Digital
Oscilloscope
Adapter unit for a

PC

Final Report

Dursun BARAN / Murat KEBELI

Ahmet TUTUS /Omer Faruk OZDEMIR
Submitted to

EMO(istanbul Branch)

Due to

June 21" 2007
Principal Investigator

Prof. Avni MORGUL
Co-Principal Investigators :

Prof. Omer Cerid

Asc. Prof. Senol Mutlu

A report submitted for EE491 (or EE492) senior design
project class in partial fulfillment of the requirements for
the degree of Bachelor of Science
(Department of Electrical and Electronics Engineering) in
Bogazigi University



PC ICIN SAYISAL OSILOSKOP ADAPTORU

Murat KEBELI
Ahmet TUTUS
Omer Faruk OZDEMIR
Dursun BARAN

Prof. Avni MORGUL

21 Haziran 2007
EMO Istanbul Subesi



1) GIRIS

Projenin en temel amaci analog bir sinyali ger¢ek zamanli olarak bilgisayar ortaminda
gorebilmektir. Analog sinyal digital karsilifina cevrildikten sonra USB iizerinden
bilgisayara aktarilir ve ¢izdirme islemi yapilr.Cizdirme islemi devamli ve kullanicinin
rahatlikla takip edebilecegi bir sekilde yapilir. Projenin diger 6nemli bir amaci
aktarilan bilgi paketlerinin bilgisayar ortaminda kayit edilebilmesi ve daha sonra
tekrar bilgisayar lizerinde kullanilabilmesidir.

Tasarlanan tiriiniin hem taginabilir olmas1 hem de USB’ den beslenebilir olmasi,
iriinii onceki Sl¢lim aletlerinden farklilastiran iki 6zelligidir. Elektronik derslerinde
kullandigimiz 6lgiim aletleri disardan beslenmesi gereken ve tasinmasi oldukga giic
olan tasarimlardir.

Proje kapsaminda kullanicinin rahatlikla 6grenebilecegi ve bir¢ok islemi rahatlikla
yapabilecegi bir kullanici arayiizii gelistirildi. Zaman(time) ve biiylikliik(magnitude)
eksen Olcegi degistirme, ekrandaki sinyali dondurma ve tekrar ¢izdirmeye devam
etme, aktarilan sinyali ayn1 zamanda kaydetme ve daha 6nce kaydedilen sinyali tekrar
okuma gibi daha bir ¢ok islem arayiiz sayesinde yapilabilmektedir.

Projenin ger¢eklenmesinde ilk olarak, yogun bir arastirma siireci yasadik ve bu
siirecten sonra bloklar1 belirledik ve her blogu ayr1 ayri calistirdik ve test ettik.
Bloklarin gergeklenmesi bittikten sonra, bloklar1 birbirine bagladik ve iiriiniin son
halini test ettik. Uriiniin problemli taraflarmi tespit ettik ve bunlar1 gerekli
digisiklikleri yaparak diizelttik.

Proje gergeklenmesi siirecinde, gomiilii C(embedded C), Eagle and C# programlari
kullanilmustir.

2) DONANIM

Giris boliimde bahsedildigi iizere proje iki ayr1 ana koldan olusmaktadir. Birincisi
olan donanim bu bdliimde anlatilacaktir. Asagidaki figlirde donanim blok
diagrami verilmistir.

i



sV DC-to-DC
Power |— --to-DL
. _— .
INPUT Supply Converter CLK
+5V -5V
L ¥ ¥ ¥ ¥ ¥ ¥
Attenuator | ™| BUFFER | | with gain | — Diff, - ADC
e Ty Amp,
10V/V
10 BIT
DIGITAL
OUTPUT
UsB

Microcontroller

l

usB
Connector’ > PC Screen

Giris sinyalinin biiylikligiinii ADC’ye uygun hale getirmek i¢in sinyal ilk olarak
zayiflaticiya(attenuator) girer. Zayiflatict en basit anlamda, sinyalinin biyiikligiinii
belli oranda kiiciiltiir. Zayiflatici, biliylikliigii fazla olan sinyaller i¢in kullanilir.

Ikinci basamak olarak, sinyal kazang katina girer. Bu katin tasarim amaci, biiyiikliigii
olduk¢a az olan sinyalleri daha iyi orneklenmesini ve aktarilmasini saglamaktir.
Kazang katindan ¢ikan sinyal diferansiyel kazang katina girer. Bu katin kazanc¢1 1°dir
ve gelen sinyale DC potansiyel ekler. Devrede kullanilan ADC pozitif kaynaktan
beslenmekte ve negatif sinyalleri Orneklemek icin diffarensiyel katina ihtiyag
duyulmaktadir.

Diferansiyel katin ¢iktis1 ADC’ye girer ve drnekleme islemi baslar. Ornekleme islemi
clok ile yapilir ve clock disardan verilir. Diferansiyel kazan¢ katinin ¢iktist ADC’nin
giris sinyal sahasina uygun olmalidir. Bu sart, zayiflaticinin Slgegini ayarlayarak
saglanabilir. ADC 10 bit sayisal ¢ikt1 verir.

ADC’nin ¢iktist USB mikrodenetleyiciye girer. ADC’den gelen sayisal c¢iktilar
mikrodenetleyicideki hafizaya(FIFO) yazilir ve burdan paketler halinde bilgisayara
USB iizerinden aktarilir. ADC c¢iktisinin hafizaya yazilma islemi clok ile olur ve bu
clock  mikrodenetleyici  tarafindan  iretili. =~ ADC’nin  kullandigt  clock
mikrodenetleyicinin kullandig1 clock’un ters g¢evrilmis(inverted) halidir. USB
mikrodenetleyicinin ¢iktisi(D+ ve D-) USB baglayici ile bilgisayarin USB port’una
baglanir.

2) FIRMWARE

USB mikrodenetleyicinin hafizasina sayisal ¢iktilar1 yazma, yazilan bilgileri
kaybetmeden bilgisayara aktarma, bilgisayar ile uygun bir iletisim yolu olusturma gibi
isleri yerine getirmek igin USB mikrodenetleyici uygun bir kod ile
programlanmalidir. Bu gorevleri yerine getirmek i¢in firmware gelistirildi ve bu kod,
iriinii kullanmadan 6nce USB mikrodenetleyiciye gomiilmelidir. Gomiilme iglemi

111



USB iizerinden, gelistirilmis olan kullanic1 arayiizii ile ¢ok kisa bir siirede
yapilabilmektedir. Asagida USB kismin blok digrami verilmistir.

Firmware
Internal RAM T
Mm
Mo
. 2 | -
E F i 4."‘ ;
Data =3 < 8051 Core
1=
=
[}
[1-]
> D+
CY Smart
UsB 2.0
~ (USB 11220 | .
Engine XCVR
, D-
Q.Q CLK{30MHz)

Gelistirilmis olan kod, USB iizerinden USB mikrodenetleyicinin RAM’ine yazilir ve
kod buradan kogsmaya bagslar. USB mikrodenetleyicinin hafizasia(FIFO) yazilmis
olan sayisal bilgiler ‘CY USB 1.1/2.0 Engine’ ve ‘USB 2.0 XCVR’ ile uygun D+ ve
D- sinyallerine ¢evrilir ve bu sinyaller ile bilgi aktarimi saglanmis olur. Firmware, bu
aktarilma islemini kontrol eder ve gerekli olan yerlerde miidahale eder.

4) YAZILIM

Projenin diger onemli kolu yazilimdir. Proje kapsaminda, uygun bir yazilim
gelistirilmis ve bu yazilim sayesinde USB iizerinden gelen bilgiler okunarak uygun
sekilde ekrana bastirilabilmektedir. Yazilim gelistirme ortami olarak C# dili
kullanilmistir. Donanim ile haberlesmek i¢in uygun bir siiriicii dosyas1 gerekmektedir
ve bu dosya USB mikrodenetleyici iireticisi(Cypress Semiconductor) tarafindan
saglanmaktadir.

Gelistirilmis olan kullanict arayiizii sayesinde, kullanict USB mikrodenetleyiciyi
kolayca programlayabilmekte ve iiriinii kullanima hazir hale getirebilmektedir. USB
mikrodenetleyiciye gomiilecek kod .HEX wuzantili olmalidir ve uygun .HEX file
gelistirilmis ve yazilim ile birlikte verilmektedir.

Kullanicr arayiizii 6grenmesi ve kullanmasi kolay olacak sekilde tasarlanmis ve ayni
zamanda fonksiyonel olmasina dikkat edilmistir. Kullanic1 gercek zamanli olarak
sinyali ekranda gorebilmekte ve istedigi zaman ekrani dondurabilmektedir. Dondurma
isleminden sonra istedigi zaman gercek zamanli aktarma islemine devam
edebilmektedir. Biiyiikliik ve time ekseni en uygun olacak sekilde kullanici tarafindan
Olceklendirilebilmektedir.

v



Gergek zamanli aktarilan sinyal bilgisayara kaydedilebilmekte ve daha sonra bu sinyal
tekrar arayiiz sayesinde kullanilabilmektedir. Kayit yapilacak yer kullanici tarafindan
belirlenir ve kullanici durdurana kadar kayit islemi devam eder. Kayit edilen bilgi
paketi sayis1 kullaniciya bildirilir. Kayit edilmis bir sinyal, kullanici arayiiziini
kullanarak acilabilmekte ve gercek zamanli bir sekilde ¢izdirilmektedir. Gergek
zamanl aktarma isleminde kullanilabilen biitiin fonksiyonlar agma isleminde de
kullanilabilmektedir.

Digital Oscilloscope
File  Program FX2  Options  Help  About

Flat D ata Transfers

3|l o
x o @
H g8
Bl

Exit.

Acquits Information
Get: Get the data without applying
any edit o

ze: Freeze the data flow.

Freeze: Free:
Resume: Restart the freezed data
Flava,

5) SONUC
Projenin saglayacagi en onemli faydalardan bir tanesi, 6lgmek istenilen bir sinyal
bilgisayarda goriilebilecek ve gelen sinyal iizerinde istenilen degisiklik kolayca
yapilabilecektir. Olgiilen sinyalin birgok 6zelligi otomatik olarak bilgisayar tarafindan
hesaplanabilecek ve bu sayede hesaplama hatalar1 biiylik 6l¢lide asilabilecek.

Diger bir 6nemli faydasi, dlgiilen sinyalin bilgisayar ortaminda kaydedilebilmesidir.
Bu sayede, kaydedilen bir sinyal daha sonra tekrar acilarak cizdirebilmektedir.
Bilgisayar ortaminda bilgi aktarimi oldukga kolay bir islem oldugundan, kaydedilen
bilgiler kolayca farkli ortamlara taginabilmekte ve farkli yerlerde kullanilabilmektedir.
Tasima islemi sirasinda herhangi bir bilgi kaybi olmadigindan ¢izdirme kalitesi
diismemektedir.

Uriiniin kolayca tasinabilir ve USB iizerinden beslenebilir olmasi, iiriiniin kullanilmasi
kolay kilan ozelliklerdendir. Bu sayede, olglim isleri kolayca ve kisa siirede
sonuclandirilabilmektedir.

Uriiniin son hali test edildi ve basarili sonuclar elde edildi. Sinyal iireticisi ile
siniis,liggen ve kare dalga elde edildi ve bu sinyaller, kullanici arayiizii kullanilarak
cizdirildi. Aym sinyaller analog osiloskop ile de olciildii ve elde edilen ¢izimler
karsilastirldi. Cizimlerin yaklasik ayni oldugu ama bilgisayardan elde edilen ¢izimler
iizerinde kii¢iik karincalanmalar oldugu tespit edildi. Bu karincalanmalarin devreden
kaynaklanan giiriiltiilerden oldugu anlasildi.

Giris sinyalinin frekansi ve biiyiikligi degistirilerek, bilgisayar iizerindeki degisimler
gozlendi. Uriiniin tepki siiresi, kabul edilebilir sinirlar igerisinde oldugu belirlendi.
Uygulanan sinyallere ofset verilerek, bilgisayar tizerindeki degisim gdzlendi ve dogru
sonuclara ulasildi.



ACKNOWLEDGEMENTS

This special project which is given by the department of Electrical and Electronics
Engineering aims to increase the experience of the students. First, it is a necessity to
state the desire and diligence of each group member to the project. Each group
member spends a large amount of efforts and time on this project and therefore, we
thank all group members for their continuous contribution to the project. All barriers
that we have encountered overcame by means of the involvement of the group
members and it is clear to comprehend what each member of the group worked for the
sake of the success of the project.

First, we appreciate the endless contribution of the principal investigator Prof. Avni
Morgiil to the project. He was always available to ask questions about the project and
he has an incredible amount of the experience about the schematic drawings and PCB
preparation process. Our project necessitates a complex layout and we could not
overcome the problems about the PCB without the support of Prof. Avni Morgiil.

We thank to the co-principal investigator Prof. Omer Cerid for his supports about the
code writing and circuit schematic drawings. He is an expert about the
microcontroller programming and the circuit construction and it is unbelievable
chance for us to become a member of this project. He has provided insights about the
solution of the problems to us, and his suggestions always responded our questions.
We also appreciate the help of Mr. Cerid in choosing the components of our
hardware.

We think that it is important to point that the component support of some IC
producers are pleased us. Maxim-IC, Cypress, Analog Devices and Texas-Instruments
are our IC suppliers and none of them want any payment for their support.

Finally, we want to thank to Prof. Senol Mutlu for his help about the documentation

and report format. He always supported us about which way we should follow to
overcome the barriers. He has always found enough time and effort for our questions.

vi



ABSTRACT

This project aims to solve the problem of the reading and the storing of an analog
signal. As we know from our electronic courses, the reading an analog signal is a
quite important problem. In order to solve the problem of reading and the storing of
the analog signal, we try to design an adapter unit that is capable of the transferring
of analog data to computer in digital form via USB interface. In addition to data
transfer, our design includes adjustments of the received data.

