that will increase

data throughput by a factor of 40. This backwards-compatible extension of the USB 1.1

specification uses the same cables, connectors and software interfaces so the user will see no

change in the usage model. They will, however, benefit from an additional range of higher

performance peripherals, such as video-conferencing cameras, next-generation scanners and

printers, and fast storage devices, with the same ease-of-use features as today’s USB

peripherals [3].

The main difference between USB 2.0 and USB 1.1 is the data transfer rates.

2.3 DATA BANDWIDTH

To return to main question after some brief information about USB, the supported data

rates by USB should be dealt. In theory, it is clear and the followings are the available data

bandwidth of USB:

• A Low Speed rate of up to 1.5 Mbit/s (187.5 kB/s) that is mostly used for Human

Interface Devices (HID) such as keyboards, mice, and joysticks[1].

• A Full Speed(USB 1.1) rate of up to 12 Mbit/s (1.5 MB/s). Full Speed was the fastest

rate before the USB 2.0 specification and many devices fall back to Full Speed. Full
Speed devices divide the USB bandwidth between them in a first-come first-served
basis and it is not uncommon to run out of bandwidth with several isochronous
devices. All USB Hubs support Full Speed [1].

 28

• A Hi-Speed(USB 2.0) rate of up to 480 Mbit/s (60 MB/s) [1].

As seen above, USB 2.0 can support up to 480Mbits/s and this is a huge amount of

data. This is available in theory and there are lots of limiting factors that decrease the data

throughput rate of a USB system.

The maximum rate currently (2006) attained with real devices is about half of the full

theoretical (60 MB/s) data throughput rate. Most hi-speed USB devices typically operate at

much slower speeds, often about 3 MB/s overall, sometimes up to 10-20 MB/s [1].

The necessary data bandwidth for the design can be calculated as follows:

BW=(ADC conversion frequency)*(ADC resolution) = [30*106)]*10=300Mbits/s

The clock of used ADC is 30MHz and the resolution is 10 bits. The data throughput

rate is sufficient for our design but, in practice, this is not attainable as stated above. At the

same time, the EZ-USB chip can support only 8bits or 16 bits external interface and that is to

say if you make use of 10 bits of ADC, you have use 16bits interface and every 6bits for each

16 bits are discarded and this also increases the needed speed without any gain. The least two

significant bit of ADC can not give sufficiently accurate results. Therefore, we determined to

ignore these LSB bits and only make use of MSB 8 bits and the external interface is set to 8

bits width. After making the changes, the necessary bandwidth is the following:

BW=(ADC conversion frequency)*(ADC resolution) = [30*106)]*8=240Mbits/s.

Again, this value is high. However, we can not decrease the necessary bandwidth

anymore and therefore, by implementing a good firmware and an application program, we try

to increase the speed of the data transfer to the needed level. Actually, the speed depends on

the configuration of the interface and endpoints of EZ-USB chip that will be discussed next.

Eventually, we can say that High Speed USB 2.0 has to be used in the project and the final

device should be used in a computer has USB High Speed Host Controller.

 29

2.4 ENUMERATION

Enumeration is made when a USB device is connected to a USB port. First, it is

detected and then the enumeration begins. In order to establish a connection path between the

device and the host, the host sends a sequence of request to device to learb about the device.

The followings are the typical sequence of the enumeration[4]:

• The user attaches a device to a USB port. Or the system powers up with a device

already attached. The port may be on the root hub at the host or a hub that connects
downstream from the host. The hub provides power to the port, and the device is in the
Powered state

• The hub detects the device
• The host learns of the new device. Each hub uses its interrupt endpoint to report events

at the hub. On learning of an event, the host sends the hub a Get_Port_Status request
to find out more.

• The hub detects whether a device is low or full speed. The hub detects the speed of a
device by determining which line has the higher voltage when idle

• The hub resets the device. When a host learns of a new device, the host controller
sends the hub a Set_Port_Feature request that asks the hub to reset the port.

• The host learns if a full-speed device supports high speed.
• The hub establishes a signal path between the device and the bus. The host verifies

that the device has exited the reset state by sending a Get_Port_Status request. A bit in
the returned data indicates whether the device is still in the reset state. If necessary, the
host repeats the request until the device has exited the reset state.

• The host sends a Get_Descriptor request to learn the maximum packet size of the
default pipe.

• The host assigns an address. The host controller assigns a unique address to the device
by sending a Set_Address request.

• The host learns about the device’s abilities. The host sends a Get_Descriptor request to
the new address to read the device descriptor. This time the host retrieves the entire
descriptor. The descriptor is a data structure containing the maximum packet size for
Endpoint 0, the number of configurations the device supports, and other basic
information about the device.

• The host assigns and loads a device driver (except for composite devices). After
learning about a device from its descriptors, the host looks for the best match in a
device driver to manage communications with the device. In selecting a driver,
Windows tries to match the information in the PC’s INF files with the Vendor ID,
Product ID, and (optional) release number retrieved from the device. If there is no
match, Windows looks for a match with any class, subclass, and protocol values
retrieved from the device. After the operating system assigns and loads the driver, the
driver may request the device to resend descriptors or send other class-specific
descriptors.

 30

• The host’s device driver selects a configuration. After learning about a device from the
descriptors, the device driver requests a configuration by sending a Set_Configuration
request with the desired configuration number.

The above sequence is the same for the most of the USB systems. For our project, a

similar enumeration steps should be held for a healthy connection. The most of the

enumeration steps are fulfilled by the EZ-USB chip and as USB device developers, we do not

have to deal with the enumeration implementation. The EZ-USB chip have a default

enumeration descriptors and the users can load different ones.

Driver searching and the driver attachment are difficult and neceassary steps to

establish a logical path between the device and the host. Therefore, we should talk about the

device drivers.

Devices that attach to the bus can be full-custom devices requiring a full-custom

device driver to be used, or may belong to a device class. These classes define an expected

behavior in terms of device and interface descriptors so that the same device driver may be

used for any device that claims to be a member of a certain class. An operating system is

supposed to implement all device classes so as to provide generic drivers for any USB device.

Device classes are decided upon by the Device Working Group of the USB Implementers

Forum [1].

Some of the device classes are the following [1]:

• 0x03:HID(Human Interface Device): Keyboards and mice..
• 0x08:Mass Storage Device: flah drivers, memory cards…
• 0x0E:Wireless controllers: Bluethoot dongles

As stated above, in order to use a device over USB, a proper driver should be attached

to the device and the driver file is the first point of the tranfer. The speed of the transfer also

depends on the content of the driver file. That is to say, to have a high speed transfer rate the

device driver should support this requirement. The writing of a driver file is a quite complex

job and it is not necessary for our design. Fortunately, with the USB chip, there is also a

suitable driver file that is written for high speed transfer applications. The name of the file is

 31

CyUSB.sys and it is working well. Near the driver file, a managed Microsof .NET 2.0 Class

Library(CyUSB.dll) is also available, and this class is used to communicate the device with an

application program that written in the .NET.

2.5 USB DESCRIPTORS

At the end of the enumeration, the host tries to learn about the device by using USB

descriptors. These explanatory tables provide the needed knowledge to the host to

communicate the device appropriately. USB descriptors are standard to the most of the

systems and the common ones are the following:

• Device Descriptors: USB devices can only have one device descriptor. The device

descriptor includes information such as what USB revision the device complies to, the
Product and Vendor IDs used to load the appropriate drivers and the number of
possible configurations the device can have [5].

• Configuration Descriptors: The configuration descriptor specifies values such as the

amount of power this particular configuration uses, if the device is self or bus powered
and the number of interfaces it has. When a device is enumerated, the host reads the
device descriptors and can make a decision of which configuration to enable. It can
only enable one configuration at a time [5].

• Interface Descriptors: The interface descriptor could be seen as a header or grouping

of the endpoints into a functional group performing a single feature of the device [5].

• Endpoint Descriptors: Each endpoint descriptor is used to specify the type of

transfer, direction, polling interval and maximum packet size for each endpoint.
Endpoint zero, the default control endpoint is always assumed to be a control endpoint
and as such never has a descriptor [5].

• String Descriptors: String descriptors provide human readable information and are

optional. If they are not used, any string index fields of descriptors must be set to zero
indicating there is no string descriptor available [5].

 32

Figure 2.5.1: USB Descriptor Tree

The architecture of a generic USB device is multi-layered. A device consists of one or

more configurations, each of which describes a possible setting the device can be

programmed into. Such settings can include the power characteristics of the configuration (for

example, the maximum power consumed by the configuration and whether it is self-powered

or not) and whether the configuration supports remote wake-up [2].

Each configuration contains one or more interfaces that are accessible after the

configuration is set. An interface provides the definitions of the functions available within the

device and may even contain alternate settings within a single interface. For example, an

interface for an audio device may have different settings you can select for different

bandwidths [2].

Each layer of a USB device provides information about its attributes and resource

requirements in its descriptor, a data structure accessible through device interface functions.

By examining the descriptors at each layer, you can determine exactly which endpoint you

need to communicate successfully with a particular device[2].

 33

2.6. ENDPOINTS

As stated above, the data transfer process can be configurated with the descriptors.

However, in the device, there are a fixed number of communication channels called endpoints

that can be used in different configurations. The data flow is made on the endpoints that are

logical connections between the computer and the device. The endpoints can be thought as

follows:

Figure 2.6.1: Logical Endpoint Connection

Each endpoint can be activated or deactivated by setting the endpoint configuration

register in the EZ-USB chip. In default, all the endpoints are enabled and so, in order to

deactivate some of them, a proper firmware is needed.

An endpoint can have different characteristics such as transfer type, maximum packet

size and the transfer direction that can be set in the endpoint descriptor table. The same

endpoints can be used in different interfaces. The settings of an endpoint is quite important

 34

because of the fact that the data flow is made over these logical channels and the data transfer

speed mainly depends on them.

An endpoint have two types of transfer direction namely IN and OUT with respect to

the host. If an endpoint is programmed as IN, the data comes from USB chip to the host

system(more clearly computer). By the way, the problem is that where the data comes from.

Each endpoint has a FIFO or other form of memory to store the incoming data from the

external interface if it is a IN endpoint. Similarly, if the endpoint is programmed as OUT, the

data comes from the host systems is stored to this memory. In the project, we mainly make

use of IN endpoint type because, the data comes from the external supply to tranfer to the

computer and OUT endpoint is not necessary for the project. OUT endpoints are used when

the host sends data to a external hardware. The endpoints, except control endpoints, are

unidirectional and that is to say, an endpoint can be configurated as either IN or OUT, but not

both.

A special kind of endpoint is the control endpoint and this one is used to transfer the

control signals between the host and the device. This endpoint is always used and two types of

transfer direction are available for this one. Interrupts, setup packets and similar things are

transferred over this endpoint. The memory size of the control endpoint is less than the other

ones. The enumeration makes use of the control endpoint.

The another important property of an endpoint is the its transfer type. As easily

guessed, there are different kinds of data transfers and the endpoints should have different

data transfer capabilities. There are four different transfer types namely Control, Interrupt,

Isochronous and Bulk.

• Control: It is intended to support configuration, command, and status communication

between the host software and the device. Control transfers support error detection and

 retry[2].

Control transfers are typically used for command and status operations. They

are essential to set up a USB device with all enumeration functions being performed

 35

using control transfers. They are typically bursty, random packets which are initiated

by the host and use best effort delivery [6].

• Interrupt: It is used to support small, limited-latency transfers to or from a device

such as coordinates from a pointing device or status changes from a modem. Interrupt

transfers support error detection and retry[2].

Interrupt transfers are typically non-periodic, small device "initiated"

communication requiring bounded latency. An Interrupt request is queued by the

device until the host polls the USB device asking for data [6].

• Isochronous: It is used for periodic, continuous communication between the host and

 the device, usually involving time-relevant information such as audio or video data

streams. Isochronous transfers do not support error detection or retry[2].

• Bulk: It is intended for non-periodic, large-packet communication with relaxed timing

constraints such as between the host software and a printer or scanner. Bulk transfers

support error detection and retry[2].

Bulk transfers are only supported by full and high speed devices. For full speed

endpoints, the maximum bulk packet size is either 8, 16, 32 or 64 bytes long. For high

speed endpoints, the maximum packet size can be up to 512 bytes long [6].

The project requires continuous data flow with the time constraint. In the circuit, we

don’t make use of any memory device and therefore, the incoming data should be transferred

wihout any time delay. The incoming data is huge and some small amount of data loss is not

too much important. By making use of these knowledge, we can conclude that the endpoint

should be programmed as isochronous IN endpoint.

It is necessary to understand the isochronous data transfers for the sake of success of

the project.

 36

Isochronous Transfers provide [6]

• Guaranteed access to USB bandwidth.
• Bounded latency.
• Stream Pipe – Unidirectional.
• Error detection via CRC, but no retry or guarantee of delivery.
• Full & high speed modes only.
• No data toggling.

The maximum size data payload is specified in the endpoint descriptor of an

Isochronous Endpoint. As the maximum data payload size is going to effect the bandwidth

requirements of the bus, it is wise to specify a conservative payload size. If you are using a

large payload, it may also be to your advantage to specify a series of alternative interfaces

with varying isochronous payload sizes [6].

In the project, the development of the firmware for the endpoint is quite critical and

important mission. It is obvious that if the endpoints are not configurated appropriately the

data transfer speed is not sufficient.

 37

CHAPTER 3: EZ-USB DEVELOPMENT KIT CY3684

As expressed before, in the project, a high speed USB peripheral namely

CY7C68013A is planned to use.However, the advanced packaging of the chip makes difficult

to place the chip on a simple PCB. At the same time, the necessary firmware and the driver

files necessiates an advanced knowledge about the USB and the driver, a simplification at the

start is needed to use such a chip. The solution is a EZ-USB based development kit.

CY3684 is a EZ-USB advanced development kit. It includes a Cypress USB generic

driver file, EZ-USB firmware library and firmware frameworks, Cypress USB class

library(CyApi), Cypress USB console, Cypress GPIF(General Programmable Interface)

designer, Cypress Firmware Download driver sample and Keil 8051 Development Tools that

is necessary to develop the firmware.

The development kit makes simple for us to develop a firmware and application

program on the host side. A working firmware and application program is developed and a

working circuit diagram of the EZ-USB chip is available and it means that we can bypass the

development kit from the project easily.

EZ-USB Development kit requires the following system properties:

• Microsoft Windows XP, Window 2000 or Windows ME
• 64MBytes RAM
• 55Mbytes Disk space
• 300MHz or higher processor
• Super VGA display
• USB host controller(High speed)

 38

On the development board, an EZ-USB FX2LP chip, a re-programmable GAL,

128kilobytes RAM, EEPROMs used for EZ-USB initialization are available. In the project,

we mainly work with EZ-USB FX2LP chip namely CY7C68013A.

The external connection to the development kit can be made via the connectors. The

development kit has 7 such connector and these are connected to the proper pins of the chips

and the connection scheme can seen from the datasheet of the development kit. These

connectors can have diverse functions depend on the firmware loaded to the internal RAM.

By using the application program provided with the development kit, the connected

devices, their descriptors and the other information about the connections and devices can be

obtained. Sample firmwares can be downloaded to the internal RAM of chip, and the external

data can be transferred to the host over bulk or isochronous endpoints. This is quite instructive

for us and we can simplify the firrmware development process considerably.

The used USB chip in the project is CY7C68013A is available on the development

board. Via the development board, we can work with the EZ-USB peripheral easily.

3.1. CY7C68013A:

The data transfer is fulfilled by this chip. This is a USB2.0-USB-IF high speed

certificated microcontroller. As expressed above, the project necessiates a huge amount of

data transfer and we have to use a high speed USB. Inside the chip an USB2.0 transceiver,

smart SIE and enhanced 8051 microprocessor are available.

This chip supports both of full speed and high speed data transfers. The used USB

signaling scheme depends on the USB descriptors.

 39

8051 microprocessor should be programmed before the usage and the code can run

from the internal RAM or external memory device. The code can be downloaded to the

internal RAM via USB or EEPROM. That is to say, after the power down, the code in the

internal RAM of chip is deleted and for every power up the internal RAM should be loaded

again. If EEPROM is used, the internal RAM automatically programmed after the power up.

Otherwise, the program code in HEX should be transferred to the internal RAM via USB.

In the chip, there are four programmable bulk/interrupt/isochronous endpoints and the

buffering options for them are double, triple and quad. These settings are determined by the

firmware downloaded to the internal RAM via USB in our project. The endpoints can be

configurated as IN or OUT, but in the project, we only make use of IN endpoint.

The chip can support 8 or 16 bit external data interface and one of them should used in

the data transfer. Again, this is determined by the firmware. The chip has a GPIF(General

Programmable Interface) that is used to connect directly to the most parallel interface. The

power supply is 3.3V,but the input magnitude can be 5V. The chip can be powered from the

USB port by using a voltage regulator. 8051 cpu operation can be 48MHz, 24MHz or 12MHz

and again this set by the firmware.

Four integrated FIFOs are available and these are written by using internal or external

clock. In the project, these memories are filled by the output of ADC and then transferred to

the computer. When the FIFO buffer for an endpoint is filled fully, a flag interrupt is created

and the flag pin of the chip changes its status appropriately. This flag interrupt can be used by

8051 microprocessor to handle some functions. By making use of these interrupts, some

predetermined data can be added to FIFO or for a while FIFO is disabled and similar things

can be implemented in the firmware.

During the power-up sequence, the chip checks an EEPROM connection to load the

descriptors. If it can not found the connection, it enumerates with the default internal

 40

descriptors with VID=0x04B4, PID=0x8613 and DID=0xAnnn(nnn depends on the chip

revision).

3.2. EZ-USB FIRMWARE

In order to use the EZ-USB peripheral, it should be programmed with a firmware

downloaded to the internal RAM of the chip. The tasks of the firmware consist of the

initialization of the necessary registers and the control of the data transfer.

The firmware download is the first step that should be done and in the project the

firmware is downloaded via the USB. So, the application program should also able to

program the chip and the application program is discussed next.

After explaination of the USB specifications and the used USB chip, it is time to talk

about the developed firmware. First of all, it is quite instructive to look at the blocks of the

USB system as follows:

Figure 3.2.1: USB System

 41

The firmware runs from the internal RAM and the internal RAM is programmed via

USB in the project. The code in the internal RAM is used by the 8051 core to function. 8051

controls the interrupts, I/O ports, the external interface and so on. The decoding and the

encoding of the USB signals are made by the smarts USB engine and USB XCVR. The

microprocessor is not necessary to form D+ and D- signals. External interface can be

programmed in 8-bits or 16-bits width and the incoming data is written to FIFO with respect

to some external or internal sources(maybe CLK as shown in the above figure). The data from

the FIFO is converted to corresponding USB signals and then sent to the host and this process

is bit by bit .

In development of the firmware, the first step is the initialization of the registers. This

is done by TD_Init() function in the CYStream.c file.(The source code of the firmware at the

appendix-1). In this function, the endpoints, interface and the cpu clock is configurated. The

most important register to set is the interface configuration register because of the fact that it

controls the external data flow scheme to FIFOs. The bit by bit definition of the register is the

following:

Table 3.2.1: IFCONFIG Register.

In the code, IFCONFIG is set to 0xB3. By means of this, internal 30MHz clock and

inverted clock out is enabled. The external interface is used in the slave mode. In this

configuration, the selected endpoint’s FIFO is filled by the data available at the FIFO pins

with respect to the internal 30MHz clock. The interface clock configuration is the following:

 42

Figure 3.2.2:IFCLK Configuration.

The main clock comes from the development kit and and this clock is used by ADC to

synchronize the EZ-USB peripheral. If the same clock is used by both the external interface

and the ADC, there may be some indeterminate state and the FIFO content may be wrong.

The situation is that ADC tries to sample the data and at the same time the external interface

tries to write it to FIFO and this is quite critical to succeed. Fortunately, by inverting the

output clock, the external interface clock and ADC clock can have 180o phase difference and

this prevents the data loss problem. In this setup, the data is sampled and after a half period

time, the converted data is written to FIFO. If the conversion time of ADC and the writing

time of FIFO are less than the half period of the interface clock, the problem is solved. In the

following figure, the input clocks for the external interface and the ADC is shown.

Figure 3.2.3: Used clocks by the external interface and ADC.

 43

The second important setting made in the initialization routine is the endpoint

configuration. As explained before, the endpoints should be configurated suitably in order to

increase the transfer speed. Each endpoint is configurated by setting the EPxCFG registers.

The bit definition of the EP2CFG is the following:

Table 3.2.2:EP2CFG

In order to activate the endpoint, Bit-7(VALID) should be set to 1 and otherwise, this

endpoint is deactivated. The data transfer direction of the endpoint is determined by the Bit-

6(DIR) and for IN endpoint, this bit should be set to 1 and otherwise, the endpoint is

configurated as OUT. The data transfer types of the endpoint is set by the Bit5 and Bit4. The

followig table shows the endpoint type setting scheme.

Table 3.2.3: Endpoint Type

The size of the endpoint is set by Bit-3 of the register. If this bit set to 1, the size is 512

bytes and otherwise, it is 1024bytes. Buffering type is determined by the Bit-1 and Bit-2 of

the endpoint configuration register.

Table 3.2.4: Buffering

 44

Other endpoint configurations are similar to above configuration scheme. In the

initialization subroutine the last job is the initialization of the external interface. The external

interface width is determined by the WORDWIDE bit in the EPxFIFOCFG registers. If this

bit is set to 0, the width of the interface is 8bits and otherwise the external width is 16bits. In

the code this bit is set to 0 (8 bit wide interface is used). The initialization subroutine is called

once at the beginning the program flow.

The second function in the CYStream.c file is the TD_Poll() and this called repeatedly

while the device is in the idle mode. The task of the this function is to control the data to

transfer over the selected interface and endpoint.

Lastly, the main function is available at the fw.c file and again this file is included at

the appendix- . The main function runs the initialization subroutine first and then repeatedly

TD_Poll() is called while the device is in idle state.

In the application program, EZ-USB can be programmed first. The programming

sequence is the following:

• If the user tries to use the EZ-USB before the downloading of the firmware, a warning

message is created as follows:

Figure 3.2.4: Programming Warning Message.

 45

• If the user programs the EZ-USB, the following messages are prompted. The first
message is for the removal of the Cypress device because, the attached Cypress device
is removed first. The second message is the arrival of the new Cypress device. The
new device and the old device have different VID and PID and therefore, they attach
to the different driver files. After the programming, the enumeration is held again to
establish a new channel between the host and the device.

Figure 3.2.5: Device Removal Message.

Figure 3.2.6: Device Arrival Message.

 46

CHAPTER 4:USER INTERFACE

4.1. WHY .NET ENVIRONMENT AND C#

We have chosen .NET environment and C# for the interface part of the project. There

are a lot of reasons why we have used C#. First of all, C# is a programming language that is

widely used in a wide range of applications. It is very easy to learn.

Moreover, since we want to write a real time data plot algorithm, we need a

programming language which has to include drawing classes. C# includes very rich drawing

classes which are completely suitable for our applications. In addition, C# has very rich visual

objects for data plotting.

We have used Cypress microcontroller to provide connection with the interface. There

are USB libraries and sample codes written in C# in the CD which we obtained with the

development kit. With the help of these libraries, it was very easy to write code to enable the

connection between microcontroller and PC.