The approach that we have followed is first search, then implement and finally test the
device. Therefore, we conducted a big amount of research about the project and then,
we tried to construct the blocks of the implementation and finally we constructed the
blocks. After this step, we tried to connect each blocks in order to complete the
untested implementation. Eventually, we test the device to see faulty sides of the
implementation and makes changes if necessary.

In the implementation of the blocks, we have made use of some the programs namely

embedded-C(C18), layout program(Eagle) and object oriented program (C#). The
outputs of each block were measured by an analog oscilloscope and a debugger.

vii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS ...ouuiiiniinninnninsnnnnsnenssnssssssssnsssssssssssssssssssssssssasssssssssssssssssases I
ABSTRACT ....uuoeeeriicnenneninsenssessessesssessssssssssssssessessasssssssssssssssssssssssssassasssssssssssassas Vil
TABLE OF CONTENTS ...couieniininnninnnennninsnnssnessnsssssssssssssssssnsssssssssssssssssssssssssasss VIII
LIST OF FIGURES .....uuiitinientnntinneseennensesnsssesssessssssssssessasssssssessssssssssesssssssssssssassans X
LIST OF TABLES ....ouuoieteninntenntinnnensansssesssnssssesssssssssssssssssssssssssssssassssssssassssssssassss XII
LIST OF APPENDICES .....auuiiiiieninnennesnesnenssessssssesssessasssssssessssssssssessassssssassssssn XIII
INTRODUCTION...cuuuiiiirrrensnenssnnssnessanssssesssnsssssssassssssssssssssssssssssassssssssssssassssassssssssssssases 1
CHAPTER 1: HARDWARE IMPLEMENTATION. ......ccoceenuenensuensncsnnennes 2
1.1. OVERALL WIEV OF HARDWARE.......uerrnrnnnnnsnnnsnensnenssessassssscssns 2
1.2. DC-TO-DC CONVERTER ......cuuuuterirrrrinnennesnnesnesnsssnsssessnessesssessassasssssssaens 3
1.3. BUFFER.....uiteeiineientinnennnessanssnesssnsssssssssssssssssssssssssssssssssssssssssssasssssssssssssns 5
1.4. AMPLIFIER WITH A GAIN.....ciiiirierrennesensnensnnsaesssnssssssessacsssssasssassssesseses 6
1.5. DIFFERENTIAL AMPLIFIER .....cuuintinninnninrennsnensnnssnessanesssssssssssscssssssans 9
1.6. ANALOG TO DIGITAL CONVERTER ........cierinrerensnennesnnenesnesseennes 10
1.7. PRINCIPLES OF OPERATION.....ccuctirruirrnnnsnnnsnnssnnsssnssssessassssscsssnssassssasns 12
1.8. PCB LAYOUT ....uuoeirrnieninnesunnnesnsssesssessnsssesssssssesssssssssasssessassasssssssssssassacs 22
1.9. TEST RESULTS ..uuuoriiinientinnnennnensnnessnssssnssssssssnsssssssasssssssssssssssssassssssssssssassss 25
CHAPTER 2: USB FIRMWARE ......uuctiinrinientinnennnsnesnssnessessscssnsssesssssssssssssassssssaes 26
2.1. GENERAL USB SPECIFICATIONS ....ccovutirnenrnnnnnnsnnnsnesssnsssessassssncsssesnns 26
2.2 USB 2.0 VERSUS USB 1.1:...uuuiiierinnneseesnensnessnnsaesssssnsssesssessssssessasssssssesssces 27
2.3 DATA BANDWIDTH....ccuuterrrruinrnnnsnnnsnnnsannssnssssnsssssssasssssssssssssssssassssssssssssnss 27
2.4 ENUMERATION....uuoiuiiiiieennennesnnsaessnssnsssesssesssssscsssssasssssssssssssssessassassssssssess 29
2.5 USB DESCRIPTORS ....cuuuierrrrinnnensnnnsnenssnsssnssssnessssssasssssssssssssssssassssssssssssans 31
2.6. ENDPOINTS ....cuuiiiiiiniineenninnesnnssessnsssnessesssesssssssssssssssssesssessassssssasssssssassaess 33
CHAPTER 3: EZ-USB DEVELOPMENT KIT CY3684.........ceverrrurnrerrrnnrsncssaecsanes 37
3.1 CYTCO80LIIAc.....eeneeneenennenneesnennessnessessnessnsssesssessssssessasssasssessassssssasssssssassness 38
3.2. EZ-USB FIRMWARE 40
CHAPTER 4:USER INTERFACE .....couirnirnrennnensnensnensaenssnscssesssnssssssssssssssssssssssssssans 46

viil



4.1. WHY .NET ENVIRONMENT AND CH.....covvvrrrurrrrnrrrensnnssnnssanesnsssasssasessns 46

4.2. CYPRESS LIBRARIES ........cooiniirrininnensrennesnnsnessnssesssessssssssssessassasessessscss 46
4.3. SOME SCREENSHOTS FROM THE GUI.......uuutenrerrrersrnnsnessanssncssannans 47
4.4. ALGORITHM.....ucouiruirnnnensnessnesnensuessnssnsssessacsssssasssssssssssesssssssssssssasssssssassasss 51
APPENDICES ..ouuoiintinrentinnnnnninsnensseesssssssssssssssssssssssssssssssssssasssssssssssssssssassssssssssssass 56
APPENDIX A:FIRMWARE CODE .........rerinrnnnennesnnssensnesnsssessssssnsssesssessessaes 567
APPENDIX B: INTERFACE CODE.........uernrennennnnnnnensnnnssnessassssessssssassssssssssssns 85
APPENDIX C: SCHEMATIC .....uuuuueiiuinrnnnnsnessnessnsssessssssnsssessasssssssessassassssessssssassaes 116
BIBLIOGRAPHY ...uuiieiieniinnuinnnnnsnnnnnensanssssssssnssssesssnsssssssssssssssssssssssssasssssssssssssssssassss 119

X



LIST OF FIGURES

Figure 1.1.1: OVERALL BLOCK DIAGRAM OF HARDWARE IMPLEMENTATION.........cccccecveuennen.

Figure 1.2.1: PIN DIAGRAM OF MAX660 AND ITS CONFIGURATION FOR +5V TO -5V

CONVERSION ...ttt ettt s b bt sttt ettt be st e b saeeae e st e e besueeueeneenaennens

Figure 1.3.1: PIN DIAGRAM OF OPA656 AND ITS CONFIGURATION FOR

A UNITY-GAIN BUFFER ....coiiiiiiiiiiieeni ettt sttt s sttt ne

Figure 1.4.1: PIN DIAGRAM OF OPA657 AND ITS CONFIGURATION FOR A LP FILTER OF

GAIN TOV/V ettt sttt sttt b e st b e st st b e a e

Figure 1.5.1: THS4141 PIN DIAGRAM ...c.occiiiiiiiiiicieeet ettt

Figure 1.5.2: THS4141 CONFIGURATION TO DRIVE AN ADC.......cccectmirininiinineeneneeeeneeeienenene

Figure 1.6.1: PIN DIAGRAM OF THS1030 ADC .....c.ccciniriiniirinecnientetseneeceeeeie et

Figure 1.6.2: PIN DESCRIPTIONS OF THST030 ....coeiiiiriiiniiiiinceeteneeeneneceeeei et

Figure 1.7.1: ANALOG INPUT SIGNAL FLOW ..c..ciiiriiiiiiiiniinintcteesetee ettt

Figure 1.7.2: OPERATION OF THST030 ....c.coiriiiiiinieiiniieineteenetete ettt

Figure 1.7.3: OUTPUT ENABLE TIMING DIAGRAM.....ccceoiitiiiininiitnencreeceteeseeee e

Figure 1.7.4: THE SUMMARY OF MODES OF OPERATION OF THS1030......ccccccoecenirinineinencennene

Figure 1.7.5: REFTF AND REFBF REFERENCE VOLTAGES OF THS1030.....c.ccccecevevriineineniecnneneen

Figure 1.7.6: DIFFERENTIAL MODE 2V REFERENCE VOLTAGE CONFIGURATION OF

THS1030

Figure 1.7.7: EFFECTIVE NUMBER OF BITS OF SAMPLING FREQUENCY GRAPH .......c..ccccccennee.

Figure 1.7.8: CIRCUIT DIAGRAM .....ccooiiiiiiiiiiiintc ettt sttt ettt s

Figure 1.8.1: PCB LAYOUT OF CIRCUIT .......cocctiiniiiniiiiinieietneeetene ettt

Figure 1.9.1: -3dB FREQUENCY GRAPH ....c..ccooiiiiiriiiiinieeeee sttt

Figure 2.5.1: USB DESCRIPTOR TREE .....c.coioiiiiiiiiniineneecseee ettt

Figure 2.6.1: LOGICAL ENDPOINT CONNECTION TREE .......cccccceiiniiininiininccneneneecseeecereeee

Figure 3.2.1: USB SYSTEM ...ttt ettt ettt sttt eae st et e seneesaeanes



Figure 3.2.2:IFCLK CONFIGURATION .....ccooirtiiriiriintetetnetsese ettt 42

Figure 3.2.3:
Figure 3.2.4:
Figure 3.2.5:
Figure 3.2.6:
Figure 4.3.1:
Figure 4.3.2:
Figure 4.3.3:
Figure 4.3.4:
Figure 4.3.5:
Figure 4.3.6:

Figure 4.3.7:

USED CLOCKS BY THE EXTERNAL INTERFACE AND ADC ......cccccovivviriieriieieiennne 42
PROGRAMMING WARNING MESSAGE ......ccooiiiiiiiiiiiiiceeeeceeene e 44
DEVICE REMOVAL MESSAGE.......ccoooiiiiiiintceeeeenesese sttt 45
DEVICE ARRIVAL MESSAGE........cccooiiiiiiiieiceeeee ettt 45
INITIAL PAGE OF THE GUIL....ccooiiiiiiiiiniiitccceese sttt 47
GUI WHEN ACQUIRE BUTTON IS CLICKED.......ccccceiiinininiiniiierereicienee e 48
GUI WHEN CURSOR BUTTON IS CLICKED......cccccceniriiieieiiiiienienieene e 48
GUI WHEN DISPLAY BUTTON IS CLICKED.......c.cocoiiniiiiiiiiicieieneeeeeeeeeeesee e 49
GUI WHEN DISPLAY TYPE BUTTON IS CLICKED.......ccoceeiiiiiiiiiiienenineeeeeeeene 49
GUI WHEN DISPLAY GRID-AXIS BUTTON IS CLICKED.........cccccoeviiviininininieieeeene 50
GUI WHEN PROGRAM FX2 ITEM IS CLICKED ......cccoceiininiiiiieieicieneneseseeeeeeee 50

Xi



LIST OF TABLES

Table 3.2.1: IFCONFIG REGISTER ......c.cociiiiiiiiiiiiiitcet ettt sttt s 41
Table 3.2.2:EP2CFG ..ottt sttt b sttt sa e st 43
Table 3.2.3: ENDPOINT TYPE ....c.ooii ettt sttt s s et 43
Table 3.2.4: BUFFERING.......c.cooiiiiiiiiii ettt sttt st st st ne 43

Xii



LIST OF APPENDICES

Appendices

Appendix A:TFIRMWARE CODE .....c..cocoiiiiiiiiieie ettt sttt 57
Appendix BiINTEFACE CODE ........ccooiiiiimiiiiieeniniciteteeetseiet ettt ettt et 85
Appendix C:SCHEMATIC .....oo.oiiiiiiiiinte ettt ettt et e st b ettt aens 116

xiii



INTRODUCTION

This project aims to solve the problem of the reading and the storing of an analog
signal. As we know from our electronic courses, the reading an analog signal is a quite
important problem. In order to solve the problem of reading and the storing of the analog
signal, we try to design an adapter unit that is capable of the transferring of analog data to
computer in digital form via USB interface. In addition to data transfer, our design includes
adjustments of the received data.

The approach that we have followed is first search, then implement and finally test the
device. In last semester, we conducted a big amount of research about the project and then, we
tried to construct the blocks of the implementation and finally we constructed the blocks.
After this step, we tried to connect each blocks in order to complete the untested
implementation. After the implementation of all blocks, we made all tests of our circuit last
semester and now, we are aware of the impossibility of implementing all of the circuit without
any mistake or error. Therefore, this semester we changed our problem solving approach. We
began to implement independently each block of the circuit and test each block independent
of other blocks. This method provides us with finding the source of the problem easily if it
occurs, and changing it without affecting other parts of the circuit. Eventually, we test the
each block of our circuit to see faulty sides of the implementation and makes changes if
necessary.

In the implementation of the blocks, we have made use of some the programs namely
C# (object oriented programming language) and layout program (Eagle). Overall Flow Chart

of the signals and system is below:

CY3684 PC
CLK
Firmware (RAM)

+9V

L
ﬁ.r;.au'fg% —,\ Amplior (D CyUSB.sys| | CYUSB.dIl | | digos.exe
R

O Device NET 2.0 Application)

Dt USBE 2.0 Deriver Class Progian
M S Y 5 XCVR Library

Monitor (PC)




CHAPTER 1: HARDWARE IMPLEMENTATION

1.1. OVERALL WIEV OF HARDWARE

In the first semester, the circuit we designed didn’t work although we made lots of
changes on it. Therefore, we thought we should change it before it is too late. The problems
we have investigated in that circuit were the amplifier and ADC. The amplifier was giving
different results when we fed it from a different source (We mean with a different source, in
fact, inputs having different resistances). This is actually a result of lack of a buffer. We, then,
thought that we should use a buffer in order input not to change for different sources. The
problem with ADC was more severe but, we could never make it work. After a detailed
analysis of ADC’s on the internet, we found that most of ADCs need amplifiers in order to
work properly. With amplifiers, we add common mode voltages to ADCs because again most
of ADCs do not convert negative voltages. Their ranges are generally defined positive, e.g., 0-
2V. So, because we want to convert analog voltages in the range between -1 and +1 V, we
should add at least +1V (It depends on other things also.) common mode voltage to incoming
voltage. With these two big problems, it seemed to us, we should create a new PCB by taking

into consideration these problems and solutions we found for those problems.