4.2. CYPRESS LIBRARIES

Cypress has a ‘dll’ file which includes USB libraries to connect USB devices to PC, to

warn the user about the connection of the USB devices, to read data from the device

connected to PC via USB connection. By adding the library to our C# project, we could use

these libraries in C# environment.

 47

Some library items and their syntax of use are the following:

• DEVICES_CYUSB: Finds the USB devices produced by Cypress Inc.
• CyConst.DEVICES_CYUSB: Send a byte value to a proper method according to the

types of USB devices we are interested in.
• USBDeviceList: Lists all the USB devices of our interests.
• VariableName[0x????,0x????]: Send the Vendor ID and Product ID of the device to

find the specific USB device.
• CyFX2Device: Defines the programmable part of the Cypress device.
• CyUSBEndPoint: Determines the end point of the Cypress USB device.

4.3. SOME SCREENSHOTS FROM THE GUI

Figure 4.3.1: Initial page of the GUI.

 48

Figure 4.3.2: GUI when Acquire button is clicked.

Figure 4.3.3: GUI when Cursor button is clicked.

 49

Figure 4.3.4: GUI when Display button is clicked.

Figure 4.3.5: GUI when Display Type button is clicked.

 50

Figure 4.3.6: GUI when Display Grid-Axis button is clicked.

Figure 4.3.7: GUI when Program FX2 item is clicked.

 51

4.4. ALGORITHM

Load the main form

 Initialize the components in the main form

 Try to find the USB devices of Cypress to read

 If USB devices of Cypress couldn’t be found to read

 Try to find the USB devices of Cypress to program

 Warn the user

Call the plug and unplug event handler

 If the device is connected or disconnected

 Inform the user about the situation

 Try to find the USB devices of Cypress to read

 If USB devices of Cypress could be found to read

 Inform the user about the situation

When main form is being closed

 Clean up memory, clean the USB devices added to memory.

Call a function to perform reading the data from Cypress periodically

 Find the end point of the microcontroller

 If the end point of the microcontroller is null

 Warn the user

 Else

Start the data transfer from the buffer of the microcontroller until the

flag showing that data transfer is complete is interrupted

When Acquire Normal button is clicked

Call the function to activate the first data acquisition

 52

Call the function to activate the first data acquisition

 Define a timer to periodically call the data acquisition function(DAQ)

 Alert the periodic data acquisition function at each tick of the timer

 Set the call period of the DAQ function

 Find the end point of the microcontroller

 Set the expiration time for DAQ

 If the end point of the microcontroller is null

 Warn the user

 Else

Start the data transfer from the buffer of the microcontroller until the

flag showing that data transfer is complete is interrupted

Start the timer after the first DAQ

When the DAQ is completed

 Send the data for plotting

 Call the DAQ function again

When ‘Save’ item of the menu is clicked

 Send the data coming to stream writer function to save it in a file

 Until stop button is clicked on the save data form

 Continue writing the data into a file

When ‘About’ item of the menu is clicked

 Show the form including info about the project

When ‘Exit’ item of the menu is clicked

 Clean up the memory

 Close the application

When ‘Program FX2 Device’ item of the menu is clicked

 53

 Define theFX2 device to program

 Choose the files with the extension “.hex” to program the device.

 Program the device

When ‘Halt’ item of the menu is clicked

 Halt the programming process

When the graph control area is loaded

 Make all of the group boxes invisible

 When the buttons are clicked, related group boxes will be visible

When a button is clicked

 Hide all the group boxes

 Show the group boxes of the active button

When the button to acquire the data in normal mode is clicked

 Make the clear screen mode off

 Make the start application mode on

 Call the function to begin reading and plotting

When the button to clear the data is clicked

 Make the clear screen mode on

 Call the OnPaint method to redraw the data on the screen

When the check box controlling the axis visibility is checked

 Update the color of the pen to draw the axis

 Make the axis visibility control true

When the check box controlling the grid visibility is checked

 54

 Update the color of the pen to draw the grid

 Make the grid visibility control true

When the check box controlling the scale of the data plotting is checked

 Adjust the graph according to the scale

 Excite the OnPaint method to redraw the data using new settings

When the combo box controlling the type of the data plotting is checked

 If ‘Vector’ item is selected

 Make the ‘Display Type’ boolean true

 Connect the data points

 Else

 Make the ‘Display Type’ boolean false

 Excite the OnPaint method to redraw the data using new settings

When the button to freeze the data flow is clicked

 Make the ‘freeze’ boolean true

When the button to resume the data flow is clicked

 Make the ‘freeze’ boolean false

When the button to stop the data flow is clicked

 Make the ‘stop’ boolean true

 Use it when necessary

Load the graph control

 Initialize the components in the graph control

 55

When the ReadData function is called

 Start the isynchronous data transfer

 Excite the OnPaint method to redraw the data using new settings

Continously call the OnPaint method

Translate the origin of the graph from left upper corner to left bottom corner

If ‘ShowGrid’ boolean is true

 Draw the grid lines

If ‘ShowAxis’ boolean is true

 Draw the axis lines

If ‘DisplayType’ boolean is true

 Connect the data dots on the screen

 56

APPENDICES

 57

APPENDIX A:

FIRMWARE CODE

//CYStream.c

#pragma NOIV // Do not generate

interrupt vectors

//---

#include "fx2.h"

#include "fx2regs.h"

#include "fx2sdly.h" //

SYNCDELAY macro

extern BOOL GotSUD; // Received

setup data flag

extern BOOL Sleep;

extern BOOL Rwuen;

extern BOOL Selfpwr;

#define LED_ADDR 0x21

enum {

 Alt0_BulkIN = 0,

 Alt1_BulkOUT,

 Alt2_BulkINOUT,

 Alt3_IsocIN,

 Alt4_IsocOUT,

 Alt5_IsocIN,

 Alt6_IsocINOUT

};

enum {

 Full_Alt0_BulkIN = 0,

 Full_Alt1_BulkOUT,

 Full_Alt2_IsocIN,

 Full_Alt3_IsocOUT

};

BYTE xdata Digit[] = { 0xc0, 0xf9, 0xa4,

0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x98, 0x88,

0x83, 0xc6, 0xa1, 0x86, 0x8e };

BYTE Configuration; // Current

configuration

BYTE AlternateSetting = Alt5_IsocIN;

// Alternate settings

//--

// Task Dispatcher hooks

// The following hooks are called by the

task dispatcher.

//--

 58

WORD mycount;

void TD_Init(void) // Called

once at startup

{

 //int i,j;

 // set the CPU clock to 48MHz

 CPUCS = ((CPUCS & ~bmCLKSPD) |

bmCLKSPD1) ;

 SYNCDELAY;

// set the slave FIFO interface to 48MHz

 IFCONFIG=0xB3;

 SYNCDELAY;

 // Default interface uses endpoint 2, zero

the valid bit on all others

 // Just using endpoint 2, zero the valid

bit on all others

 EP1OUTCFG = (EP1OUTCFG &

0x7F);

 SYNCDELAY;

 EP1INCFG = (EP1INCFG & 0x7F);

 SYNCDELAY;

 EP4CFG = (EP4CFG & 0x7F);

 SYNCDELAY;

 EP6CFG = (EP6CFG & 0x7F);

 SYNCDELAY;

 EP8CFG = (EP8CFG & 0x7F);

 SYNCDELAY;

 EP2CFG = 0xE0; // EP2 is DIR=IN,

 TYPE=BULK, SIZE=512, BUF=4x

EP2FIFOCFG=EP2FIFOCFG&0xFE;

//WORDWIDE=0; 8 bit data interface is used

 // We want to get SOF interrupts

 USBIE |= bmSOF;

 mycount = 0;

Rwuen = TRUE; // Enable

remote-wakeup

}

void TD_Poll(void) // Called

repeatedly while the device is idle

{

 // ...FX2 in high speed mode

 if(EZUSB_HIGHSPEED())

 {

 // Perform USB activity based

upon the Alt. Interface selected

 switch (AlternateSetting)

 {

 59

 case Alt0_BulkIN:

 // Send data on EP2

 while(!(EP2468STAT &

bmEP2FULL))

 {

 EP2FIFOBUF[0] =

LSB(mycount);

 EP2FIFOBUF[1] =

MSB(mycount);

 EP2FIFOBUF[2] =

USBFRAMEL;

 EP2FIFOBUF[3] =

USBFRAMEH;

 EP2FIFOBUF[4] =

MICROFRAME;

 EP2BCH = 0x02;

 EP2BCL = 0x00;

 mycount++;

 }

 break;

 case Alt2_BulkINOUT:

 // Send data on EP2

 while(!(EP2468STAT &

bmEP2FULL))

 {

 EP2FIFOBUF[0] =

LSB(mycount);

 EP2FIFOBUF[1] =

MSB(mycount);

 EP2FIFOBUF[2] =

USBFRAMEL;

 EP2FIFOBUF[3] =

USBFRAMEH;

 EP2FIFOBUF[4] =

MICROFRAME;

 EP2BCH = 0x02;

 EP2BCL = 0x00;

 mycount++;

 }

 // check EP6

EMPTY(busy) bit in EP2468STAT (SFR), core

set's this bit when FIFO is empty

 if(!(EP2468STAT &

bmEP6EMPTY))

 {

 EP6BCL = 0x80;

// re(arm) EP6OUT

 }

 break;

 case Alt3_IsocIN:

 60

 case Alt5_IsocIN:

 // Send data on EP2

 while(!(EP2468STAT &

bmEP2FULL))

 {

 EP2FIFOBUF[0] =

LSB(mycount);

 EP2FIFOBUF[1] =

MSB(mycount);

 EP2FIFOBUF[2] =

USBFRAMEL;

 EP2FIFOBUF[3] =

USBFRAMEH;

 EP2FIFOBUF[4] =

MICROFRAME;

 EP2BCH = 0x04;

 EP2BCL = 0x00;

 mycount++;

 }

 break;

 case Alt1_BulkOUT:

 case Alt4_IsocOUT:

 //

check EP2 EMPTY(busy) bit in EP2468STAT

(SFR), core set's this bit when FIFO is empty

 if(!(EP2468STAT &

bmEP2EMPTY))

 {

 EP2BCL = 0x80;

// re(arm) EP2OUT

 }

 break;

 case Alt6_IsocINOUT:

 {

 // Send data on EP2

 while(!(EP2468STAT &

bmEP2FULL))

 {

 EP2FIFOBUF[0] =

LSB(mycount);

 EP2FIFOBUF[1] =

MSB(mycount);

 EP2FIFOBUF[2] =

USBFRAMEL;

 EP2FIFOBUF[3] =

USBFRAMEH;

 EP2FIFOBUF[4] =

MICROFRAME;

 EP2BCH = 0x04;

 61

 EP2BCL = 0x00;

 mycount++;

 }

 // check EP6

EMPTY(busy) bit in EP2468STAT (SFR), core

set's this bit when FIFO is empty

 if(!(EP2468STAT &

bmEP6EMPTY))

 {

 EP6BCL = 0x80;

// re(arm) EP6OUT

 }

 }

 break;

 }

 }

/* else // Full Speed

 {

 // Perform USB activity based

upon the Alt. Interface selected

 switch (AlternateSetting)

 {

 case Full_Alt0_BulkIN:

 // Send data on EP2

 while(!(EP2468STAT &

bmEP2FULL))

 {

 EP2FIFOBUF[0] =

LSB(mycount);

 EP2FIFOBUF[1] =

MSB(mycount);

 EP2FIFOBUF[2] =

USBFRAMEL;

 EP2FIFOBUF[3] =

USBFRAMEH;

 EP2FIFOBUF[4] =

MICROFRAME;

 EP2BCH = 0x00;

 EP2BCL = 0x40;

 mycount++;

 }

 break;

 case Full_Alt1_BulkOUT:

 // check EP2

EMPTY(busy) bit in EP2468STAT (SFR), core

set's this bit when FIFO is empty

 while(!(EP2468STAT &

bmEP2EMPTY))

 {

 62

 EP2BCL = 0x80;

// re(arm) EP2OUT

 }

 break;

 case Full_Alt2_IsocIN:

 // Send data on EP2

 while(!(EP2468STAT &

bmEP2FULL))

 {

 EP2FIFOBUF[0] =

LSB(mycount);

 EP2FIFOBUF[1] =

MSB(mycount);

 EP2FIFOBUF[2] =

USBFRAMEL;

 EP2FIFOBUF[3] =

USBFRAMEH;

 EP2FIFOBUF[4] =

MICROFRAME;

 EP2BCH = 0x03;

 // 1023

 EP2BCL = 0xFF;

 mycount++;

 }

 break;

 case Full_Alt3_IsocOUT:

 // check EP2

EMPTY(busy) bit in EP2468STAT (SFR), core

set's this bit when FIFO is empty

 while(!(EP2468STAT &

bmEP2EMPTY))

 {

 EP2BCL = 0x80;

// re(arm) EP2OUT

 }

 break;

 }

 } */

}

BOOL TD_Suspend(void) //

Called before the device goes into suspend mode

{

 return(TRUE);

}

BOOL TD_Resume(void) //

Called after the device resumes

{

 return(TRUE);

}

 63

//--

// Device Request hooks

// The following hooks are called by the

end point 0 device request parser.

//--

BOOL DR_GetDescriptor(void)

{

 return(TRUE);

}

BOOL

DR_SetConfiguration(void) // Called when

a Set Configuration command is received

{

 Configuration = SETUPDAT[2];

 return(TRUE); // Handled by user

code

}

BOOL

DR_GetConfiguration(void) // Called

when a Get Configuration command is received

{

 EP0BUF[0] = Configuration;

 EP0BCH = 0;

 EP0BCL = 1;

 return(TRUE); // Handled by user

code

}

BOOL DR_SetInterface(void)

// Called when a Set Interface command is received

{

 BYTE updateDisplay = TRUE;

 AlternateSetting = SETUPDAT[2];

 // ...FX2 in high speed mode

 if(EZUSB_HIGHSPEED())

 {

 // Change configuration based

upon the Alt. Interface selected

 switch (AlternateSetting)

 {

 case Alt0_BulkIN:

 // Only using endpoint 2,

zero the valid bit on all others

 // Just using endpoint 2,

zero the valid bit on all others

 EP2CFG = 0xE0; // EP2

is DIR=IN, TYPE=BULK, SIZE=512, BUF=4x

 SYNCDELAY;

 EP1OUTCFG =

(EP1OUTCFG & 0x7F);

 64

 SYNCDELAY;

 EP1INCFG =

(EP1INCFG & 0x7F);

 SYNCDELAY;

 EP4CFG = (EP4CFG &

0x7F);

 SYNCDELAY;

 EP6CFG = (EP6CFG &

0x7F);

 SYNCDELAY;

 EP8CFG = (EP8CFG &

0x7F);

 SYNCDELAY;

 // Clear out any

committed packets

 FIFORESET = 0x80;

 SYNCDELAY;

 FIFORESET = 0x02;

 SYNCDELAY;

 FIFORESET = 0x00;

 SYNCDELAY;

 // Reset data toggle to 0

 TOGCTL = 0x12; // EP2

IN

 TOGCTL = 0x32; // EP2

IN Reset

 break;

 case Alt1_BulkOUT:

 // Only using endpoint 2,

zero the valid bit on all others

 EP2CFG = 0xA0; // EP2

is DIR=OUT, TYPE=BULK, SIZE=512, BUF=4x

 SYNCDELAY;

 EP1OUTCFG =

(EP1OUTCFG & 0x7F);

 SYNCDELAY;

 EP1INCFG =

(EP1INCFG & 0x7F);

 SYNCDELAY;

 EP4CFG = (EP4CFG &

0x7F);

 SYNCDELAY;

 EP6CFG = (EP6CFG &

0x7F);

 SYNCDELAY;

 EP8CFG = (EP8CFG &

0x7F);

 SYNCDELAY;

 // OUT endpoints do NOT

come up armed

 EP2BCL = 0x80; // arm

first buffer by writing BC w/skip=1

 65

 SYNCDELAY;

 EP2BCL = 0x80; // arm

second buffer by writing BC w/skip=1

 SYNCDELAY;

 EP2BCL = 0x80; // arm

third buffer by writing BC w/skip=1

 SYNCDELAY;

 EP2BCL = 0x80; // arm

fourth buffer by writing BC w/skip=1

 break;

 case Alt2_BulkINOUT:

 // Using endpoints 2 & 6,

zero the valid bit on all others

 EP2CFG = 0xE0; // EP2

is DIR=IN, TYPE=BULK, SIZE=512, BUF=4x

 SYNCDELAY;

 EP6CFG = 0xA0; // EP6

is DIR=OUT, TYPE=BULK, SIZE=512, BUF=4x

 SYNCDELAY;

 EP1OUTCFG =

(EP1OUTCFG & 0x7F);

 SYNCDELAY;

 EP1INCFG =

(EP1INCFG & 0x7F);

 SYNCDELAY;

 EP4CFG = (EP4CFG &

0x7F);

 SYNCDELAY;

 EP8CFG = (EP8CFG &

0x7F);

 SYNCDELAY;

 // Clear out any

committed packets

 FIFORESET = 0x80;

 SYNCDELAY;

 FIFORESET = 0x02;

 SYNCDELAY;

 FIFORESET = 0x00;

 SYNCDELAY;

 // Reset data toggle to 0

 TOGCTL = 0x12; // EP2

IN

 TOGCTL = 0x32; // EP2

IN Reset

 // OUT endpoints do NOT

come up armed

 EP6BCL = 0x80; // arm

first buffer by writing BC w/skip=1

 SYNCDELAY;

 EP6BCL = 0x80; // arm

second buffer by writing BC w/skip=1

 66

 SYNCDELAY;

 break;

 case Alt3_IsocIN:

 // Only using endpoint 2,

zero the valid bit on all others

 EP2CFG = 0xD8; // EP2

is DIR=IN, TYPE=ISOC, SIZE=1024, BUF=4x

 SYNCDELAY;

 EP1OUTCFG =

EP1INCFG = EP4CFG = EP6CFG = EP8CFG =

0x00;

 SYNCDELAY;

 // Clear out any

committed packets

 FIFORESET = 0x80;

 SYNCDELAY;

 FIFORESET = 0x02;

 SYNCDELAY;

 FIFORESET = 0x00;

 SYNCDELAY;

 // This register sets the

number of Isoc packets to send per

 // uFrame. This register is

only valid in high speed.

 EP2ISOINPKTS = 0x03;

 break;

 case Alt4_IsocOUT:

 {

 // Only using endpoint 2,

zero the valid bit on all others

 EP1OUTCFG =

EP1INCFG = EP4CFG = EP6CFG = EP8CFG =

0x00;

 SYNCDELAY;

 EP2CFG = 0x98; // EP2

is DIR=OUT, TYPE=ISOC, SIZE=1024, BUF=4x

 SYNCDELAY;

 // OUT endpoints do NOT

come up armed

 EP2BCL = 0x80; // arm

first buffer by writing BC w/skip=1

 SYNCDELAY;

 EP2BCL = 0x80; // arm

second buffer by writing BC w/skip=1 break;

 }

 break;

 case Alt5_IsocIN:

 {

 67

 // Only using endpoint 2,

zero the valid bit on all others

 EP2CFG = 0xD8; // EP2

is DIR=IN, TYPE=ISOC, SIZE=1024, BUF=4x

 SYNCDELAY;

 EP1OUTCFG =

EP1INCFG = EP4CFG = EP6CFG = EP8CFG =

0x00;

 SYNCDELAY;

 // Clear out any

committed packets

 FIFORESET = 0x80;

 SYNCDELAY;

 FIFORESET = 0x02;

 SYNCDELAY;

 FIFORESET = 0x00;

 SYNCDELAY;

 // This register sets the

number of Isoc packets to send per

 // uFrame. This register is

only valid in high speed.

 EP2ISOINPKTS = 0x01;

 }

 break;

 case Alt6_IsocINOUT:

 {

 // Using endpoints 2 & 6,

zero the valid bit on all others

 EP2CFG = 0xDA; // EP2

is DIR=IN, TYPE=ISOC, SIZE=1024, BUF=2x

 SYNCDELAY;

 EP6CFG = 0x9A; // EP6

is DIR=OUT, TYPE=ISOC, SIZE=1024, BUF=2x

 SYNCDELAY;

 EP1OUTCFG =

EP1INCFG = EP4CFG = EP8CFG = 0x00;

 SYNCDELAY;

 // Clear out any

committed packets

 FIFORESET = 0x80;

 SYNCDELAY;

 FIFORESET = 0x02;

 SYNCDELAY;

 FIFORESET = 0x00;

 SYNCDELAY;

 // This register sets the

number of Isoc packets to send per

 // uFrame. This register is

only valid in high speed.

 EP2ISOINPKTS = 0x01;

 68

 // OUT endpoints do NOT

come up armed

 EP6BCL = 0x80; // arm

first buffer by writing BC w/skip=1

 SYNCDELAY;

 EP6BCL = 0x80; // arm

second buffer by writing BC w/skip=1

 }

 break;

 }

 }

 else

 {

 // Change configuration based

upon the Alt. Interface selected

 switch (AlternateSetting)

 {

 case Full_Alt0_BulkIN:

 // Only using endpoint 2,

zero the valid bit on all others

 // Just using endpoint 2,

zero the valid bit on all others

 EP2CFG = 0xE0; // EP2

is DIR=IN, TYPE=BULK, SIZE=512, BUF=4x

 SYNCDELAY;

 EP1OUTCFG =

(EP1OUTCFG & 0x7F);

 SYNCDELAY;

 EP1INCFG =

(EP1INCFG & 0x7F);

 SYNCDELAY;

 EP4CFG = (EP4CFG &

0x7F);

 SYNCDELAY;

 EP6CFG = (EP6CFG &

0x7F);

 SYNCDELAY;

 EP8CFG = (EP8CFG &

0x7F);

 SYNCDELAY;

 // Clear out any

committed packets

 FIFORESET = 0x80;

 SYNCDELAY;

 FIFORESET = 0x02;

 SYNCDELAY;

 FIFORESET = 0x00;

 SYNCDELAY;

 // Reset data toggle to 0

 TOGCTL = 0x12; // EP2

IN

 69

 TOGCTL = 0x32; // EP2

IN Reset

 break;

 case Full_Alt1_BulkOUT:

 // Only using endpoint 2,

zero the valid bit on all others

 EP2CFG = 0xA0; // EP2

is DIR=OUT, TYPE=BULK, SIZE=512, BUF=4x

 SYNCDELAY;

 EP1OUTCFG =

(EP1OUTCFG & 0x7F);

 SYNCDELAY;

 EP1INCFG =

(EP1INCFG & 0x7F);

 SYNCDELAY;

 EP4CFG = (EP4CFG &

0x7F);

 SYNCDELAY;

 EP6CFG = (EP6CFG &

0x7F);

 SYNCDELAY;

 EP8CFG = (EP8CFG &

0x7F);

 SYNCDELAY;

 // OUT endpoints do NOT

come up armed

 EP2BCL = 0x80; // arm

first buffer by writing BC w/skip=1

 SYNCDELAY;

 EP2BCL = 0x80; // arm

second buffer by writing BC w/skip=1

 SYNCDELAY;