We designed a new circuit with 5 main blocks: An attenuator, a buffer, an amplifier
for gain, a DC-to-DC converter, a differential amplifier in order to add a common mode

voltage to ADC, an ADC.



The block diagram of new circuit is shown below.

Power - --to-DL
T 1 . .
INPUT Supply Convertex CLK
+5V -5V
L ¥ ¥ LA ¥
Amp. ;
| [attenvator|—| BurrEr [—| withgin || D |—| apc
10V/V AP
10 BIT
DIGITAL
OUTPUT

Figure 1.1.1: Overall Block Diagram of hardware implementation.

Up to now, we mentioned about why we needed to design a new circuit for our project
and how we implemented this circuit. Now we are going to analyze the main blocks of new

circuit in detail.

1.2. DC-TO-DC CONVERTER

In real life, we don’t have negative power supplies. Therefore, we have to convert
positive power supply to negative, because most of our components work with dual supplies.
For this purposes, we used MAX660 converter of Maxim Integrated Products which is used to

convert +5V to -5V.



Below are the characteristics of this IC.

0.65V Typical Loss at 100mA Load

Low 120pA Operating Current

6.5Q Typical Output Impedance

Guaranteed Royr < 15 Q for C1 = C2 = 10pF
Inverts or Doubles Input Supply Voltage
Selectable Oscillator Frequency: 10kHz/80kHz

88% Typical Conversion Efficiency at 100mA (IL to GND)

As is seen from its characteristics it is a very suitable IC for our purposes. Below are

its pin diagram and configuration for +5V to -5V conversion.

Fo [1]
caps [2]
ano (3]
cap- [4]

s =

MAXEED E' Ly

ke Ve
| maaan
CAP+ MAXEEQ 0SC
o Lt 3 9
uFtots0uF T~ 50 :
'
CAP- our

MAXLAN E| 05C

6 .
INVERTED
L necaTe

5 - VOLTAGE

T.- OUTPUT

WOLTAGE INVERTER

62
I+ 1pF to 150uF

+5V

Power Supply

Figure 1.2.1: Pin Diagram of MAX660 and its configuration for +5V to -5V conversion.

Although we used it to convert +5V to -5V, MAX660 voltage inverter can convert a

+1.5V to +5.5V input to a corresponding -1.5V to -5.5V output. With a typical operating

current of only 120pA provides ideal performance for board level voltage conversion

applications. MAX660 can also double the output voltage of an input power supply.



A frequency control (FC) pin which we didn’t use selects either 10kHz or 80kHz
(40kHz min) operation to optimize capacitor size and quiescent current. The oscillator

frequency can also be adjusted with an external capacitor or driven with an external clock.

As we stated in its characteristics, depending on the load, the error of the output
voltage of MAX660 changes. Therefore, we thought it is better to measure what it gives

actually. Below is the result.

Vou=4.80V

1.3. BUFFER

As we discussed before, a buffer to the input of the circuit is necessary because of
loading effect. We used an OPAMP in voltage follower mode. The Op-Amp we used is

OPA656 IC of Texas Instruments.

Below are the characteristics of this IC.

500MHz Unity-Gain Bandwidth

Low Input Bias Current: 2pA

Low Offset and Drift: £0.25mV, £2uV/°C
Low Distortion: 74dB SFDR at SMHz
High Output Current: 70mA

Low Input Voltage Noise: 7nV/VHz

It is a very suitable Op-Amp for our circuit. (High bandwidth, low input bias current,
offset voltage and distortion, etc.) Below is its pin diagram and configuration for a unity gain

buffer.



Output | 1 A
=\Vel| 2

. Vi
Moninverting Input | 3 4 | Inverting Input el

Figure 1.3.1: Pin Diagram of OPA656 and Its Configuration for a Unity-Gain Buffer.

The OPA656 combines a very wideband, unity-gain stable, voltage-feedback Op-Amp
with a FET-input stage to offer an ultra high dyuauuc-range amplifier. Extremely low DC
errors give good precision in applications. The high unity-gain stable bandwidth and JFET
input allows exceptional performance in high-speed. The high input impedance and low bias
current provided by the FET input is supported by the ultra-low 7nV/VHz input voltage noise
to achieve a very low integrated noise in wideband applications. Broad transimpedance

bandwidths are achievable given the OPA656’s high 230MHz gain bandwidth product.

1.4. AMPLIFIER WITH A GAIN

This part is needed because of 2 reasons. First reason is to amplify small signals. In
order to display small signals in the uV range more accurately we have to amplify them.
Other reason is that we need a LP filter to prevent aliasing in the circuit. As we will see in
ADC part, ADC can work up to 30Msps. Therefore, signals with frequency of greater than
15MHz will cause aliasing according to well-known sampling theorem. Consequently, in this
amplifier, we implemented both a gain of 10V/V and a LP filter of 20MHz cut-off frequency.
The amplifier we designed is a multiple feedback LP filter which is a commonly used

amplifier.



To implement this amplifier, we used OPA657 Op-Amp of Texas Instruments. It is

almost the same as OPA656 which we used to implement a buffer.

Below are the characteristics of this IC.

High Gain Bandwidth Product: 1.6GHz
High Bandwidth: 275MHz (G = +10V/V)
Low Input Offset Voltage: £0.25mV
Low Input Bias Current: 2pA

Low Input Voltage Noise: 4.8nV/VHz
High Output Current: 70mA

Fast Overdrive Recovery

It is a very suitable Op-Amp for our circuit. (High bandwidth, low input bias current,
offset voltage and distortion, etc.) Below is its pin diagram and configuration for a LP filter of

gain 10V/V.

r+

= OPAGST — OV,

-

Figure 1.4.1: Pin Diagram of OPA657 and Its Configuration for a LP Filter of Gain 10V/V.
The OPA657 combines a high gain bandwidth, low distortion, voltage-feedback op

amp with a low voltage noise JFET-input stage to offer a very high dynamic range amplifier



for high precision applications. Very low level signals can be significantly amplified in a
single OPA657 gain stage with exceptional bandwidth and accuracy. Having a high 1.6GHz
gain bandwidth product will give > 10MHz signal bandwidths up to gains of 160V/V (44dB).
The very low input bias current and capacitance will support this performance even for
relatively high source impedances. The JFET input contributes virtually no current noise
while for broadband applications; a low voltage noise is also required. The low 4.8nV/ Hz
input voltage noise will provide exceptional input sensitivity for higher bandwidth

applications.

Having these very special characteristics, we configured this Op-Amp as a LP filter of

gain 10V/V. Below are equations for this configuration and component values.

Horp= - R3/Ry,

fo= 1/21( RoR3C,C,)",

Q=(C1C2) ™/ [(R:R3/R,*)™ + (Ry/Ry) * + (Ro/R3)™],
Ci= 10pF,

C,= 10pF,

Ri=100Q,

Ry= 1kQ,

Rs= 1kQ,

According to these component values, gain and f; of filter is found below.

Horp= - 1k/100=-10V/V,
fo= 1/2n( 1kx1kx10px10p)*’= 15.92MHz,



1.5. DIFFERENTIAL AMPLIFIER

We mentioned before why we needed a differential amplifier. We used THS4141
differential amplifier of Texas Instruments. Luckily, there is an application of this IC as an

ADC driver in its datasheet.

Below are the characteristics of this IC.
e High Performance

— 160 MHz -3 dB Bandwidth (VCC =+15 V)
— 450 V/us Slew Rate
— -79 dB, Third Harmonic Distortion at 1 MHz

— 6.5 nV/\NHz Input-Referred Noise
e Differential Input/Differential Output

— Balanced Outputs Reject Common-Mode Noise

— Reduced Second Harmonic Distortion Due to Differential Output
e Wide Power Supply Range

— VCC =5 V Single Supply to £15 V Dual Supply
e ICC(SD) = 880 pA in Shutdown Mode

The THS4141 is one in a family of fully differential input/differential output devices
fabricated using complementary bipolar process. The THS4141 is made of a true fully-
differential signal path from input to output. This design leads to an excellent common-mode

noise rejection and improved total harmonic distortion which an essential part of our project.

Below is its pin diagram and configuration to drive an ADC.

Vin- [T1 1% —s [T Vin+
Vocwm [ 2 & 7 IINC
veect L 3 [ s [ddVeo-

Vours (O o+~ =5 [T Vout-

Figure 1.5.1: THS4141 Pin Diagram.



VDD

’_l_‘

MNpp DVpp
AIN1
ANz

AVSS  Vyef

Figure 1.5.2: THS4141 Configuration To Drive an ADC.

The THS4141 can also work with a single power supply, but circuit diagram for that
configuration is more complex. Therefore we used it with dual power supplies.

If nothing is connected to its Vocwm pin, it is automatically set to arithmetic mean of
power supplies.

0.1puF capacitor is a bypass capacitor for stability. In addition, if we choose 4
resistances equal, the gain of this amplifier will be 1V/V. Therefore, we used 1k resistances

for those 4 resistances.

1.6. ANALOG TO DIGITAL CONVERTER

After all steps up to here, the signal is now ready to be converted. We used THS1030
ADC of Texas Instruments.

Below are the characteristics of this IC.

10-Bit Resolution, 30 MSPS Analog-to-Digital Converter
Configurable Input: Single-Ended or Differential
Differential Nonlinearity: £0.3 LSB

Signal-to-Noise: 57 dB

Spurious Free Dynamic Range: 60 dB

Adjustable Internal Voltage Reference

Out-of-Range Indicator

Power-Down Mode

10



The THS1030 is a CMOS, low-power, 10-bit, 30 MSPS ADC that can operate with a
supply range from 3 V to 5.5 V. The THS1030 has been designed to give circuit developers
flexibility. The analog input to the THS1030 can be either single-ended or differential. The
THS1030 provides a wide selection of voltage references to match the user’s design
requirements. For more design flexibility, the internal reference can be bypassed to use an
external reference to suit the dc accuracy and temperature drift requirements of the
application. The out-of-range output is used to monitor any out-of-range condition in

THS1030’s input range. The THS1030 is characterized for operation from 0°C to 70°C.

Below is its pin diagram.

AGND []1 J 28]] AVpp
DVpp[] 2 27]] AIN
Voo [l 3 26[] VREF
/01 [} 4 25]] REFBS
o2 [} 5 24]] REFBF
103 []6 23] MODE
o4 [} 7 22]] REFTF
lo5 [} 8 21]] REFTS
vos[ls  20f 876M
o7 [J10  19]] AGND
o8 [| 1 18]] REFSENSE
vos i1z 17[] sTBY
ovrR[|13 16]] OE

DGND [] 14 15]] CLK

Figure 1.6.1: Pin Diagram of THS1030 ADC.

11



TERMINAL o DESCRIPTION
NAME NO.
AGND 1.19 | Analog ground
AIN 27 I Analog input
AVDD 28 l Analog supply
CLK 15 I Clock input
DGND 14 | Digital ground
DVbo 2 | Digital driver supply
/00 3 Digital VO bit 0 (LSB)
o1 4 Digital VO bit 1
1102 5 Digital VO bit 2
/03 6 Digital VO bit 3
1104 7 0 Digital VO bit 4
/05 8 Digital VO kit &
/06 9 Digital VO bit 6
Vo7 10 Digital VO bit 7
1108 11 Digital VO kit &
/09 12 Digital VO bit % (M3B)
MODE 23 I Mode input
OE 16 I High to 3-state the data bus, low to enable the data bus
OWVR 13 o} Out-of-range indicator
REFBS 25 I Reference bottom sense
REFBF 24 | Reference bottom decoupling
REFSENSE 18 I Reference sense
REFTF 2 I Reference top decoupling
REFTS 21 I Reference top sense
STBY 17 | High = power-down mede, low = normal operation mode
VREF 26 o Internal and external reference
BI6M 20 [ High = THS1030 mode, low = TLCB76 mode (see section 4 for TLCE76 mode)

Figure 1.6.2: Pin Descriptions of THS1030

1.7. PRINCIPLES OF OPERATION

The analog input Ay is sampled in the sample and hold unit which is shown in the
figure below, the output of which feeds the ADC core, where the process of analog to digital
conversion is performed against ADC reference voltages, REFTF and REFBF.

Connecting the MODE pin to one of three voltages, AGND, AVDD or AVDD/2 sets
up operating configurations. The three settings open or close internal switches to select one of
the three basic methods of ADC reference generation. Depending on the user’s choice of
operating configuration, the ADC reference voltages may come from the internal reference
buffer or may be fed from completely external sources. Where the reference buffer is
employed, the user can choose to drive it from the onboard reference generator (ORG), or
may use an external voltage source. A specific configuration is selected by connections to the
REFSENSE, VREF, REFTS and REFBS, and REFTF and REFBF pins, along with any

external voltage sources selected by the user.

12



REFTF

VP+
AIN 1 Sample l ADC
REFTS -1/2 and Core
Hold
~1/2 ‘
REFBS .
VP-— |
REFBF

Figure 1.7.1: Analog Input Signal Flow.

The ADC core drives out through output buffers to the data pins DO (LSB) to D9
(MSB). The output buffers can be disabled by the OE pin. A single, sample-rate clock (30
MHz maximum) is required at pin CLK. The analog input signal is sampled on the rising edge
of CLK, and corresponding data is output after following third rising edge which is shown

below.