 EP2BCL = 0x80; // arm

third buffer by writing BC w/skip=1

 SYNCDELAY;

 EP2BCL = 0x80; // arm

fourth buffer by writing BC w/skip=1

 break;

 case Full_Alt2_IsocIN:

 // Only using endpoint 2,

zero the valid bit on all others

 EP2CFG = 0xD8; // EP2

is DIR=IN, TYPE=ISOC, SIZE=1024, BUF=4x

 SYNCDELAY;

 EP1OUTCFG =

EP1INCFG = EP4CFG = EP6CFG = EP8CFG =

0x00;

 SYNCDELAY;

 70

 // Clear out any

committed packets

 FIFORESET = 0x80;

 SYNCDELAY;

 FIFORESET = 0x02;

 SYNCDELAY;

 FIFORESET = 0x00;

 SYNCDELAY;

 break;

 case Full_Alt3_IsocOUT:

 {

 // Only using endpoint 2,

zero the valid bit on all others

 EP1OUTCFG =

EP1INCFG = EP4CFG = EP6CFG = EP8CFG =

0x00;

 SYNCDELAY;

 EP2CFG = 0x98; // EP2

is DIR=OUT, TYPE=ISOC, SIZE=1024, BUF=4x

 SYNCDELAY;

 // OUT endpoints do NOT

come up armed

 EP2BCL = 0x80; // arm

first buffer by writing BC w/skip=1

 SYNCDELAY;

 EP2BCL = 0x80; // arm

second buffer by writing BC w/skip=1 break;

 }

 break;

 }

 }

 // Update the display to indicate the

currently selected alt. Interface

 if(updateDisplay)

 {

EZUSB_WriteI2C(LED_ADDR, 0x01,

&(Digit[AlternateSetting]));

EZUSB_WaitForEEPROMWrite(LED_ADDR);

 updateDisplay = FALSE;

 }

 return(TRUE); // Handled by user

code

}

 71

BOOL DR_GetInterface(void)

// Called when a Set Interface command is received

{

 EP0BUF[0] = AlternateSetting;

 EP0BCH = 0;

 EP0BCL = 1;

 return(TRUE); // Handled by user

code

}

BOOL DR_GetStatus(void)

{

 return(TRUE);

}

BOOL DR_ClearFeature(void)

{

 return(TRUE);

}

BOOL DR_SetFeature(void)

{

 return(TRUE);

}

BOOL DR_VendorCmnd(void)

{

 return(TRUE);

}

//--

// USB Interrupt Handlers

// The following functions are called by

the USB interrupt jump table.

//--

// Setup Data Available Interrupt Handler

void ISR_Sudav(void) interrupt 0

{

 GotSUD = TRUE; // Set flag

 EZUSB_IRQ_CLEAR();

 USBIRQ = bmSUDAV; // Clear

SUDAV IRQ

}

// Setup Token Interrupt Handler

void ISR_Sutok(void) interrupt 0

{

 EZUSB_IRQ_CLEAR();

 USBIRQ = bmSUTOK; // Clear

SUTOK IRQ

}

void ISR_Sof(void) interrupt 0

{

 72

 EZUSB_IRQ_CLEAR();

 USBIRQ = bmSOF; // Clear SOF

IRQ

}

void ISR_Ures(void) interrupt 0

{

 // Whenever we get a USB Reset, we

should revert to full speed mode

 pConfigDscr = pFullSpeedConfigDscr;

 ((CONFIGDSCR xdata *)

pConfigDscr)->type = CONFIG_DSCR;

 pOtherConfigDscr =

pHighSpeedConfigDscr;

 ((CONFIGDSCR xdata *)

pOtherConfigDscr)->type =

OTHERSPEED_DSCR;

 EZUSB_IRQ_CLEAR();

 USBIRQ = bmURES; // Clear

URES IRQ

}

void ISR_Susp(void) interrupt 0

{

 Sleep = TRUE;

 EZUSB_IRQ_CLEAR();

 USBIRQ = bmSUSP;

}

void ISR_Highspeed(void)

interrupt 0

{

 if (EZUSB_HIGHSPEED())

 {

 pConfigDscr =

pHighSpeedConfigDscr;

 ((CONFIGDSCR xdata *)

pConfigDscr)->type = CONFIG_DSCR;

 pOtherConfigDscr =

pFullSpeedConfigDscr;

 ((CONFIGDSCR xdata *)

pOtherConfigDscr)->type =

OTHERSPEED_DSCR;

 // This register sets the number of Isoc

packets to send per

 // uFrame. This register is only valid

in high speed.

 EP2ISOINPKTS = 0x03;

 }

 else

 {

 pConfigDscr = pFullSpeedConfigDscr;

 pOtherConfigDscr =

pHighSpeedConfigDscr;

 }

 73

 EZUSB_IRQ_CLEAR();

 USBIRQ = bmHSGRANT;

}

void ISR_Ep0ack(void) interrupt

0

{

}

void ISR_Stub(void) interrupt 0

{

}

void ISR_Ep0in(void) interrupt 0

{

}

void ISR_Ep0out(void) interrupt

0

{

}

void ISR_Ep1in(void) interrupt 0

{

}

void ISR_Ep1out(void) interrupt

0

{

}

// ISR_Ep2inout is called on every OUT

packet receieved.

// We don't do anything with the data. We

just indicate we are done with the buffer.

void ISR_Ep2inout(void)

interrupt 0

{

 // Perform USB activity based upon the

Alt. Interface selected

 switch (AlternateSetting)

 {

 case Alt1_BulkOUT:

 case Alt4_IsocOUT:

 // check EP2 EMPTY(busy) bit in

EP2468STAT (SFR), core set's this bit when FIFO

is empty

 if(!(EP2468STAT &

bmEP2EMPTY))

 {

 EP2BCL = 0x80; // re(arm)

EP2OUT

 }

 break;

 case Alt2_BulkINOUT:

 case Alt6_IsocINOUT:

 // check EP6 EMPTY(busy) bit in

EP2468STAT (SFR), core set's this bit when FIFO

is empty

 if(!(EP2468STAT &

bmEP6EMPTY))

 {

 74

 EP6BCL = 0x80; // re(arm)

EP6OUT

 }

 break;

 }

}

void ISR_Ep4inout(void)

interrupt 0

{

}

void ISR_Ep6inout(void)

interrupt 0

{

}

void ISR_Ep8inout(void)

interrupt 0

{

}

void ISR_Ibn(void) interrupt 0

{

}

void ISR_Ep0pingnak(void)

interrupt 0

{

}

void ISR_Ep1pingnak(void)

interrupt 0

{

}

void ISR_Ep2pingnak(void)

interrupt 0

{

}

void ISR_Ep4pingnak(void)

interrupt 0

{

}

void ISR_Ep6pingnak(void)

interrupt 0

{

}

void ISR_Ep8pingnak(void)

interrupt 0

{

}

void ISR_Errorlimit(void)

interrupt 0

{

}

void ISR_Ep2piderror(void)

interrupt 0

{

}

void ISR_Ep4piderror(void)

interrupt 0

{

}

 75

void ISR_Ep6piderror(void)

interrupt 0

{

}

void ISR_Ep8piderror(void)

interrupt 0

{

}

void ISR_Ep2pflag(void)

interrupt 0

{

}

void ISR_Ep4pflag(void)

interrupt 0

{

}

void ISR_Ep6pflag(void)

interrupt 0

{

}

void ISR_Ep8pflag(void)

interrupt 0

{

}

void ISR_Ep2eflag(void)

interrupt 0

{

}

void ISR_Ep4eflag(void)

interrupt 0

{

}

void ISR_Ep6eflag(void)

interrupt 0

{

}

void ISR_Ep8eflag(void)

interrupt 0

{

}

void ISR_Ep2fflag(void)

interrupt 0

{

}

void ISR_Ep4fflag(void)

interrupt 0

{

}

void ISR_Ep6fflag(void)

interrupt 0

{

}

void ISR_Ep8fflag(void)

interrupt 0

{

}

 76

void ISR_GpifComplete(void)

interrupt 0

{

}

void ISR_GpifWaveform(void)

interrupt 0

{

}

// File: fw.c

//--

#include "fx2.h"

#include "fx2regs.h"

//--

// Constants

//--

#define DELAY_COUNT 0x9248*8L //

Delay for 8 sec at 24Mhz, 4 sec at 48

#define _IFREQ 48000 // IFCLK

constant for Synchronization Delay

#define _CFREQ 48000 //

CLKOUT constant for Synchronization Delay

//--

// Random Macros

//--

#define min(a,b) (((a)<(b))?(a):(b))

#define max(a,b) (((a)>(b))?(a):(b))

 // Registers which require a

synchronization delay, see section 15.14

 // FIFORESET FIFOPINPOLAR

 // INPKTEND OUTPKTEND

 // EPxBCH:L REVCTL

 // GPIFTCB3 GPIFTCB2

 // GPIFTCB1 GPIFTCB0

 // EPxFIFOPFH:L

EPxAUTOINLENH:L

 // EPxFIFOCFG EPxGPIFFLGSEL

 // PINFLAGSxx EPxFIFOIRQ

 // EPxFIFOIE GPIFIRQ

 // GPIFIE GPIFADRH:L

 // UDMACRCH:L EPxGPIFTRIG

 // GPIFTRIG

 // Note: The pre-REVE EPxGPIFTCH/L

register are affected, as well...

 // ...these have been replaced by

GPIFTC[B3:B0] registers

#include "fx2sdly.h" // Define

_IFREQ and _CFREQ above this #include

 77

//--

// Global Variables

//--

volatile BOOL GotSUD;

BOOL Rwuen;

BOOL Selfpwr;

volatile BOOL Sleep; // Sleep

mode enable flag

WORD pDeviceDscr; // Pointer to

Device Descriptor; Descriptors may be moved

WORD pDeviceQualDscr;

WORD pHighSpeedConfigDscr;

WORD pFullSpeedConfigDscr;

WORD pConfigDscr;

WORD pOtherConfigDscr;

WORD pStringDscr;

//--

// Prototypes

//--

void SetupCommand(void);

void TD_Init(void);

void TD_Poll(void);

BOOL TD_Suspend(void);

BOOL TD_Resume(void);

BOOL DR_GetDescriptor(void);

BOOL DR_SetConfiguration(void);

BOOL DR_GetConfiguration(void);

BOOL DR_SetInterface(void);

BOOL DR_GetInterface(void);

BOOL DR_GetStatus(void);

BOOL DR_ClearFeature(void);

BOOL DR_SetFeature(void);

BOOL DR_VendorCmnd(void);

// this table is used by the epcs macro

const char code

EPCS_Offset_Lookup_Table[] =

{

 0, // EP1OUT

 1, // EP1IN

 2, // EP2OUT

 2, // EP2IN

 3, // EP4OUT

 3, // EP4IN

 4, // EP6OUT

 4, // EP6IN

 5, // EP8OUT

 5, // EP8IN

};

 78

// macro for generating the address of an

endpoint's control and status register (EPnCS)

#define epcs(EP)

(EPCS_Offset_Lookup_Table[(EP & 0x7E) | (EP >

128)] + 0xE6A1)

//--

// Code

//--

// Task dispatcher

void main(void)

{

 DWORD i;

 WORD offset;

 DWORD DevDescrLen;

 DWORD j=0;

 WORD IntDescrAddr;

 WORD ExtDescrAddr;

 // Initialize Global States

 Sleep = FALSE; // Disable

sleep mode

 Rwuen = FALSE; // Disable

remote wakeup

 Selfpwr = FALSE; // Disable self

powered

 GotSUD = FALSE; // Clear

"Got setup data" flag

 // Initialize user device

 TD_Init();

 // The following section of code is used

to relocate the descriptor table.

 // Since the SUDPTRH and SUDPTRL

are assigned the address of the descriptor

 // table, the descriptor table must be

located in on-part memory.