Sample 2 Sample 3

Sample 1 Sample 5
Analog Input | Sample 4
—tc—
|

|

|

| L |
“—b‘— CKL

tw{CKH) —:4—l4| LSS I

I [ | I
macde A X NS S S
Note A |

|
e td(o)

|
|
|
| | |
lrf. Pipeline Latency —ﬂ I

|
Digital Output X X X X Sample 1 X Sample 2

Figure 1.7.2: Operation of THS1030

13



OF ;f See Note A \R

I I
td(pz) —p—»l |
| M———»— t4(DEN)

Output

I I

I I

N i i
110 Output Jll ‘3|L-

Figure 1.7.3: Output Enable Timing Diagram

The STBY pin controls the THS1030 power down. The user-chosen operating
configuration and reference voltages determine what input signal voltage range the THS1030

can handle.

The analog input signal AIN is applied to the AIN pin, either dc-coupled or ac-
coupled. The differential sample and hold processes AIN with respect to the voltages applied

to the REFTS and REFBS pins, to give a differential output VP+ — VP— = VP given by:

VP = ’&‘IN - VM

REFTS + REFBS)

{
VM = 5

For single-ended input signals, VM is a constant voltage; usually the AIN mid-scale
input voltage. However if MODE = AVDD/2 then REFTS and REFBS can be connected
together to operate with AIN as a complementary pair of differential inputs. In all operating
configurations, VP is digitized against ADC reference voltages REFTF and REFBF, full-scale

values of VP being given by:

VPES 4+ = F IREFTFE— REFBF)
I IREFTFZ— REFBF)

14



VP voltages outside the range VPFS— to VPFS+ lie outside the conversion range of
the ADC. Attempts to convert out-of-range inputs are signaled to the application by driving
the OVR output pin high. VP voltages less than VPFS— give ADC output code 0. VP voltages

greater than VPFS+ give output code 1023.

Combining the above equations, the analog full scale input voltages at AIN pin which

give VPFS+ and VPFS— at the sample and hold output are:
(REFTF — REFBF
A = FS+= VM + 2 > )

and

(REFTF — REFBF)
,

A =FS—=VM-

The analog input span (voltage range) that lies within the ADC conversion range is:

Input span = [(FS +) — (FS —)] = (REFTF — REFBF)

Therefore REFTF and REFBF voltage difference sets the device input range.

The THS1030 has three primary modes of ADC reference generation, selected by the
voltage level applied to the MODE pin. Connecting the MODE pin to AGND gives full
external reference mode. In this mode, the user supplies the ADC reference voltages directly
to pins REFTF and REFBF. This mode is used where there is need for minimum power drain
or where there are very tight tolerances on the ADC reference voltages. Only single-ended
input is possible in this mode. Connecting the MODE pin to AVDD/2 gives differential mode.
In this mode, the ADC reference voltages REFTF and REFBF are generated by the internal
reference buffer from the voltage applied to the VREF pin. This mode is suitable for handling
differentially presented inputs, which are applied to the AIN and REFTS/REFBS pins.
Connecting the MODE pin to AVDD gives top/bottom mode. In this mode, the ADC
reference voltages REFTF and REFBF are generated by the internal reference buffer from the

voltages applied to the REFTS and REFBS pins. Only single-ended input is possible in

15



top/bottom mode. When MODE is connected to AGND, the internal reference buffer is
powered down, its inputs and outputs disconnected, and REFTS and REFBS internally
connected to REFTF and REFBF respectively. These nodes are connected by the user to

external sources to provide the ADC reference voltages.

VREF
REFERENCE MODE MODE | REFSENSE VOLTAGE REFTS, REFBS ANALOG INPUT
Reference buffer powered
. down, reference voltage .
External AGND | AVDD Disabled provided directly by REFT Single-ended
and REFB
VREF 1V
Externally connect REFTS to : :
Internal Avpp2 fASND 2V REFBS. This pair then forms | Direrential
External 1 +Ra/Rb AIN- to the ADC.
divider
External (through internal .
reference buffer) AVDD Disabled
! _ Single-ended
Qutput of VREF can be AVpp i 37 g REFTS - ‘::FS+ {topg—bottom
externally tied to REFTS or AGND 2V REFBS =VFg- mode)
REFBS to provide one of the External 1 + Ra/Rh '
reference voltages divider
Figure 1.7.4: The Summary of Modes of Operation of THS1030.
PARAMETER TEST CONDITIONS MIN  TYP MAX| UNIT
Differential input voltage (REFTF — REFBF) (REFSENSE = VREF) 09 1 1.1 v
Differential input voltage (REFTF - REFBF) (REFSENSE = AGND) 19 2 21 v
I de vol REFTF + REFBF)/2 AVpp -3V L R v
nput common mode voltage ( + F) AVDD =5V 2 75 3
AVDpD =3V 2
VREF=1V DD F \4
REFTF voltage (MODE = AVpp) i DL =
9 *DD) . AVDD =3V 25
VREF =2V Avpp =5V 35 v
AVDpD =3V 1
VREF =1V DD_ 7 A4
REFBF voltage (MODE = AVpp) AVpp -5 2
9 bD REF =2 AVDD =3V 05 y
e App=5V 15
Input resistance between REFTF and REFBF 600 [s}
Power up time for valid ADC conversions (tPUcony) See Note 1 1.2 us

Figure 1.7.5: REFTF and REFBF Reference Voltages of THS1030.
We used THS1030 in differential mode, therefore we should examine this mode in

detail.

When MODE = AVDD/2, the internal reference buffer is enabled, its outputs
internally switched to REFTF and REFBF and inputs internally switched to VREF and
AGND. The REFTF and REFBF voltages are centered on AVDD/2 by the internal reference

16



buffer and the voltage difference between REFTF and REFBF equals the voltage at VREF.
The internal REFTS to REFBS and REFTF to REFBF switches are open in this mode,
allowing REFTS and REFBS to form the AIN— to the sample and hold. Depending on the
connection of the REFSENSE pin, the voltage on VREF may be externally driven, or set to an
internally generated voltage of 1V, 2V, or an intermediate voltage. Below is the configuration

for 2V reference voltage which is used in our circuit.

ANpn
+FS 2
AlN+ E ? — 1AIN MODE |—
FS
e REFTS
AIN-
Fs
REFBS
] REFTF
g T
10 uF 0.1 uF
oy o
‘{?“ 1 REFBF REFSENSEj?

Figure 1.7.6: Differential Mode 2V Reference Voltage Configuration of THS1030.

Now, we are ready to specify operating values of THS 1030 based on figures and
formulas we gave up to now.

From figure 13, we see that (REFTF-REFBF) = 2V in differential mode and when
REFSENSE = GND. Therefore, VPFS = +(REFTF-REFBF)/2==+1V.

In summary,

MODE= AVDD/2,

REFSENSE= 0V,

VREF=2V,

(REFTF-REFBF)=2V,

VPFS=%1V,

17



As operating frequency increases, some of the output bits of ADC changes randomly.
Therefore, we have to take into account this for a precise measurement. Below is the graph
taken from datasheet of THS1030 which shows the relationship between frequency and

effective number of bits.

10.0
2 95
=
590 o,
$
E 85
-
Fa
o 80t AVpp=5V
e DVpp=3V
£ 3} f=3.5MHz,-0.5dBFS
w Ta=25C

1.0 '
9 10 15 20 25

fs - Sampling Frequency - MSPS

Figure 1.7.7: Effective number of bits of Sampling Frequency Graph.

As is seen from, for full scale speed of conversion of ADC, effective number of bits is
around 8.75.

To show whether incoming input signal is in the range or not, we connected a LED to
OVR pin with a 1kQ resistance. If applied signal is not in the range, OVR pin will be high
and LED will glow. This will be a warning to the user, implying to switch the attenuator to a
higher or a lower range.

Final Circuit Diagram

We examined the main blocks of the circuit in detail, therefore we are now ready to
connect these parts. In fact, once we know the parts separately, it is very straight forward to

connect them.

18

30



We added all positive and negative power supply pins of ICs’ 0.1uF capacitor in order
to smooth DC voltage applied. In addition, as is recommended in datasheets, we connected a

common 6.8uF capacitor to power supplies. These capacitors are for smoothing purposes.

In order to make MODE = Vpp/2, we used two 1kQ resistances as a voltage divider
one of them is connected to Vpp and the other is connected to GND.
In the successive two pages, the final circuit diagram drawn in Eagle program is

represented:

19



OPABSY

[
-INR

™™ 00w my)

+

+INP L

L]

O

=

=) IC1
LI T

CAeP+  0sc

2 uc

[ 81371 o SO

DC-to-DC
Converter

Cap-

13
u

[y

%

GMD

Amplifier
With Gain

20



-

23

C

0.

GHD
—_=

+Hihw

>
(] =
N._| =0
i)

1u

AD Converter

+Hi'ly

R&
1k

RE

=

21

Figure 1.7.8: Circuit Diagram.

f ____;U__._n_m—. 1 ssHD P
THS4H nm 2 | pvoo P
) ei= 3 x
VIh- VIN+ o WREF
LI REFES |22
sl o - REFEF |-2*
4
+ = L mooe 2
WCE+ woe- B O 1w REFTF |22
- 2 * E
= - REFTS
Ey= 5 .
WOUTH  wouT- O e L wen
[ ) szHpz |2
= Nie REFSENSE [
2 | gy |1
L
= LT T oe &
2Ry ] 1 15
] DGHD SIS
g CLk
.
——
o W
1 O e
GHD G GHD d -
(]
4]
=/ |
Rl |
=

=



1.8. PCB LAYOUT

After we drew the circuit diagram, now we should prepare the PCB layout of the
circuit. We designed PCB layout of it in the Eagle layout program which is a very commonly
used layout program. Therefore, a little summary about this program will be useful.

For PCB layout section we have done lots of works. First of all, we learned a new
program called “Eagle 4.16”. For learning purposes, we have read its tutorial. After a little bit
practice, it was a very easy and useful program to use. It has a very large library which
includes some of ICs we used such as MAX660. But to create a footprint is not a difficult task
also. With Eagle, new footprints can be created very easily. First of all, you open a new
library page and then enter the name for new component. Then, you draw pin diagram of the
IC. Afterwards, you draw the PCB layout of the IC. Finally, pins of these two are connected.
Eagle also has an auto router feature, it tries to connect all of the circuit itself. With proper
positioning of components in the circuit it is able to connect as 90 or 95 % of the circuit. If we
again think about our very complicated circuit, it is a useful feature for us. Moreover, Eagle
program converts PCB layout into a general format called “Gerber Format™ which is used in
most of board printing companies.

After a little bit about Eagle, we will continue with PCB considerations which are
taken into account when we are designing PCB layout of the circuit. Some of them are basic
principles of designing layout and some of them are written in the datasheets of the

components.

e DC supply and ground wires in the PCB should be as large as possible. This is a must
for a good grounding and supplying of the circuit.

e The empty areas in the PCB should be filled with ground areas for a good grounding
of the circuit.

e 45 degree-wires should be preferred where possible in the layout.

e The overall PCB drawing should be neat and clear.

22



In the areas of the amplifier inputs and output, the ground plane can be removed to
minimize the stray capacitance.

Use a 6.8-uF tantalum capacitor in parallel with a 0.1-uF ceramic capacitor on each
supply terminal. In addition, the 0.1uF capacitor should be placed as close as possible
to the supply terminal.

The circuit layout should be made as compact as possible, thereby minimizing the
length of all trace runs. Particular attention should be paid to the inverting input of the
amplifier. Its length should be kept as short as possible.

Using surface-mount passive components is recommended for high frequency
amplifier circuits for several reasons. First, because of the extremely low lead
inductance of surface-mount components, the problem with stray series inductance is
greatly reduced. Second, the small size of surface-mount components naturally leads
to a more compact layout thereby minimizing both stray inductance and capacitance.
If leaded components are used, it is recommended that the lead lengths be kept as
short as possible.

For ADC, voltages on AIN, REFTF and REFBF and REFTS and REFBS must all be
inside the supply rails.

Minimize the distance (< 0.25”) from the power-supply pins to high-frequency 0.1uF
decoupling capacitors.

Never use wirewound type resistors in a high frequency application. Use smd or metal
film resistors. Since the output pin and inverting input pin are the most sensitive to
parasitic capacitance, always position the feedback and series output resistor, if any, as
close as possible to the output pin.

23



According to these considerations, we draw our PCB layout of the circuit as is shown

Figure 1.8.1: PCB Layout of Circuit.

24



1.9. TEST RESULTS

Before we start, we should emphasize that the hardware part is working quite well

except OVR pin of ADC. Although we thought very much about it, we couldn’t find why it is

not working. It does not become high although input we applied is out of range. But,

remaining part is functioning quite well.

First of all, we tested -3dB frequency of the circuit and obtained following graph.

|Gain| vs. Frequncy

e ] |
CCC-C-IC-CCCICC-C-C-ICZC-C-OC-C-C-C-IC-ZC-ZC-J-C-ZC-ZC-ZCC-C-C-J-_—=C_--C°7]
s e e A e e S = a i ===
e e e S R e R I
R e R R
e e e A =y [ e e
T S N ! = _ L ___ o ___
| | | | | | | | |
| | | | | | | | |
I VU o _Ll___ - ___Ll____l____L___Jd____L___4
FCC-C-JC-CCCC-CC-ZCC-CIC-ZC-C-O-C-C-C-I-ZC-C-O-C-C-C-CC-C-C-d--C-Z-C-Z-ZcZd
e |
S e [y
R e [ i e e B e i e
I U [
| | | | | | | |
e Bttt [t el Rl e A e e
| | | | | | | |
| | | | | | | |
EZ-ZC-ZJ-Z - f-ZC-ZC-Z - CZF - C-C-Z-ZCZCZCZEZ-ZZC-Z3JZZZZEFEZZZ-—H
CCC-C-JC-C- -y -y CC-L-C-C-C-f-C-C-3-C-C-ZgfZZZd
S A D H N S I
Lo _J____ ()
| | | | | | | |
[~ ~7" """ e
I [
| | | | | | | |
| | | | | | | |
F-——g4-—--- lm—— =4 - -4 -k - —H - — - ————
EZ-ZZJ-ZCZCZZZCZCZCZf-CZC-LZCZCZCZf-CZC-LZCZCZCZEZZCZZZCZCZZgZZZq
e |
ittt Bttt [t ettt Rl i Attt el Bl et
r---7- - [t il Rl e A e e
e R i A i A i il
| | | | | | | |
N e e e B
| | | | | | | |
L _J____ oy ____\____‘t___‘____r___t____t___]
C-ZC-C-j-C-C-Zlc-c-cC-ct--C-flc--C-fC-cC-C-Dlc-C-C-ECC-C-d-CZCZZEZZC]
R e e e e e
e S I
L1 ___ [ )
Lo J____ L ___L___]
| | | | | | | |
e [ i e B e i e
| | | | | | | |
| | | | | | | |
b el D e o o o s |
CCC-C-JC-CCCICC-C-C-ICZC-C-OC-C-C-ZC-IC-ZC-ZC-J-C-ZC-ZC-ZC--C-J---Z-ZCI-ZIZZ-H
e [ e I e A i el
r~—~"7-~77 [ e e e e A
R e e e B
e B e e e Al it Bl
| | | | | | | |
[~ "7 " O A
| | | | | | | |
I I I I I I I I
— o (o)} [ee] N~ (o] Lo < ™ N i
— -
lures|

Frequency

Figure 1.9.1: -3dB Frequency Graph.

Now, we should give some information about digital outputs of ADC. For signals

above 1V, it gives all bits as 0. For signals less than -1V, it gives all bits 1. For values

between these voltages 4 LSB bits changes continuously, and remaining bits change

according to large variations in the input signal.

25



CHAPTER 2: USB FIRMWARE

As stated in the project objectives, the data comes from the output of the ADC should
be trasferred to PC over USB. As being easily guessed, the amount of the data processed is
huge and it is a clear and important point to consider that whether USB can support this high
speed transfer or not. In order to answer this critical question, the specification of the USB

will be mentioned first and then making an easy calculation to verify the answer.

2.1. GENERAL USB SPECIFICATIONS

Universal Serial Bus (USB) is a serial bus standard to interface devices. The USB
standard uses the NRZI system to encode data. USB signals are transmitted on a twisted pair
of data cables, labelled D+ and D—. These collectively use half-duplex differential signaling
to combat the effects of electromagnetic noise on longer lines. D+ and D— usually operate
together; they are not separate simplex connections. Transmitted signal levels are 0.0-0.3

volts for low and 2.8-3.6 volts for high [1].

The USB specification provides a 5V (volts) supply on a single wire from which
connected USB devices may draw power. The specification provides for no more than 5.25 V
and no less than 4.35 V between the +ve and -ve bus power lines. Initially, a device is only
allowed to draw 100 mA. It may request more current from the upstream device in units of
100 mA up to a maximum of 500 mA[1]. The power is supplied to circuit should be +5V and
the current consumption is not more than 100 mA and so, the circuit can be fed from the USB

and without any battery.

26



The knowledge above is not complex and in the design, it has not be necessary to
think about these electrical specifications because of the fact that a proper USB chip is used
and it can do all the things needed for a successful transfer. It means that all decoding and
voltage level adjustments are made in a single chip and in the project CY7C68013A is used.

This is a USB 2.0 compliant, high speed USB peripheral and discussed next.

2.2 USB 2.0 VERSUS USB 1.1:

A core team from Compaq, Hewlett Packard, Intel, Lucent, Microsoft, NEC and
Philips is leading the development of the USB Specification, version 2.0, that will increase
data throughput by a factor of 40. This backwards-compatible extension of the USB 1.1
specification uses the same cables, connectors and software interfaces so the user will see no
change in the usage model. They will, however, benefit from an additional range of higher
performance peripherals, such as video-conferencing cameras, next-generation scanners and
printers, and fast storage devices, with the same ease-of-use features as today’s USB
peripherals [3].

The main difference between USB 2.0 and USB 1.1 is the data transfer rates.

2.3 DATA BANDWIDTH

To return to main question after some brief information about USB, the supported data
rates by USB should be dealt. In theory, it is clear and the followings are the available data

bandwidth of USB:

e A Low Speed rate of up to 1.5 Mbit/s (187.5 kB/s) that is mostly used for Human
Interface Devices (HID) such as keyboards, mice, and joysticks[1].

e A Full Speed(USB 1.1) rate of up to 12 Mbit/s (1.5 MB/s). Full Speed was the fastest
rate before the USB 2.0 specification and many devices fall back to Full Speed. Full
Speed devices divide the USB bandwidth between them in a first-come first-served
basis and it is not uncommon to run out of bandwidth with several isochronous
devices. All USB Hubs support Full Speed [1].

27



e A Hi-Speed(USB 2.0) rate of up to 480 Mbit/s (60 MB/s) [1].

As seen above, USB 2.0 can support up to 480Mbits/s and this is a huge amount of
data. This is available in theory and there are lots of limiting factors that decrease the data
throughput rate of a USB system.

The maximum rate currently (2006) attained with real devices is about half of the full
theoretical (60 MB/s) data throughput rate. Most hi-speed USB devices typically operate at
much slower speeds, often about 3 MB/s overall, sometimes up to 10-20 MB/s [1].

The necessary data bandwidth for the design can be calculated as follows:

BW=(ADC conversion frequency)*(ADC resolution) = [30*10%)]*10=300Mbits/s

The clock of used ADC is 30MHz and the resolution is 10 bits. The data throughput
rate is sufficient for our design but, in practice, this is not attainable as stated above. At the
same time, the EZ-USB chip can support only 8bits or 16 bits external interface and that is to
say if you make use of 10 bits of ADC, you have use 16bits interface and every 6bits for each
16 bits are discarded and this also increases the needed speed without any gain. The least two
significant bit of ADC can not give sufficiently accurate results. Therefore, we determined to
ignore these LSB bits and only make use of MSB 8 bits and the external interface is set to 8
bits width. After making the changes, the necessary bandwidth is the following:

BW=(ADC conversion frequency)*(ADC resolution) = [30*10%)]*8=240Mbits/s.

Again, this value is high. However, we can not decrease the necessary bandwidth
anymore and therefore, by implementing a good firmware and an application program, we try
to increase the speed of the data transfer to the needed level. Actually, the speed depends on
the configuration of the interface and endpoints of EZ-USB chip that will be discussed next.
Eventually, we can say that High Speed USB 2.0 has to be used in the project and the final

device should be used in a computer has USB High Speed Host Controller.

28



2.4 ENUMERATION

Enumeration is made when a USB device is connected to a USB port. First, it is
detected and then the enumeration begins. In order to establish a connection path between the

device and the host, the host sends a sequence of request to device to learb about the device.

The followings are the typical sequence of the enumeration[4]:

e The user attaches a device to a USB port. Or the system powers up with a device
already attached. The port may be on the root hub at the host or a hub that connects
downstream from the host. The hub provides power to the port, and the device is in the
Powered state

e The hub detects the device

e The host learns of the new device. Each hub uses its interrupt endpoint to report events
at the hub. On learning of an event, the host sends the hub a Get Port Status request
to find out more.

e The hub detects whether a device is low or full speed. The hub detects the speed of a
device by determining which line has the higher voltage when idle

e The hub resets the device. When a host learns of a new device, the host controller
sends the hub a Set Port Feature request that asks the hub to reset the port.

e The host learns if a full-speed device supports high speed.

e The hub establishes a signal path between the device and the bus. The host verifies
that the device has exited the reset state by sending a Get Port_Status request. A bit in
the returned data indicates whether the device is still in the reset state. If necessary, the
host repeats the request until the device has exited the reset state.

e The host sends a Get Descriptor request to learn the maximum packet size of the
default pipe.

e The host assigns an address. The host controller assigns a unique address to the device
by sending a Set Address request.

e The host learns about the device’s abilities. The host sends a Get Descriptor request to
the new address to read the device descriptor. This time the host retrieves the entire
descriptor. The descriptor is a data structure containing the maximum packet size for
Endpoint 0, the number of configurations the device supports, and other basic
information about the device.

e The host assigns and loads a device driver (except for composite devices). After
learning about a device from its descriptors, the host looks for the best match in a
device driver to manage communications with the device. In selecting a driver,
Windows tries to match the information in the PC’s INF files with the Vendor ID,
Product ID, and (optional) release number retrieved from the device. If there is no
match, Windows looks for a match with any class, subclass, and protocol values
retrieved from the device. After the operating system assigns and loads the driver, the
driver may request the device to resend descriptors or send other class-specific
descriptors.

29



e The host’s device driver selects a configuration. After learning about a device from the
descriptors, the device driver requests a configuration by sending a Set Configuration
request with the desired configuration number.

The above sequence is the same for the most of the USB systems. For our project, a
similar enumeration steps should be held for a healthy connection. The most of the
enumeration steps are fulfilled by the EZ-USB chip and as USB device developers, we do not
have to deal with the enumeration implementation. The EZ-USB chip have a default
enumeration descriptors and the users can load different ones.

Driver searching and the driver attachment are difficult and neceassary steps to
establish a logical path between the device and the host. Therefore, we should talk about the
device drivers.

Devices that attach to the bus can be full-custom devices requiring a full-custom
device driver to be used, or may belong to a device class. These classes define an expected
behavior in terms of device and interface descriptors so that the same device driver may be
used for any device that claims to be a member of a certain class. An operating system is
supposed to implement all device classes so as to provide generic drivers for any USB device.
Device classes are decided upon by the Device Working Group of the USB Implementers
Forum [1].

Some of the device classes are the following [1]:

e 0x03:HID(Human Interface Device): Keyboards and mice..
e 0x08:Mass Storage Device: flah drivers, memory cards...
e O0xOE:Wireless controllers: Bluethoot dongles

As stated above, in order to use a device over USB, a proper driver should be attached
to the device and the driver file is the first point of the tranfer. The speed of the transfer also
depends on the content of the driver file. That is to say, to have a high speed transfer rate the
device driver should support this requirement. The writing of a driver file is a quite complex
job and it is not necessary for our design. Fortunately, with the USB chip, there is also a

suitable driver file that is written for high speed transfer applications. The name of the file is

30



CyUSB.sys and it is working well. Near the driver file, a managed Microsof .NET 2.0 Class
Library(CyUSB.dII) is also available, and this class is used to communicate the device with an

application program that written in the .NET.

2.5 USB DESCRIPTORS

At the end of the enumeration, the host tries to learn about the device by using USB
descriptors. These explanatory tables provide the needed knowledge to the host to
communicate the device appropriately. USB descriptors are standard to the most of the

systems and the common ones are the following:

e Device Descriptors: USB devices can only have one device descriptor. The device
descriptor includes information such as what USB revision the device complies to, the
Product and Vendor IDs used to load the appropriate drivers and the number of
possible configurations the device can have [5].

e Configuration Descriptors: The configuration descriptor specifies values such as the
amount of power this particular configuration uses, if the device is self or bus powered
and the number of interfaces it has. When a device is enumerated, the host reads the
device descriptors and can make a decision of which configuration to enable. It can
only enable one configuration at a time [5].

e Interface Descriptors: The interface descriptor could be seen as a header or grouping
of the endpoints into a functional group performing a single feature of the device [5].

e Endpoint Descriptors: Each endpoint descriptor is used to specify the type of
transfer, direction, polling interval and maximum packet size for each endpoint.
Endpoint zero, the default control endpoint is always assumed to be a control endpoint
and as such never has a descriptor [5].

e String Descriptors: String descriptors provide human readable information and are
optional. If they are not used, any string index fields of descriptors must be set to zero
indicating there is no string descriptor available [5].

31



Devicelescriptor

bHumCaonfiqurations

' '

Configuration Configuration
Crascriptor Crascriptor
‘bNumInterfaces ‘hNumInterfaces
Interface Interface Interface Interfae
Crescriptar Crescriptor Crescriptar Crescriptor
bHumEndpaints bNumEndpoints bHumEndpoints EHumEndpoints

Endpaint Endpaint Endpaoint Endpoint Endpaint Endpuoint Endpaoint Endpoint
Crescriptor Crescriptor Crescriptar Crescriptar Crescriptor Creszriptar Crescriptar Crescriptar

Figure 2.5.1: USB Descriptor Tree
The architecture of a generic USB device is multi-layered. A device consists of one or
more configurations, each of which describes a possible setting the device can be
programmed into. Such settings can include the power characteristics of the configuration (for
example, the maximum power consumed by the configuration and whether it is self-powered

or not) and whether the configuration supports remote wake-up [2].

Each configuration contains one or more interfaces that are accessible after the
configuration is set. An interface provides the definitions of the functions available within the
device and may even contain alternate settings within a single interface. For example, an
interface for an audio device may have different settings you can select for different

bandwidths [2].

Each layer of a USB device provides information about its attributes and resource
requirements in its descriptor, a data structure accessible through device interface functions.
By examining the descriptors at each layer, you can determine exactly which endpoint you

need to communicate successfully with a particular device[2].

32



2.6. ENDPOINTS

As stated above, the data transfer process can be configurated with the descriptors.
However, in the device, there are a fixed number of communication channels called endpoints
that can be used in different configurations. The data flow is made on the endpoints that are

logical connections between the computer and the device. The endpoints can be thought as

follows:

4§ EP8 (]
g EP6 )

) EP4 (]

() EP2 ()
() EPO ()

Device Host

Figure 2.6.1: Logical Endpoint Connection

Each endpoint can be activated or deactivated by setting the endpoint configuration
register in the EZ-USB chip. In default, all the endpoints are enabled and so, in order to

deactivate some of them, a proper firmware is needed.