 // The 4K demo tools locate all code

sections in external memory.

 // The descriptor table is relocated by the

frameworks ONLY if it is found

 // to be located in external memory.

 pDeviceDscr = (WORD)&DeviceDscr;

 pDeviceQualDscr =

(WORD)&DeviceQualDscr;

 pHighSpeedConfigDscr =

(WORD)&HighSpeedConfigDscr;

 79

 pFullSpeedConfigDscr =

(WORD)&FullSpeedConfigDscr;

 pStringDscr = (WORD)&StringDscr;

 if ((WORD)&DeviceDscr & 0xe000)

 {

 IntDescrAddr =

INTERNAL_DSCR_ADDR;

 ExtDescrAddr =

(WORD)&DeviceDscr;

 DevDescrLen = (WORD)&UserDscr -

(WORD)&DeviceDscr + 2;

 for (i = 0; i < DevDescrLen; i++)

 *((BYTE xdata *)IntDescrAddr+i) =

0xCD;

 for (i = 0; i < DevDescrLen; i++)

 *((BYTE xdata *)IntDescrAddr+i) =

*((BYTE xdata *)ExtDescrAddr+i);

 pDeviceDscr = IntDescrAddr;

 offset = (WORD)&DeviceDscr -

INTERNAL_DSCR_ADDR;

 pDeviceQualDscr -= offset;

 pConfigDscr -= offset;

 pOtherConfigDscr -= offset;

 pHighSpeedConfigDscr -= offset;

 pFullSpeedConfigDscr -= offset;

 pStringDscr -= offset;

 }

 EZUSB_IRQ_ENABLE(); //

Enable USB interrupt (INT2)

 EZUSB_ENABLE_RSMIRQ(); //

Wake-up interrupt

 // What is INT2 is for USB & INT4 is

for the Slave FIFOs

 INTSETUP |= (bmAV2EN |

bmAV4EN); // Enable INT 2 & 4 autovectoring

 // I don't think we care about Setup PIDs

only the Setup data; commented out

 // bmSUTOK but we want bmSUDAV.

 USBIE |= bmSUDAV | bmSUTOK |

bmSUSP | bmURES | bmHSGRANT; // Enable

selected interrupts

 // Global interrupt enable. Controls

masking of all interrupts except USB wakeup

 // (resume). EA = 0 disables all

interrupts except USB wakeup. When EA = 1,

interrupts are

 // enabled or masked by their individual

enable bits.

 EA = 1; // Enable 8051

interrupts

#ifndef NO_RENUM

 80

 // Renumerate if necessary. Do this by

checking the renum bit. If it

 // is already set, there is no need to

renumerate. The renum bit will

 // already be set if this firmware was

loaded from an eeprom.

 if(!(USBCS & bmRENUM))

 {

 EZUSB_Discon(TRUE); //

renumerate

 }

#endif

 // unconditionally re-connect. If we

loaded from eeprom we are

 // disconnected and need to connect. If

we just renumerated this

 // is not necessary but doesn't hurt

anything

 USBCS &=~bmDISCON;

 // The three LSBs of the Clock Control

Register (CKCON, at SFR location 0x8E) control

the stretch

 // value; stretch values between zero and

seven may be used. A stretch value of zero adds

zero

 // instruction cycles, resulting in MOVX

instructions which execute in two instruction

cycles.

 CKCON = (CKCON&(~bmSTRETCH))

| FW_STRETCH_VALUE; // Set stretch to 0 (after

renumeration)

 // clear the Sleep flag.

 Sleep = FALSE;

 EZUSB_InitI2C();

 // Initialize EZ-USB I2C

controller

 // Task Dispatcher

 while(TRUE) // Main Loop

 {

 if(GotSUD) // Wait for SUDAV

 {

 SetupCommand(); // Implement

setup command

 GotSUD = FALSE; // Clear

SUDAV flag

 }

 // Poll User Device

 // NOTE: Idle mode stops the

processor clock. There are only two

 // ways out of idle mode, the

WAKEUP pin, and detection of the USB

 81

 // resume state on the USB bus. The

timers will stop and the

 // processor will not wake up on any

other interrupts.

 if (Sleep)

 {

 if(TD_Suspend())

 {

 Sleep = FALSE; // Clear

the "go to sleep" flag. Do it here to prevent any

race condition between wakeup and the next sleep.

 do

 {

 EZUSB_Susp(); // Place

processor in idle mode.

 }

 while(!Rwuen &&

EZUSB_EXTWAKEUP());

 // Must continue to go back into

suspend if the host has disabled remote wakeup

 // *and* the wakeup was caused

by the external wakeup pin.

 // 8051 activity will resume here

due to USB bus or Wakeup# pin activity.

 EZUSB_Resume(); // If source is

the Wakeup# pin, signal the host to Resume.

 TD_Resume();

 }

 }

 TD_Poll();

 }

}

// Device request parser

void SetupCommand(void)

{

 void *dscr_ptr;

 switch(SETUPDAT[1])

 {

 case SC_GET_DESCRIPTOR:

// *** Get Descriptor

 if(DR_GetDescriptor())

 switch(SETUPDAT[3])

 {

 case GD_DEVICE: //

Device

 SUDPTRH =

MSB(pDeviceDscr);

 SUDPTRL =

LSB(pDeviceDscr);

 break;

 case

GD_DEVICE_QUALIFIER: // Device

Qualifier

 SUDPTRH =

MSB(pDeviceQualDscr);

 82

 SUDPTRL =

LSB(pDeviceQualDscr);

 break;

 case GD_CONFIGURATION:

// Configuration

 SUDPTRH =

MSB(pConfigDscr);

 SUDPTRL =

LSB(pConfigDscr);

 break;

 case

GD_OTHER_SPEED_CONFIGURATION: //

Other Speed Configuration

 SUDPTRH =

MSB(pOtherConfigDscr);

 SUDPTRL =

LSB(pOtherConfigDscr);

 break;

 case GD_STRING: //

String

 if(dscr_ptr = (void

*)EZUSB_GetStringDscr(SETUPDAT[2]))

 {

 SUDPTRH = MSB(dscr_ptr);

 SUDPTRL = LSB(dscr_ptr);

 }

 else

 EZUSB_STALL_EP0(); //

Stall End Point 0

 break;

 default: // Invalid request

 EZUSB_STALL_EP0(); //

Stall End Point 0

 }

 break;

 case SC_GET_INTERFACE:

// *** Get Interface

 DR_GetInterface();

 break;

 case SC_SET_INTERFACE:

// *** Set Interface

 DR_SetInterface();

 break;

 case SC_SET_CONFIGURATION:

// *** Set Configuration

 DR_SetConfiguration();

 break;

 case SC_GET_CONFIGURATION:

// *** Get Configuration

 DR_GetConfiguration();

 break;

 case SC_GET_STATUS: //

*** Get Status

 if(DR_GetStatus())

 switch(SETUPDAT[0])

 {

 case GS_DEVICE: //

Device

 83

 EP0BUF[0] = ((BYTE)Rwuen

<< 1) | (BYTE)Selfpwr;

 EP0BUF[1] = 0;

 EP0BCH = 0;

 EP0BCL = 2;

 break;

 case GS_INTERFACE: //

Interface

 EP0BUF[0] = 0;

 EP0BUF[1] = 0;

 EP0BCH = 0;

 EP0BCL = 2;

 break;

 case GS_ENDPOINT: //

End Point

 EP0BUF[0] = *(BYTE xdata

*) epcs(SETUPDAT[4]) & bmEPSTALL;

 EP0BUF[1] = 0;

 EP0BCH = 0;

 EP0BCL = 2;

 break;

 default: // Invalid

Command

 EZUSB_STALL_EP0(); //

Stall End Point 0

 }

 break;

 case SC_CLEAR_FEATURE:

// *** Clear Feature

 if(DR_ClearFeature())

 switch(SETUPDAT[0])

 {

 case FT_DEVICE: //

Device

 if(SETUPDAT[2] == 1)

 Rwuen = FALSE; //

Disable Remote Wakeup

 else

 EZUSB_STALL_EP0(); //

Stall End Point 0

 break;

 case FT_ENDPOINT: //

End Point

 if(SETUPDAT[2] == 0)

 {

 *(BYTE xdata *)

epcs(SETUPDAT[4]) &= ~bmEPSTALL;

EZUSB_RESET_DATA_TOGGLE(

SETUPDAT[4]);

 }

 else

 EZUSB_STALL_EP0(); //

Stall End Point 0

 break;

 }

 break;

 84

 case SC_SET_FEATURE:

// *** Set Feature

 if(DR_SetFeature())

 switch(SETUPDAT[0])

 {

 case FT_DEVICE: //

Device

 if(SETUPDAT[2] == 1)

 Rwuen = TRUE; // Enable

Remote Wakeup

 else if(SETUPDAT[2] == 2)

 // Set Feature Test Mode.

The core handles this request. However, it is

 // necessary for the firmware

to complete the handshake phase of the

 // control transfer before the

chip will enter test mode. It is also

 // necessary for FX2 to be

physically disconnected (D+ and D-)

 // from the host before it will

enter test mode.

 break;

 else

 EZUSB_STALL_EP0(); //

Stall End Point 0

 break;

 case FT_ENDPOINT: //

End Point

 *(BYTE xdata *)

epcs(SETUPDAT[4]) |= bmEPSTALL;

 break;

 }

 break;

 default: // *** Invalid

Command

 if(DR_VendorCmnd())

 EZUSB_STALL_EP0(); //

Stall End Point 0

 }

 // Acknowledge handshake phase of

device request

 EP0CS |= bmHSNAK;

}

// Wake-up interrupt handler

void resume_isr(void) interrupt

WKUP_VECT

{

 EZUSB_CLEAR_RSMIRQ();

}

 85

APPENDIX B

CODE OF THE MAIN FORM:

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

using System.Diagnostics;

using System.IO;

using CyUSB;

using System.Threading;

namespace CyControl

{

 public partial class Form1 : Form

 {

 USBDeviceList usbDevices;

 86

 CyUSBDevice myDevice;

 CyUSBEndPoint curEndpt;

 App_PnP_Callback evHandler;

 byte AdmDev = CyConst.DEVICES_CYUSB;

 string dataCaption;

 bool progOK = true;

 public string FileNameToBeSaved=null;

 bool ChangeAxColor = false;

 bool ChangeGrColor = false;

 public ColorDialog AxCh; //To make the dialog result public

 public ColorDialog GrCh; //They will used in click menu items

 public int keeptime, keepvolt;

 public float timeScale = 1, voltScale = 1; //Useless scales.

 public int bytes = 512; //# of bytes for one reading.

 public byte[] buffer = new byte[512];

 public bool bXferCompleted = false;

 int counter = 0;

public Color buttonColor1 = SystemColors.ActiveCaption;

//For easy modification of the button colors.

 public Color buttonColor2 = Color.BlanchedAlmond;

//Will be used.

 public Color buttonColor3 = Color.BurlyWood;

 87

System.Windows.Forms.Timer MyTimer = new System.Windows.Forms.Timer();

public Form1()

 {

 InitializeComponent();

 evHandler = new App_PnP_Callback(PnP_Event_Handler);

 usbDevices = new USBDeviceList(AdmDev, evHandler);

 myDevice = (CyUSBDevice)usbDevices[0x04B4, 0x1004];

//Get the first device having VendorID == 0x04B4 and ProductID ==0x1004

 if (myDevice == null)

 {

 progOK = false;

 myDevice = (CyUSBDevice)usbDevices[0x04B4, 0x8613];

 //Connect the device part which will be programmed.