An endpoint can have different characteristics such as transfer type, maximum packet
size and the transfer direction that can be set in the endpoint descriptor table. The same

endpoints can be used in different interfaces. The settings of an endpoint is quite important

33



because of the fact that the data flow is made over these logical channels and the data transfer

speed mainly depends on them.

An endpoint have two types of transfer direction namely IN and OUT with respect to
the host. If an endpoint is programmed as IN, the data comes from USB chip to the host
system(more clearly computer). By the way, the problem is that where the data comes from.
Each endpoint has a FIFO or other form of memory to store the incoming data from the
external interface if it is a IN endpoint. Similarly, if the endpoint is programmed as OUT, the
data comes from the host systems is stored to this memory. In the project, we mainly make
use of IN endpoint type because, the data comes from the external supply to tranfer to the
computer and OUT endpoint is not necessary for the project. OUT endpoints are used when
the host sends data to a external hardware. The endpoints, except control endpoints, are
unidirectional and that is to say, an endpoint can be configurated as either IN or OUT, but not
both.

A special kind of endpoint is the control endpoint and this one is used to transfer the
control signals between the host and the device. This endpoint is always used and two types of
transfer direction are available for this one. Interrupts, setup packets and similar things are
transferred over this endpoint. The memory size of the control endpoint is less than the other
ones. The enumeration makes use of the control endpoint.

The another important property of an endpoint is the its transfer type. As easily
guessed, there are different kinds of data transfers and the endpoints should have different
data transfer capabilities. There are four different transfer types namely Control, Interrupt,

Isochronous and Bulk.

e Control: It is intended to support configuration, command, and status communication

between the host software and the device. Control transfers support error detection and

retry[2].
Control transfers are typically used for command and status operations. They

are essential to set up a USB device with all enumeration functions being performed

34



using control transfers. They are typically bursty, random packets which are initiated

by the host and use best effort delivery [6].

e Interrupt: It is used to support small, limited-latency transfers to or from a device
such as coordinates from a pointing device or status changes from a modem. Interrupt

transfers support error detection and retry[2].
Interrupt transfers are typically non-periodic, small device "initiated"
communication requiring bounded latency. An Interrupt request is queued by the

device until the host polls the USB device asking for data [6].

e Isochronous: It is used for periodic, continuous communication between the host and
the device, usually involving time-relevant information such as audio or video data

streams. Isochronous transfers do not support error detection or retry|[2].

e Bulk: It is intended for non-periodic, large-packet communication with relaxed timing
constraints such as between the host software and a printer or scanner. Bulk transfers

support error detection and retry|[2].
Bulk transfers are only supported by full and high speed devices. For full speed
endpoints, the maximum bulk packet size is either 8, 16, 32 or 64 bytes long. For high

speed endpoints, the maximum packet size can be up to 512 bytes long [6].

The project requires continuous data flow with the time constraint. In the circuit, we

don’t make use of any memory device and therefore, the incoming data should be transferred

wihout any time delay. The incoming data is huge and some small amount of data loss is not

too much important. By making use of these knowledge, we can conclude that the endpoint

should be programmed as isochronous IN endpoint.

It is necessary to understand the isochronous data transfers for the sake of success of

the project.

35



Isochronous Transfers provide [6]

Guaranteed access to USB bandwidth.

Bounded latency.

Stream Pipe — Unidirectional.

Error detection via CRC, but no retry or guarantee of delivery.
Full & high speed modes only.

No data toggling.

The maximum size data payload is specified in the endpoint descriptor of an
Isochronous Endpoint. As the maximum data payload size is going to effect the bandwidth
requirements of the bus, it is wise to specify a conservative payload size. If you are using a
large payload, it may also be to your advantage to specify a series of alternative interfaces

with varying isochronous payload sizes [6].

In the project, the development of the firmware for the endpoint is quite critical and

important mission. It is obvious that if the endpoints are not configurated appropriately the

data transfer speed is not sufficient.

36



CHAPTER 3: EZ-USB DEVELOPMENT KIT CY3684

As expressed before, in the project, a high speed USB peripheral namely
CY7C68013A is planned to use.However, the advanced packaging of the chip makes difficult
to place the chip on a simple PCB. At the same time, the necessary firmware and the driver
files necessiates an advanced knowledge about the USB and the driver, a simplification at the

start is needed to use such a chip. The solution is a EZ-USB based development kit.

CY3684 is a EZ-USB advanced development kit. It includes a Cypress USB generic
driver file, EZ-USB firmware library and firmware frameworks, Cypress USB class
library(CyApi), Cypress USB console, Cypress GPIF(General Programmable Interface)
designer, Cypress Firmware Download driver sample and Keil 8051 Development Tools that

is necessary to develop the firmware.

The development kit makes simple for us to develop a firmware and application
program on the host side. A working firmware and application program is developed and a
working circuit diagram of the EZ-USB chip is available and it means that we can bypass the

development kit from the project easily.

EZ-USB Development kit requires the following system properties:

Microsoft Windows XP, Window 2000 or Windows ME
64MBytes RAM

55Mbytes Disk space

300MHz or higher processor

Super VGA display

USB host controller(High speed)

37



On the development board, an EZ-USB FX2LP chip, a re-programmable GAL,
128kilobytes RAM, EEPROMs used for EZ-USB initialization are available. In the project,

we mainly work with EZ-USB FX2LP chip namely CY7C68013A.

The external connection to the development kit can be made via the connectors. The
development kit has 7 such connector and these are connected to the proper pins of the chips
and the connection scheme can seen from the datasheet of the development kit. These

connectors can have diverse functions depend on the firmware loaded to the internal RAM.

By using the application program provided with the development kit, the connected
devices, their descriptors and the other information about the connections and devices can be
obtained. Sample firmwares can be downloaded to the internal RAM of chip, and the external
data can be transferred to the host over bulk or isochronous endpoints. This is quite instructive

for us and we can simplify the firrmware development process considerably.

The used USB chip in the project is CY7C68013A is available on the development

board. Via the development board, we can work with the EZ-USB peripheral easily.

3.1. CY7C68013A:

The data transfer is fulfilled by this chip. This is a USB2.0-USB-IF high speed
certificated microcontroller. As expressed above, the project necessiates a huge amount of
data transfer and we have to use a high speed USB. Inside the chip an USB2.0 transceiver,

smart SIE and enhanced 8051 microprocessor are available.

This chip supports both of full speed and high speed data transfers. The used USB

signaling scheme depends on the USB descriptors.

38



8051 microprocessor should be programmed before the usage and the code can run
from the internal RAM or external memory device. The code can be downloaded to the
internal RAM via USB or EEPROM. That is to say, after the power down, the code in the
internal RAM of chip is deleted and for every power up the internal RAM should be loaded
again. If EEPROM is used, the internal RAM automatically programmed after the power up.

Otherwise, the program code in HEX should be transferred to the internal RAM via USB.

In the chip, there are four programmable bulk/interrupt/isochronous endpoints and the
buffering options for them are double, triple and quad. These settings are determined by the
firmware downloaded to the internal RAM via USB in our project. The endpoints can be

configurated as IN or OUT, but in the project, we only make use of IN endpoint.

The chip can support 8 or 16 bit external data interface and one of them should used in
the data transfer. Again, this is determined by the firmware. The chip has a GPIF(General
Programmable Interface) that is used to connect directly to the most parallel interface. The
power supply is 3.3V, but the input magnitude can be 5V. The chip can be powered from the
USB port by using a voltage regulator. 8051 cpu operation can be 48MHz, 24MHz or 12MHz

and again this set by the firmware.

Four integrated FIFOs are available and these are written by using internal or external
clock. In the project, these memories are filled by the output of ADC and then transferred to
the computer. When the FIFO buffer for an endpoint is filled fully, a flag interrupt is created
and the flag pin of the chip changes its status appropriately. This flag interrupt can be used by
8051 microprocessor to handle some functions. By making use of these interrupts, some
predetermined data can be added to FIFO or for a while FIFO is disabled and similar things

can be implemented in the firmware.

During the power-up sequence, the chip checks an EEPROM connection to load the

descriptors. If it can not found the connection, it enumerates with the default internal

39



descriptors with VID=0x04B4, PID=0x8613 and DID=0xAnnn(nnn depends on the chip

revision).

3.2. EZ-USB FIRMWARE

In order to use the EZ-USB peripheral, it should be programmed with a firmware
downloaded to the internal RAM of the chip. The tasks of the firmware consist of the

initialization of the necessary registers and the control of the data transfer.

The firmware download is the first step that should be done and in the project the
firmware is downloaded via the USB. So, the application program should also able to

program the chip and the application program is discussed next.

After explaination of the USB specifications and the used USB chip, it is time to talk
about the developed firmware. First of all, it is quite instructive to look at the blocks of the

USB system as follows:

Firmware
Internal RAM —
m
Ea
I= E M
3 RE | 3
Data = 8051 Core
[1-}
=z
[x}
2-]
s D+
CY¥ Smart USE 2.0
— |USB1.12.0 | -
Engine XCVR
s D-
QQ CLK{30MHz)

Figure 3.2.1: USB System

40



The firmware runs from the internal RAM and the internal RAM is programmed via
USB in the project. The code in the internal RAM is used by the 8051 core to function. 8051
controls the interrupts, I/O ports, the external interface and so on. The decoding and the
encoding of the USB signals are made by the smarts USB engine and USB XCVR. The
microprocessor is not necessary to form D+ and D- signals. External interface can be
programmed in 8-bits or 16-bits width and the incoming data is written to FIFO with respect
to some external or internal sources(maybe CLK as shown in the above figure). The data from
the FIFO is converted to corresponding USB signals and then sent to the host and this process
is bit by bit .

In development of the firmware, the first step is the initialization of the registers. This
is done by TD_Init() function in the CY Stream.c file.(The source code of the firmware at the
appendix-1). In this function, the endpoints, interface and the cpu clock is configurated. The
most important register to set is the interface configuration register because of the fact that it
controls the external data flow scheme to FIFOs. The bit by bit definition of the register is the

following:

IFCONFIG

Interface Configuration(Poris. GPIF, slave FIFOs)

E&01

b7

bE

bS

o4

b3

b2

b1

b

IFCLKSRC

3045MHZ

IFCLKOE

IFCLKPOL

ASYNC

GSTATE

IFCFG1

IFCFGO

RIW

R

RV

RIW

R

R

RIW

RAW

1

]

0

]

0

]

Table 3.2.1: IFCONFIG Register.

In the code, IFCONFIG is set to 0xB3. By means of this, internal 30MHz clock and
inverted clock out is enabled. The external interface is used in the slave mode. In this
configuration, the selected endpoint’s FIFO is filled by the data available at the FIFO pins

with respect to the internal 30MHz clock. The interface clock configuration is the following:

41



IFCFG.G
IFCFG.4 IFCFG.5

30 MHz — |

48 MHz — 1 ? [

IFCLK
IFCFB.7 Fin
| IFCFG.4

Internal

1
IFCLK -— i)
Signal 0 { [ EE— J

Figure 3.2.2:IFCLK Configuration.

The main clock comes from the development kit and and this clock is used by ADC to
synchronize the EZ-USB peripheral. If the same clock is used by both the external interface
and the ADC, there may be some indeterminate state and the FIFO content may be wrong.
The situation is that ADC tries to sample the data and at the same time the external interface
tries to write it to FIFO and this is quite critical to succeed. Fortunately, by inverting the
output clock, the external interface clock and ADC clock can have 180° phase difference and
this prevents the data loss problem. In this setup, the data is sampled and after a half period
time, the converted data is written to FIFO. If the conversion time of ADC and the writing
time of FIFO are less than the half period of the interface clock, the problem is solved. In the

following figure, the input clocks for the external interface and the ADC is shown.

Writing toFIFO

IFCLK

Sampling

ADC Clock

1730 us

Figure 3.2.3: Used clocks by the external interface and ADC.

42



The second important setting made in the initialization routine is the endpoint
configuration. As explained before, the endpoints should be configurated suitably in order to
increase the transfer speed. Each endpoint is configurated by setting the EPXxCFG registers.

The bit definition of the EP2CFG is the following:

EFICFO Endpoint 2 Conflguratisn 3:3
= be bE b4 o3 o2 o1 =]
—— — m— — — — —
WALID (=11} TYPE1 TYFER SIEE [] BUF1 BUFQ

R

RN

RN

RN

RN

RN

RW

o 1 a ] a 1 a

Table 3.2.2:EP2CFG

In order to activate the endpoint, Bit-7(VALID) should be set to 1 and otherwise, this
endpoint is deactivated. The data transfer direction of the endpoint is determined by the Bit-
6(DIR) and for IN endpoint, this bit should be set to 1 and otherwise, the endpoint is
configurated as OUT. The data transfer types of the endpoint is set by the Bit5 and Bit4. The

followig table shows the endpoint type setting scheme.

TYPE1 TYPED Endpoint Type
o 1] Invald
o 1 Isechronous
1 0 Bulk [default)
1 1 Intermupt

Table 3.2.3: Endpoint Type

The size of the endpoint is set by Bit-3 of the register. If this bit set to 1, the size is 512
bytes and otherwise, it is 1024bytes. Buffering type is determined by the Bit-1 and Bit-2 of

the endpoint configuration register.

BUF1 BUFD Buffering
1] [} Quad
o 1 mualid
1 [} Cioub'z
1 1 Triple

Table 3.2.4: Buffering

43



Other endpoint configurations are similar to above configuration scheme. In the
initialization subroutine the last job is the initialization of the external interface. The external
interface width is determined by the WORDWIDE bit in the EPXFIFOCFG registers. If this
bit is set to 0, the width of the interface is 8bits and otherwise the external width is 16bits. In
the code this bit is set to 0 (8 bit wide interface is used). The initialization subroutine is called

once at the beginning the program flow.

The second function in the CYStream.c file is the TD Poll() and this called repeatedly
while the device is in the idle mode. The task of the this function is to control the data to

transfer over the selected interface and endpoint.

Lastly, the main function is available at the fw.c file and again this file is included at
the appendix- . The main function runs the initialization subroutine first and then repeatedly

TD_Poll() is called while the device is in idle state.

In the application program, EZ-USB can be programmed first. The programming

sequence is the following:

e If the user tries to use the EZ-USB before the downloading of the firmware, a warning
message is created as follows:

i'. ) Digas should be programmed before usage!!!

Program the device with 'digos. hex' file

Acquire

Figure 3.2.4: Programming Warning Message.

44



If the user programs the EZ-USB, the following messages are prompted. The first
message is for the removal of the Cypress device because, the attached Cypress device
is removed first. The second message is the arrival of the new Cypress device. The
new device and the old device have different VID and PID and therefore, they attach
to the different driver files. After the programming, the enumeration is held again to
establish a new channel between the host and the device.

-
\y Cypress device removed,

Acquire

Figure 3.2.5: Device Removal Message.

{ i . i Cwpress device successfully programmed!

Plat menu is enabled! 1!

Acquire

Figure 3.2.6: Device Arrival Message.

45



CHAPTER 4:USER INTERFACE

4.1. WHY NET ENVIRONMENT AND C#

We have chosen .NET environment and C# for the interface part of the project. There
are a lot of reasons why we have used C#. First of all, C# is a programming language that is
widely used in a wide range of applications. It is very easy to learn.

Moreover, since we want to write a real time data plot algorithm, we need a
programming language which has to include drawing classes. C# includes very rich drawing
classes which are completely suitable for our applications. In addition, C# has very rich visual
objects for data plotting.

We have used Cypress microcontroller to provide connection with the interface. There
are USB libraries and sample codes written in C# in the CD which we obtained with the
development kit. With the help of these libraries, it was very easy to write code to enable the

connection between microcontroller and PC.

4.2. CYPRESS LIBRARIES

Cypress has a “dll’ file which includes USB libraries to connect USB devices to PC, to
warn the user about the connection of the USB devices, to read data from the device
connected to PC via USB connection. By adding the library to our C# project, we could use

these libraries in C# environment.

46



Some library items and their syntax of use are the following:

e DEVICES CYUSB: Finds the USB devices produced by Cypress Inc.

e CyConst. DEVICES CYUSB: Send a byte value to a proper method according to the
types of USB devices we are interested in.

e USBDeviceList: Lists all the USB devices of our interests.

e VariableName[0x??7??,0x????]: Send the Vendor ID and Product ID of the device to
find the specific USB device.

e CyFX2Device: Defines the programmable part of the Cypress device.

e CyUSBEndPoint: Determines the end point of the Cypress USB device.

4.3. SOME SCREENSHOTS FROM THE GUI

B2 digos |l

File  Program FX2  Options  Help  About

Plat | Diata Transters |

Figure 4.3.1: Initial page of the GUI.

47



E2 digos =]

File  Program FX2  Options  Help  About

ERr

Aequire
Cursor
Display
Measure
Clear
Freeze
Resume
Stop

Acauire

Aequire |nformation

Figure 4.3.2: GUI when Acquire button is clicked.
E2 digos =]

File  Program FX2  Options  Help  About

ERr

= |2k

Aequire
Cursor
Display
Measure
Clear

Freeze
Resume

Stop
Cursar
I

Figure 4.3.3: GUI when Cursor button is clicked.

48



digos

File  Program FX2

Options

ERr

Help

Ahout

=

=l

o

Aequire

Cursor

Display

Measure

Clear

Freeze

Resume

Stop

Display

Display Information

digos

File  Program FX2

Options

ERr

Help

Ahout

Figure 4.3.4: GUI when Display button is clicked.

=

=l

o

Aequire

Cursor

Display

Measure

Clear

Freeze

Resume

Stop

Display

Select Display Type

Figure 4.3.5: GUI when Display Type button is clicked.

49




digos

File

Program FX2

ERr

Options

Help

Ahout

=l

o

di
File

Aequire

Cursor

Display

Measure

Clear

Freeze

Resume

Stop

Display

Grid-fixis
Show dxis

[V Show Grid

igos

Program FX2 | Options
Intzrnal Rkl
B4HB EEPROM

Help

Figure 4.3.6: GUI when Display Grid-Axis button is clicked.

Ahout

=

=l

o

Aequire

Cursor

Display

Measure

Clear

Freeze

Resume

Stop

Display

Grid-fixis
Show dxis

[V Show Grid

Figure 4.3.7: GUI when Program FX2 item is clicked.

50




4.4. ALGORITHM

Load the main form
Initialize the components in the main form
Try to find the USB devices of Cypress to read
If USB devices of Cypress couldn’t be found to read
Try to find the USB devices of Cypress to program
Warn the user
Call the plug and unplug event handler
If the device is connected or disconnected
Inform the user about the situation
Try to find the USB devices of Cypress to read
If USB devices of Cypress could be found to read

Inform the user about the situation

When main form is being closed

Clean up memory, clean the USB devices added to memory.

Call a function to perform reading the data from Cypress periodically
Find the end point of the microcontroller
If the end point of the microcontroller is null
Warn the user
Else
Start the data transfer from the buffer of the microcontroller until the

flag showing that data transfer is complete is interrupted

When Acquire Normal button is clicked

Call the function to activate the first data acquisition

51



Call the function to activate the first data acquisition
Define a timer to periodically call the data acquisition function(DAQ)
Alert the periodic data acquisition function at each tick of the timer
Set the call period of the DAQ function
Find the end point of the microcontroller
Set the expiration time for DAQ
If the end point of the microcontroller is null
Warn the user
Else
Start the data transfer from the buffer of the microcontroller until the
flag showing that data transfer is complete is interrupted
Start the timer after the first DAQ
When the DAQ is completed
Send the data for plotting
Call the DAQ function again
When ‘Save’ item of the menu is clicked
Send the data coming to stream writer function to save it in a file
Until stop button is clicked on the save data form

Continue writing the data into a file

When ‘About’ item of the menu is clicked

Show the form including info about the project

When ‘Exit’ item of the menu is clicked
Clean up the memory

Close the application

When ‘Program FX2 Device’ item of the menu is clicked

52



Define theFX2 device to program
Choose the files with the extension “.hex” to program the device.

Program the device

When ‘Halt’ item of the menu is clicked

Halt the programming process

When the graph control area is loaded

Make all of the group boxes invisible

When the buttons are clicked, related group boxes will be visible

When a button is clicked

Hide all the group boxes

Show the group boxes of the active button

When the button to acquire the data in normal mode is clicked

Make the clear screen mode off
Make the start application mode on

Call the function to begin reading and plotting

When the button to clear the data is clicked

Make the clear screen mode on

Call the OnPaint method to redraw the data on the screen

When the check box controlling the axis visibility is checked

Update the color of the pen to draw the axis

Make the axis visibility control true

When the check box controlling the grid visibility is checked

53



Update the color of the pen to draw the grid

Make the grid visibility control true

When the check box controlling the scale of the data plotting is checked
Adjust the graph according to the scale

Excite the OnPaint method to redraw the data using new settings

When the combo box controlling the type of the data plotting is checked
If “Vector’ item is selected
Make the ‘Display Type’ boolean true
Connect the data points
Else
Make the ‘Display Type’ boolean false

Excite the OnPaint method to redraw the data using new settings

When the button to freeze the data flow is clicked

Make the ‘freeze’ boolean true

When the button to resume the data flow is clicked

Make the ‘freeze’ boolean false
When the button to stop the data flow is clicked
Make the ‘stop’ boolean true

Use it when necessary

Load the graph control

Initialize the components in the graph control

54



When the ReadData function is called
Start the isynchronous data transfer

Excite the OnPaint method to redraw the data using new settings

Continously call the OnPaint method
Translate the origin of the graph from left upper corner to left bottom corner
If ‘ShowGrid’ boolean is true
Draw the grid lines
If ‘ShowAxis’ boolean is true
Draw the axis lines
If ‘DisplayType’ boolean is true

Connect the data dots on the screen

55



APPENDICES

56



APPENDIX A:

FIRMWARE CODE

/ICYStream.c
#pragma NOIV // Do not generate

interrupt vectors

//

#include "fx2.h"
#include "fx2regs.h"
#include "fx2sdly.h" /1
SYNCDELAY macro
extern BOOL GotSUD; // Received
setup data flag
extern BOOL Sleep;
extern BOOL Rwuen;
extern BOOL Selfpwr;
#define LED ADDR 0x21
enum {
Alt0 BulkIN =0,
Altl BulkOUT,
Alt2 BulkINOUT,

Alt3 IsoclIN,

Alt4 IsocOUT,

57

Alt5_IsoclIN,

Alt6_IsocINOUT

}s

enum {
Full Alt0O BulkIN =0,
Full Altl BulkOUT,
Full Alt2 IsocIN,

Full Alt3 IsocOUT

BYTE xdata Digit[] = { 0xc0, 0xf9, Oxa4,
0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x98, 0x88,
0x83, 0xc6, Oxal, 0x86, 0x8e };

BYTE Configuration; // Current
configuration

BYTE AlternateSetting = Alt5 IsocIN;

/I Alternate settings

//

// Task Dispatcher hooks
/I The following hooks are called by the
task dispatcher.

//




WORD mycount;

void TD_Init(void) // Called
once at startup

{

/fint i,j;

// set the CPU clock to 48MHz

CPUCS = ((CPUCS & ~bmCLKSPD) |

bmCLKSPD1) ;
SYNCDELAY;

// set the slave FIFO interface to 48MHz

IFCONFIG=0xB3;

SYNCDELAY;

// Default interface uses endpoint 2, zero

the valid bit on all others

// Just using endpoint 2, zero the valid

bit on all others

EP10OUTCFG = (EP1OUTCFG &

0x7F);
SYNCDELAY;

EP1INCFG = (EP1INCFG & 0x7F);

SYNCDELAY;

EPACFG = (EPACFG & 0x7F);

SYNCDELAY;

EP6CFG = (EP6CFG & 0x7F);

58

SYNCDELAY;

EPSCFG = (EPSCFG & 0x7F);

SYNCDELAY;

EP2CFG = 0xEO; // EP2 is DIR=IN,

TYPE=BULK, SIZE=512, BUF=4x

EP2FIFOCFG=EP2FIFOCFG&O0xXFE;

//WORDWIDE=0; 8 bit data interface is used

// We want to get SOF interrupts

USBIE |= bmSOF;

mycount = 0;

Rwuen = TRUE; // Enable
remote-wakeup

}

void TD_Poll(void) // Called

repeatedly while the device is idle
{
//...FX2 in high speed mode
if EZUSB_HIGHSPEED( ) )
{

// Perform USB activity based

upon the Alt. Interface selected

switch (AlternateSetting)

{



case Alt0 BulkIN: EP2FIFOBUF[0] =
// Send data on EP2 LSB(mycount);
while(!(EP2468STAT & EP2FIFOBUEF[1] =
bmEP2FULL)) MSB(mycount);
{ EP2FIFOBUF[2] =
EP2FIFOBUF[0] = USBFRAMEL,;
LSB(mycount); EP2FIFOBUF[3] =
EP2FIFOBUEF[1] = USBFRAMEH;
MSB(mycount); EP2FIFOBUF[4] =
EP2FIFOBUF[2] = MICROFRAME;
USBFRAMEL,;
EP2FIFOBUF[3] = EP2BCH = 0x02;
USBFRAMEH; EP2BCL = 0x00;
EP2FIFOBUF[4] =
MICROFRAME; mycount++;
}
EP2BCH = 0x02;
EP2BCL = 0x00; // check EP6
EMPTY (busy) bit in EP2468STAT (SFR), core
mycount++; set's this bit when FIFO is empty
} if(!(EP2468STAT &
break; bmEP6EMPTY))
{
case Alt2 BulkINOUT: EP6BCL = 0x80;
// Send data on EP2 /l re(arm) EP60OUT
while(!(EP2468STAT & }
bmEP2FULL)) break;
{
case Alt3_IsocIN:

59



case Alt5_IsocIN: //
// Send data on EP2 check EP2 EMPTY (busy) bit in EP2468STAT
while(!(EP2468STAT & (SFR), core set's this bit when FIFO is empty
bmEP2FULL)) if(I(EP2468STAT &
{ bmEP2EMPTY))
EP2FIFOBUF[0] = {
LSB(mycount); EP2BCL = 0x80;
EP2FIFOBUEF[1] = // re(arm) EP20UT
MSB(mycount); }
EP2FIFOBUF[2] = break;
USBFRAMEL,;
EP2FIFOBUF[3] = case Alt6_IsocINOUT:
USBFRAMEH; {
EP2FIFOBUF[4] = // Send data on EP2
MICROFRAME; while(!(EP2468STAT &
bmEP2FULL))
EP2BCH = 0x04; {
EP2BCL = 0x00; EP2FIFOBUF[0] =
LSB(mycount);
mycount++; EP2FIFOBUF[1] =
} MSB(mycount);
break; EP2FIFOBUF[2] =
USBFRAMEL,;
EP2FIFOBUF[3] =
case Altl BulkOUT: USBFRAMEH,;
case Alt4 IsocOUT: EP2FIFOBUF[4] =
MICROFRAME;
EP2BCH = 0x04;

60



EP2BCL = 0x00;

mycount+-+;

// check EP6
EMPTY (busy) bit in EP2468STAT (SFR), core
set's this bit when FIFO is empty

if(1(EP2468STAT &

bmEP6EMPTY))
{
EP6BCL = 0x80;
/l re(arm) EP60OUT
}
H
break;
H
}
/* else // Full Speed

{

// Perform USB activity based
upon the Alt. Interface selected
switch (AlternateSetting)
{
case Full Alt0 BulkIN:

// Send data on EP2

61

while(I(EP2468STAT &

bmEP2FULL))
{

EP2FIFOBUF[0] =
LSB(mycount);

EP2FIFOBUEF[1] =
MSB(mycount);

EP2FIFOBUF[2] =
USBFRAMEL,;

EP2FIFOBUF[3] =
USBFRAMEH;

EP2FIFOBUF[4] =
MICROFRAME;

EP2BCH = 0x00;

EP2BCL = 0x40;

mycount+-+;

break;

case Full Altl BulkOUT:

// check EP2

EMPTY (busy) bit in EP2468STAT (SFR), core

set's this bit when FIFO is empty

while(I(EP2468STAT &

bmEP2EMPTY))



/l re(arm) EP20UT

bmEP2FULL))

LSB(mycount);

MSB(mycount);

USBFRAMEL;

USBFRAMEH;

MICROFRAME;

/11023

EP2BCL = 0x80;

break;

case Full Alt2 IsocIN:

// Send data on EP2

while(I(EP2468STAT &

EP2FIFOBUF[0] =

EP2FIFOBUF[1] =

EP2FIFOBUF[2] =

EP2FIFOBUF[3] =

EP2FIFOBUF[4] =

EP2BCH = 0x03;

EP2BCL = OxFF;

mycount+-+;

break;

62

case Full Alt3 IsocOUT:
// check EP2
EMPTY (busy) bit in EP2468STAT (SFR), core
set's this bit when FIFO is empty
while(!(EP2468STAT &

bmEP2EMPTY))

EP2BCL = 0x80;

/l re(arm) EP20UT

break;

BOOL TD_Suspend(void) /l

Called before the device goes into suspend mode

{

return(TRUE);

BOOL TD_Resume(void) /

Called after the device resumes

{

return(TRUE);



//

// Device Request hooks
/I The following hooks are called by the
end point 0 device request parser.