 //VendorID == 0x04B4 and ProductID == 0x8613

 if (myDevice != null)

 {

 MessageBox.Show("Cypress connected

now."+Environment.NewLine+"But it should be programmed before usage!" +

Environment.NewLine + "Program the device with 'digos.hex' file", "Info",

MessageBoxButtons.OK, MessageBoxIcon.Information);

 return;

 }

 }

 Form1_Resize(this, null);

 }

 88

public void PnP_Event_Handler(IntPtr pnpEvent, IntPtr hRemovedDevice)

 {

 if (pnpEvent.Equals(CyConst.DBT_DEVICEREMOVECOMPLETE))

 {

 usbDevices.Remove(hRemovedDevice); //Warn when device is removed.

MessageBox.Show("Cypress device removed.", "Info",

MessageBoxButtons.OK, MessageBoxIcon.Information);

 }

 if (pnpEvent.Equals(CyConst.DBT_DEVICEARRIVAL))

 {

 usbDevices.Add(); //Warn when device id added.

 MessageBox.Show("Cypress device successfully programmed!" +

Environment.NewLine + "Plot menu is enabled!!!", "Info", MessageBoxButtons.OK,

MessageBoxIcon.Information);

 myDevice = (CyUSBDevice)usbDevices[0x04B4, 0x1004];

 if (myDevice!=null)

 progOK = true;

//Now, programmed part of the device is connected.Make progOK=true.

 }

 }

private void Form1_FormClosing(object sender, FormClosingEventArgs e)

 {

 if (usbDevices != null) usbDevices.Dispose();

//Clean up memory, clean the USB devices added to memory.

 }

 89

private void AboutMenuItem_Click(object sender, EventArgs e)

 {

 MessageBox.Show(Util.Assemblies, Text);

 //Show info about the program.

 }

private void Periodic_Read(object sender, System.EventArgs e)

 {

 curEndpt = myDevice.EndPointOf(0x86);

//Catch the endpoint of the microcontroller.

 CyBulkEndPoint bulkEpt = curEndpt as CyBulkEndPoint;

 //Define the endpoint of the device.

 if (curEndpt == null)

 {

 MessageBox.Show("Be sure that 'digos' dis connected.");

 //Warn when the device is disconnected.

 return;

 }

 bXferCompleted = bulkEpt.XferData(ref buffer, ref bytes);

 //Send a message when data transfer is completed.

 }

private void GetData()//Gets one point to plot.

 {

 90

 MyTimer.Tick += new EventHandler(Periodic_Read)

//Each tick,each fixed time interval elapsed, call the Periodic_Read to get info from

the device.

 MyTimer.Interval = 1;

//For now, time interval is fixed at the minimum time interval the Timer function

permit.

 curEndpt = myDevice.EndPointOf(0x86);

//Catch the endpoint of the microcontroller.

 CyBulkEndPoint bulkEpt = curEndpt as CyBulkEndPoint;

//Define the endpoint of the device.

 curEndpt.TimeOut = 2000;

//If there is no response until a fixed time elapsed, warn the user about the problem.

 if (curEndpt == null)

 {

 MessageBox.Show("Be sure that 'digos' dis connected.");

 return;

 }

//This part is to fill the info output text box to be informed about the data coming.

//Will be deleted at the end.

 BuildDataCaption();

 OutputBox.Text += dataCaption;

 OutputBox.SelectionStart = OutputBox.Text.Length;

 OutputBox.ScrollToCaret();

 91

 if (bulkEpt != null)

 {

 bXferCompleted = false;//for each 512.

 bXferCompleted = bulkEpt.XferData(ref buffer, ref bytes);

//Send a message when data transfer is completed.

 MyTimer.Start();

//Start the timer to konuw how many seconds elapsed.

 if (bXferCompleted)

 graphControl1.ReadData(ref buffer, bytes);

//buf and bCnt sent

//When the flag for data transfer complete stage is enabled,

//send the data to ReadData function for plotting.

 }

//For isynchoronous data acquisition.

 CyIsocEndPoint isocEpt = curEndpt as CyIsocEndPoint;

 if (isocEpt != null)

 bXferCompleted = isocEpt.XferData(ref buffer, ref bytes);

 DisplayInfoWriteFile(buffer, bytes);

//To fill the output text file with the data coming.

//To enable the data save function.

 }

private void BuildDataCaption()

 92

 {

 StringBuilder dataStr = new StringBuilder();

 switch (curEndpt.Attributes)

 {

 case 0: dataStr.Append("CONTROL ");

 break;

 case 1: dataStr.Append("ISOC ");

 break;

 case 2: dataStr.Append("BULK ");

 break;

 case 3: dataStr.Append("INTERRUPT ");

 break;

 }

 if (curEndpt.bIn)

 dataStr.Append("IN transfer ");

 else

 dataStr.Append("OUT transfer ");

 dataCaption = dataStr.ToString();

 }

public void DisplayInfoWriteFile(byte[] buf, int bCnt)

 {

 StringBuilder dataStr = new StringBuilder();

 string resultStr = "";

 if (bCnt > 0)

 93

 resultStr = dataCaption + "completed\r\n";

 else

 resultStr = dataCaption + "failed\r\n";

//When save file item clicked in the menu, this will be activated.

 if(FileNameToBeSaved!=null)

using(StreamWriter myWriter = new StreamWriter(FileNameToBeSaved))

 {

 for(int j=0;j<bCnt;j++)

 myWriter.WriteLine((int)buf[j]);

 }

//Prepare the text file which will be written in the output text file.

 for (int i = 0; i < bCnt; i++)

 {

 if ((i % 16) == 0) dataStr.Append(string.Format("\r\n{0:X4}", i));

 dataStr.Append(string.Format(" {0:X2}", buf[i]));

 }

//Fill the output text on the form.

 OutputBox.Text += dataStr.ToString() + "\r\n" + resultStr + \r\n";

OutputBox.SelectionStart = OutputBox.Text.Length;

OutputBox.ScrollToCaret();

 }

private void Form1_Resize(object sender, EventArgs e)

 {

 94

 bool bControlEpt = ((curEndpt != null) && (curEndpt.Attributes == 0));

 int oBoxAdj = bControlEpt ? 200 : 100;

 OutputBox.SetBounds(0, 0, 5, XferTab.Size.Height - oBoxAdj);

 }

private void exitToolStripMenuItem_Click(object sender, EventArgs e)

 {

 Close();

 //Exit the application.

 }

private void ProgE2Item_Click(object sender, EventArgs e)

 {//Function to program the fX2 device using the .hex file.

 CyFX2Device fx2 = myDevice as CyFX2Device;

//Take the adress of the FX2 device using the adress of the connected USB device.

 string tmpFilter = FOpenDialog.Filter;

 if (sender == ProgE2Item)

 FOpenDialog.Filter = "Hex Files (*.hex) | *.hex";

 if ((fx2 != null) && (FOpenDialog.ShowDialog() == DialogResult.OK))

 {

 bool bResult = false;

 if (sender == ProgE2Item)

 {

 95

 StatLabel.Text = "Programming EEPROM of " + fx2.FriendlyName;

 Refresh();

 bResult = fx2.LoadEEPROM(FOpenDialog.FileName);

 }

 else

 {

 StatLabel.Text = "Programming RAM of " + fx2.FriendlyName;

 Refresh();

 bResult = fx2.LoadRAM(FOpenDialog.FileName);

 }

 StatLabel.Text = "Programming " + (bResult ? "succeeded." : "failed.");

 Refresh();

 }

 FOpenDialog.Filter = tmpFilter;

 }

 private void HaltItem_Click(object sender, EventArgs e)

 {

 //Call this function to halt the data write process.

 CyFX2Device fx2 = myDevice as CyFX2Device;

 if (fx2 != null)

 if (sender == HaltItem)

 fx2.Reset(1);

 else

 96

 fx2.Reset(0);

 }

private void graphControl1_Load(object sender, EventArgs e)

 {

 hideAllGroupBoxes();

 //for easy color change of the buttons

 btnAcquire.BackColor = buttonColor1;

 btnCursor.BackColor = buttonColor1;

 btnDisplay.BackColor = buttonColor1;

 btnMeasure.BackColor = buttonColor1;

 btnResume.BackColor = buttonColor1;

 btnStop.BackColor = buttonColor1;

 }

private void AcNormal_Click(object sender, EventArgs e)

 {

 graphControl1.Clear = false;

 graphControl1.StartApp = true;

 GetData();

//Get the data from the device.

 }

public void hideAllGroupBoxes()

 97

//Hide all of the groupboxes.

 {

 groupBoxAcquire.Hide(); //menu

 groupBoxCursor.Hide(); //menu

 groupBoxDisplay.Hide(); //menu

 groupBoxDiInformation.Hide(); //comenu

 groupBoxAcInformation.Hide(); //comenu

 groupBoxCuInformation.Hide(); //comenu

 groupBoxGridAxis.Hide(); //submenu

 groupBoxScale.Hide(); //submenu

 groupBoxDiTypee.Hide(); //cosubmenu

 groupBoxDiAccumulate.Hide(); //cosubmenu

 groupBoxMeOneInformation.Hide(); //comenu

 groupBoxMeTwoInformation.Hide(); //comenu

 }

private void btnAcquire_Click(object sender, EventArgs e)

 {

 hideAllGroupBoxes();

//Hide previously used groupboxes.

 groupBoxAcquire.Show();

//Make the acquire group visible.

 groupBoxAcInformation.Show();

 }

private void btnCursor_Click(object sender, EventArgs e)

 {

 98

 hideAllGroupBoxes();

//Hide previously used groupboxes.

 groupBoxCursor.Show();

//Make the cursor group visible.

 groupBoxCuInformation.Show();

 }

private void btnDisplay_Click(object sender, EventArgs e)

 {

 hideAllGroupBoxes();

//Hide previously used group boxes.

 groupBoxDisplay.Show();

//Make the display group visible

 groupBoxDiInformation.Show();

//Simultaneously show the info box

 }

private void DiGridAxis_Click(object sender, EventArgs e)

 {

 hideAllGroupBoxes();

//Hide previously used group boxes.

 groupBoxDisplay.Show();

 groupBoxGridAxis.Show();

//Show submenu of comenu info of display

 }

 99

private void DiScale_Click(object sender, EventArgs e)

 {

 hideAllGroupBoxes();

//Hide previously used group boxes.

 groupBoxDisplay.Show();

 groupBoxScale.Show();

//Show submenu of comenu info of display

 }

private void DiRefresh_Click(object sender, EventArgs e)

 {

 graphControl1.Clear=true;

 Invalidate(); //Activate the OnPaint function.

 }

private void checkBoxShowAxis_CheckedChanged(object sender, EventArgs e)

 {

 if (ChangeAxColor)

 graphControl1.AxPenColorStatus(AxCh.Color);

 //Immedeately change the color of the axis pen, send the realted data.

 graphControl1.SetAxisStatus(checkBoxShowAxis.Checked);

 //Send the data that shows the checkbox status change.

 }

private void checkBoxShowGrid_CheckedChanged(object sender, EventArgs e)

 100

 {

 if (ChangeGrColor)

 graphControl1.GrPenColorStatus(GrCh.Color);

 //Immedeately change the color of the grid pen, send the realted data.

 graphControl1.SetGridStatus(checkBoxShowGrid.Checked);

 //Send the data that shows the checkbox status change.

 }

private void DiType_Click(object sender, EventArgs e)

 {

 hideAllGroupBoxes();

//Hide previously used group boxes.

 groupBoxDisplay.Show();

 groupBoxDiTypee.Show();

 }

private void DiSum_Click(object sender, EventArgs e)

 {

 hideAllGroupBoxes();

//Hide previously used group boxes.

 groupBoxDisplay.Show();

 }

 101

private void checkedListBox1_SelectedIndexChanged(object sender,EventArgs e)

 {

 keeptime = checkedListBox1.SelectedIndex;

//Uncheck other indices

 for (int i = 0; i < checkedListBox1.Items.Count; i++)

 checkedListBox1.SetItemChecked(i, false);

 checkedListBox1.SetItemChecked(keeptime, true);

//Keep selected index.

 scaling();

//Send the necessary scaling values to the related places.

 }

private void checkedListBox2_SelectedIndexChanged(object sender, EventArgs e)

 {

 keepvolt = checkedListBox2.SelectedIndex;

//Uncheck other indices

 for (int i = 0; i < checkedListBox2.Items.Count; i++)

 checkedListBox2.SetItemChecked(i, false);

 checkedListBox2.SetItemChecked(keepvolt, true);

//Keep selected index.

 scaling();

//Send the necessary scaling values to the related places.

 }

private void scaling()

 {

 graphControl1.DispType=false;

 102

 if (comboBox1.SelectedIndex == 0)

 {

 graphControl1.DispType=true;

 }

switch (checkedListBox1.SelectedIndex)

//Set the scale, will be editted acc. to the length of the table.

 {

 case 0:

 timeScale = 2;

 break;

 case 1:

 timeScale = 3;

 break;

 case 2:

 timeScale = 4;

 break;

 case 3:

 timeScale = 5;

 break;

 case 4:

 timeScale = 6;

 break;

 case 5:

 timeScale = 7;

 break;

 case 6:

 timeScale = 8;

 103

 break;

 case 7:

 timeScale = 9;

 break;

 case 8:

 timeScale = 10;

 break;

 case 9:

 timeScale = 11;

 break;

 case 10:

 timeScale = 12;

 break;

 case 11:

 timeScale = 13;

 break;

 case 12:

 timeScale = 14;

 break;

 case 13:

 timeScale = 15;

 break;

 case 14:

 timeScale = 16;

 break;

 case 15:

 timeScale = 17;

 break;

 case 16:

 104

 timeScale = 18;

 break;

 case 17:

 timeScale = 19;

 break;

 }

 switch (checkedListBox2.SelectedIndex)

 {

 case 0:

 voltScale = 2;

 break;

 case 1:

 voltScale = 3;

 break;

 case 2:

 voltScale = 4;

 break;

 case 3:

 voltScale = 5;

 break;

 case 4:

 voltScale = 6;

 break;

 case 5:

 voltScale = 7;

 break;

 case 6:

 105

 voltScale = 8;

 break;

 case 7:

 voltScale = 9;

 break;

 case 8:

 voltScale = 10;

 break;

 case 9:

 voltScale = 11;

 break;

 case 10:

 voltScale = 12;

 break;

 case 11:

 voltScale = 13;

 break;

 case 12:

 voltScale = 14;

 break;

 case 13:

 voltScale = 15;

 break;

 case 14:

 voltScale = 16;

 break;

 case 15:

 voltScale = 17;

 break;

 106

 case 16:

 voltScale = 18;

 break;

 case 17:

 voltScale = 19;

 break;

 }

 graphControl1.TimeScale = timeScale;

//Send the scale values to the graphcontrol part.

 graphControl1.VoltScale = voltScale;

 Invalidate();

//Send interrupt to the OnPaint function.

 }

private void comboBox1_SelectedIndexChanged(object sender, EventArgs e)

 {

 if (comboBox1.SelectedIndex == 0)

//Vector draw mode ON

 graphControl1.DispType=true;

 else if (comboBox1.SelectedIndex == 1)

//Vector draw mode OFF

 graphControl1.DispType=false;

 Invalidate();

//Send interrupt to the OnPaint function.

 }

 107

private void btnClear_Click(object sender, EventArgs e)

 {

 graphControl1.Clear = true;

//Clear the screen.

 Invalidate();

//Send interrupt to the OnPaint function.

 }

private void btnFreeze_Click(object sender, EventArgs e)

 {

 graphControl1.freeze = true;

 //Freeze the data flow on the screen.

 }

private void btnResume_Click(object sender, EventArgs e)

 {

 graphControl1.freeze = false;

 //Activate the data flow on the screen.

 }

private void btnStop_Click(object sender, EventArgs e)

 {

 //Stop the data acquisition and the data flow on the screen.

 }

 108

 }

}

CODE OF THE GRAPH CONTROL PART

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Drawing;

using System.Data;

using System.Text;

using System.Windows.Forms;

using System.Runtime.InteropServices;

using System.IO;

namespace digos2

{

 public partial class GraphControl : UserControl

 {

 public bool ShowGrid = true;

//Default values of showgrid

 109

 public bool ShowAxis = false;

//and show axis are off.

 public bool StartApp = false;

 public bool Clear = false;

 public bool UpScale = false;

 public bool DispType = false;

//Vector or dot drawing

 public bool freeze = false;

 long currentDot = 0;

 int timeAx;

 int myIndex;

 public int NumberOfPoints=600;

 public float TimeScale=1,VoltScale=1;

//For scaling Real scales

 public struct CoOrds

//Decleration of the struct type for the coordinates.

 {

 public float x, y;

 public CoOrds(float p1, float p2)

 {

 x = p1;

 y = p2;

 }

}

 110

 Pen MyAxPen = new Pen(Color.Azure);

 Pen MyGrPen = new Pen(Color.Lime);

 Pen MyDrawPen = new Pen(Color.Red, 2);

 CoOrds[] MyData = new CoOrds[600];

 //Holds all data for one screen view.

 public GraphControl()

 {

 InitializeComponent();

 }

public void SetGridStatus(bool Status)

 {

 ShowGrid = Status;

 Invalidate();

 }

public void SetAxisStatus(bool Status)

 {

 ShowAxis = Status;

 Invalidate();

 }

 111

public void AxPenColorStatus(Color AxPenColor)

 {

 MyAxPen.Color = AxPenColor;

 }

 public void GrPenColorStatus(Color GrPenColor)

 {

 MyGrPen.Color = GrPenColor;

 }

public void ReadData(ref byte[] buf, int bCnt)

 {

//Takes one bulk(512 items),writes its average to the last point, shifts the graph to the

left.

 myIndex = 1;//Since we use "myIndex-1" in the array.

 while (myIndex < NumberOfPoints)

 {

 currentDot = 0;

//Since wee add the buffer items up, we start from 0 for each cycle.

 for (int i = 0; i < bCnt; i+=8)

//Get the average of some of the data of 1024 bytes => 512 item.

 currentDot = currentDot + (480 * (buf[i] / 255));

//480/FF:Normalize the data.

 112

 MyData[myIndex - 1].y = MyData[myIndex].y;

//Shift the values in the array to the left.

 myIndex++;

//Go along the array.

 }

 MyData[NumberOfPoints].y = currentDot/128;

//Our new point.

 Invalidate();

//call the OnPaint method to refresh the graph.

 }

protected override void OnPaint(PaintEventArgs e)

 {

 base.OnPaint(e);

 e.Graphics.TranslateTransform(0, this.Height);

 e.Graphics.ScaleTransform(1, -1);//Translate the origin of the area

 if (UpScale)

 StartApp = true;

 if (Clear)

 StartApp = false;

 if (ShowGrid)

 113

 {

 //Horizontal Lines

 e.Graphics.DrawLine(MyGrPen, new PointF(0, 0 * this.Height / 8), new

PointF(this.Width, 0 * this.Height / 8));

 e.Graphics.DrawLine(MyGrPen, new PointF(0, 1 * this.Height / 8), new

PointF(this.Width, 1 * this.Height / 8));

 e.Graphics.DrawLine(MyGrPen, new PointF(0, 2 * this.Height / 8), new

PointF(this.Width, 2 * this.Height / 8));

 e.Graphics.DrawLine(MyGrPen, new PointF(0, 3 * this.Height / 8), new

PointF(this.Width, 3 * this.Height / 8));

 e.Graphics.DrawLine(MyGrPen, new PointF(0, 5 * this.Height / 8), new

PointF(this.Width, 5 * this.Height / 8));

 e.Graphics.DrawLine(MyGrPen, new PointF(0, 6 * this.Height / 8), new

PointF(this.Width, 6 * this.Height / 8));

 e.Graphics.DrawLine(MyGrPen, new PointF(0, 7 * this.Height / 8), new

PointF(this.Width, 7 * this.Height / 8));

 e.Graphics.DrawLine(MyGrPen, new PointF(0, 8 * this.Height / 8), new

PointF(this.Width, 8 * this.Height / 8));

 //Vertical Lines

 e.Graphics.DrawLine(MyGrPen, new PointF(0 * this.Width / 10, 0), new

PointF(0 * this.Width / 10, this.Height));

 e.Graphics.DrawLine(MyGrPen, new PointF(4 * this.Width / 10, 0), new

PointF(4 * this.Width / 10, this.Height));

 e.Graphics.DrawLine(MyGrPen, new PointF(3 * this.Width / 10, 0), new

PointF(3 * this.Width / 10, this.Height));

 e.Graphics.DrawLine(MyGrPen, new PointF(2 * this.Width / 10, 0), new

PointF(2 * this.Width / 10, this.Height));

 114

 e.Graphics.DrawLine(MyGrPen, new PointF(1 * this.Width / 10, 0), new

PointF(1 * this.Width / 10, this.Height));

 e.Graphics.DrawLine(MyGrPen, new PointF(6 * this.Width / 10, 0), new

PointF(6 * this.Width / 10, this.Height));

 e.Graphics.DrawLine(MyGrPen, new PointF(7 * this.Width / 10, 0), new

PointF(7 * this.Width / 10, this.Height));

 e.Graphics.DrawLine(MyGrPen, new PointF(8 * this.Width / 10, 0), new

PointF(8 * this.Width / 10, this.Height));

 e.Graphics.DrawLine(MyGrPen, new PointF(9 * this.Width / 10, 0), new

PointF(9 * this.Width / 10, this.Height));

 e.Graphics.DrawLine(MyGrPen, new PointF(10 * this.Width / 10, 0), new

PointF(10 * this.Width / 10, this.Height));

 //Axis Lines

 e.Graphics.DrawLine(MyGrPen, new PointF(0, 4 * this.Height / 8), new

PointF(this.Width, 4 * this.Height / 8));

 e.Graphics.DrawLine(MyGrPen, new PointF(5 * this.Width / 10, 0), new

PointF(5 * this.Width / 10, this.Height));

 }

if (ShowAxis)

 {

 e.Graphics.DrawLine(MyAxPen, new Point(this.Width / 2, 0), new

Point(this.Width / 2, this.Height));

 115

 e.Graphics.DrawLine(MyAxPen, new Point(0, this.Height / 2), new

Point(this.Width, this.Height / 2));

 }

 if (StartApp & DispType)

 for (timeAx = 0; timeAx < NumberOfPoints;timeAx++)

 e.Graphics.DrawEllipse(MyDrawPen, timeAx / TimeScale,

(MyData[timeAx].y) / VoltScale, 1, 1);

 if (StartApp)

 for (timeAx = 0; timeAx < NumberOfPoints-1; timeAx++)

//connect the points

 e.Graphics.DrawLine(MyDrawPen, timeAx / TimeScale,

MyData[timeAx].y / VoltScale, (timeAx + 1) / TimeScale, MyData[timeAx + 1].y /

VoltScale);

 }

 }

}

 116

APPENDIX C

 SCHEMATIC

 117

 118

 119

BIBLIOGRAPHY

[1] http://en.wikipedia.org/wiki/USB

[2]http://developer.apple.com/documentation/DeviceDrivers/Conceptual/USBBook/U

SBOverview/chapter_2_section_3.html

[3] www.usb.org/developers/whitepapers/usb_20t.pdf

[4] http://www.lvr.com/usbcenum.htm

[5] http://www.beyondlogic.org/usbnutshell/usb5.htm

[6] http://www.beyondlogic.org/usbnutshell/usb4.htm#Control