//

BOOL DR _GetDescriptor(void)

{

return(TRUE);

BOOL
DR _SetConfiguration(void) // Called when
a Set Configuration command is received
{
Configuration = SETUPDAT[2];
return(TRUE);

// Handled by user

code

BOOL
DR _GetConfiguration(void) // Called
when a Get Configuration command is received
{
EPOBUF[0] = Configuration;

EPOBCH = 0;

63

EPOBCL = 1;
return(TRUE); // Handled by user

code

BOOL DR _SetInterface(void)
// Called when a Set Interface command is received

{

BYTE updateDisplay = TRUE;

AlternateSetting = SETUPDAT](2];

//...FX2 in high speed mode
if EZUSB_HIGHSPEED( ) )
{
// Change configuration based
upon the Alt. Interface selected
switch (AlternateSetting)
{
case Alt0_BulkIN:
// Only using endpoint 2,
zero the valid bit on all others
// Just using endpoint 2,
zero the valid bit on all others
EP2CFG = 0xEO; // EP2
is DIR=IN, TYPE=BULK, SIZE=512, BUF=4x

SYNCDELAY;

EP1OUTCFG =

(EP1IOUTCFG & 0x7F);



(EP1INCFG & 0x7F);

0x7F);

0x7F);

0x7F);

committed packets

IN

IN Reset

SYNCDELAY;

EP1INCFG =

SYNCDELAY;

EP4CFG = (EP4CFG &

SYNCDELAY;

EP6CFG = (EP6CFG &

SYNCDELAY;

EP8CFG = (EPSCFG &

SYNCDELAY;

// Clear out any

FIFORESET = 0x80;
SYNCDELAY;
FIFORESET = 0x02;
SYNCDELAY;
FIFORESET = 0x00;

SYNCDELAY;

// Reset data toggle to 0

TOGCTL = 0x12; // EP2

TOGCTL = 0x32; // EP2

64

break;

case Altl BulkOUT:
// Only using endpoint 2,
zero the valid bit on all others
EP2CFG = 0xAO0; // EP2
is DIR=OUT, TYPE=BULK, SIZE=512, BUF=4x

SYNCDELAY;

EP1OUTCFG =

(EP1OUTCFG & 0x7F);

SYNCDELAY;

EP1INCFG =
(EP1INCFG & 0x7F);

SYNCDELAY;

EP4CFG = (EP4CFG &
0x7F);

SYNCDELAY;

EP6CFG = (EP6CFG &
0x7F);

SYNCDELAY;

EP8CFG = (EP8CFG &
0x7F);

SYNCDELAY;

// OUT endpoints do NOT
come up armed
EP2BCL = 0x80; // arm

first buffer by writing BC w/skip=1



SYNCDELAY;
EP2BCL = 0x80; // arm
second buffer by writing BC w/skip=1
SYNCDELAY;
EP2BCL = 0x80; // arm
third buffer by writing BC w/skip=1
SYNCDELAY;
EP2BCL = 0x80; // arm

fourth buffer by writing BC w/skip=1

break;

case Alt2 BulkINOUT:
// Using endpoints 2 & 6,
zero the valid bit on all others
EP2CFG = 0xE0; // EP2
is DIR=IN, TYPE=BULK, SIZE=512, BUF=4x
SYNCDELAY;
EP6CFG = 0xAO; / EP6

is DIR=OUT, TYPE=BULK, SIZE=512, BUF=4x

SYNCDELAY;
EP1OUTCFG =
(EP1OUTCFG & 0x7F);
SYNCDELAY;
EP1INCFG =
(EP1INCFG & 0x7F);
SYNCDELAY;

65

0x7F);

0x7F);

committed packets

IN

IN Reset

come up armed

EP4CFG = (EP4CFG &

SYNCDELAY;

EP8CFG = (EPSCFG &

SYNCDELAY;

// Clear out any

FIFORESET = 0x80;

SYNCDELAY;

FIFORESET = 0x02;

SYNCDELAY;

FIFORESET = 0x00;

SYNCDELAY;

// Reset data toggle to 0

TOGCTL = 0x12; // EP2

TOGCTL = 0x32; // EP2

// OUT endpoints do NOT

EP6BCL = 0x80; // arm

first buffer by writing BC w/skip=1

SYNCDELAY;

EP6BCL = 0x80; // arm

second buffer by writing BC w/skip=1



SYNCDELAY;
break; break;
case Alt3_IsocIN: case Alt4 IsocOUT:
// Only using endpoint 2, {
zero the valid bit on all others // Only using endpoint 2,
EP2CFG = 0xDS; // EP2 zero the valid bit on all others
is DIR=IN, TYPE=ISOC, SIZE=1024, BUF=4x EP1OUTCFG =
SYNCDELAY; EP1INCFG = EP4CFG = EP6CFG = EP8CFG =
0x00;
EP1OUTCFG = SYNCDELAY;
EP1INCFG = EP4CFG = EP6CFG = EP8CFG = EP2CFG = 0x98; // EP2
0x00; is DIR=OUT, TYPE=ISOC, SIZE=1024, BUF=4x
SYNCDELAY; SYNCDELAY;
// Clear out any // OUT endpoints do NOT
committed packets come up armed
FIFORESET = 0x80; EP2BCL = 0x80; // arm
SYNCDELAY; first buffer by writing BC w/skip=1
FIFORESET = 0x02; SYNCDELAY;
SYNCDELAY; EP2BCL = 0x80; // arm
FIFORESET = 0x00; second buffer by writing BC w/skip=1 break;
SYNCDELAY;
H
// This register sets the break;
number of Isoc packets to send per
// uFrame. This register is case Alt5_IsocIN:
only valid in high speed. {
EP2ISOINPKTS = 0x03;

66



// Only using endpoint 2, {

zero the valid bit on all others // ' Using endpoints 2 & 6,
EP2CFG = 0xDS; // EP2 zero the valid bit on all others
is DIR=IN, TYPE=ISOC, SIZE=1024, BUF=4x EP2CFG = 0xDA; // EP2
SYNCDELAY; is DIR=IN, TYPE=ISOC, SIZE=1024, BUF=2x
SYNCDELAY;
EP1OUTCFG = EP6CFG = 0x9A; // EP6
EP1INCFG = EP4CFG = EP6CFG = EP8CFG = is DIR=OUT, TYPE=ISOC, SIZE=1024, BUF=2x
0x00; SYNCDELAY;
SYNCDELAY;
EP1OUTCFG =
// Clear out any EPIINCFG = EP4CFG = EPSCFG = 0x00;
committed packets SYNCDELAY;

FIFORESET = 0x80;

SYNCDELAY; // Clear out any
FIFORESET = 0x02; committed packets
SYNCDELAY; FIFORESET = 0x80;
FIFORESET = 0x00; SYNCDELAY;
SYNCDELAY; FIFORESET = 0x02;
SYNCDELAY;
// This register sets the FIFORESET = 0x00;
number of Isoc packets to send per SYNCDELAY;

// uFrame. This register is

only valid in high speed. // This register sets the
EP2ISOINPKTS = 0x01; number of Isoc packets to send per
} // uFrame. This register is
break; only valid in high speed.

EP2ISOINPKTS = 0x01;

case Alt6_IsocINOUT:

67



// OUT endpoints do NOT
come up armed

EP6BCL = 0x80; // arm
first buffer by writing BC w/skip=1

SYNCDELAY;

EP6BCL = 0x80; // arm

second buffer by writing BC w/skip=1

break;

else

// Change configuration based
upon the Alt. Interface selected
switch (AlternateSetting)
{
case Full Alt0 BulkIN:
// Only using endpoint 2,
zero the valid bit on all others
// Just using endpoint 2,
zero the valid bit on all others
EP2CFG = 0xEO; // EP2
is DIR=IN, TYPE=BULK, SIZE=512, BUF=4x

SYNCDELAY;

68

EP1OUTCFG =
(EP1OUTCFG & 0x7F);
SYNCDELAY;
EP1INCFG =
(EP1INCFG & 0x7F);
SYNCDELAY;
EP4CFG = (EP4CFG &
0x7F);
SYNCDELAY;
EP6CFG = (EP6CFG &
0x7F);
SYNCDELAY;
EP8CFG = (EP8CFG &
0x7F);
SYNCDELAY;
// Clear out any

committed packets
FIFORESET = 0x80;
SYNCDELAY;
FIFORESET = 0x02;
SYNCDELAY;
FIFORESET = 0x00;

SYNCDELAY;

// Reset data toggle to 0
TOGCTL = 0x12; // EP2

IN



TOGCTL = 0x32; // EP2

IN Reset

break;

case Full Altl BulkOUT:
// Only using endpoint 2,
zero the valid bit on all others
EP2CFG = 0xA0; // EP2

is DIR=OUT, TYPE=BULK, SIZE=512, BUF=4x

SYNCDELAY;
EP1OUTCFG =
(EP1OUTCFG & 0x7F);
SYNCDELAY;
EP1INCFG =
(EP1INCFG & 0x7F);
SYNCDELAY;

EP4CFG = (EP4CFG &

0x7F);
SYNCDELAY;
EP6CFG = (EP6CFG &
0x7F);
SYNCDELAY;
EP8CFG = (EP8CFG &
0x7F);

SYNCDELAY;

69

// OUT endpoints do NOT
come up armed
EP2BCL = 0x80; // arm
first buffer by writing BC w/skip=1
SYNCDELAY;
EP2BCL = 0x80; // arm
second buffer by writing BC w/skip=1
SYNCDELAY;
EP2BCL = 0x80; // arm
third buffer by writing BC w/skip=1
SYNCDELAY;
EP2BCL = 0x80; // arm

fourth buffer by writing BC w/skip=1

break;

case Full Alt2 IsocIN:
// Only using endpoint 2,
zero the valid bit on all others
EP2CFG = 0xD8; // EP2
is DIR=IN, TYPE=ISOC, SIZE=1024, BUF=4x

SYNCDELAY;

EP1OUTCFG =
EP1INCFG = EP4CFG = EP6CFG = EPSCFG =
0x00;

SYNCDELAY;



// Clear out any
committed packets

FIFORESET = 0x80;

SYNCDELAY;

FIFORESET = 0x02;

SYNCDELAY;

FIFORESET = 0x00;

SYNCDELAY;

break;

case Full Alt3 IsocOUT:
{
// Only using endpoint 2,
zero the valid bit on all others
EP1OUTCFG =
EP1INCFG = EP4CFG = EP6CFG = EP8CFG =
0x00;
SYNCDELAY;
EP2CFG = 0x98; // EP2
is DIR=OUT, TYPE=ISOC, SIZE=1024, BUF=4x

SYNCDELAY;

// OUT endpoints do NOT
come up armed

EP2BCL = 0x80; // arm
first buffer by writing BC w/skip=1

SYNCDELAY;

70

EP2BCL = 0x80; // arm

second buffer by writing BC w/skip=1 break;

break;

// Update the display to indicate the
currently selected alt. Interface
if(updateDisplay)

{

EZUSB WriteI2C(LED ADDR, 0x01,

&(Digit[ AlternateSetting]));

EZUSB WaitForEEPROMWrite(LED ADDR);

updateDisplay = FALSE;

return(TRUE); // Handled by user

code



BOOL DR _Getlnterface(void)

// Called when a Set Interface command is received

{

EPOBUF[0] = AlternateSetting;
EPOBCH = 0;
EPOBCL = 1;

return(TRUE); // Handled by user

code

BOOL DR_GetStatus(void)

{

return(TRUE);

BOOL DR _ClearFeature(void)

{

return(TRUE);

BOOL DR _SetFeature(void)

{

return(TRUE);

BOOL DR_VendorCmnd(void)

{

return(TRUE);

71

//

// USB Interrupt Handlers
/I The following functions are called by
the USB interrupt jump table.

//

/I Setup Data Available Interrupt Handler

void ISR_Sudav(void) interrupt 0

{

GotSUD = TRUE; // Set flag
EZUSB IRQ CLEAR();
USBIRQ =bmSUDAYV; // Clear

SUDAV IRQ

}

/I Setup Token Interrupt Handler
void ISR _Sutok(void) interrupt 0
{
EZUSB IRQ CLEAR();
USBIRQ =bmSUTOK; /I Clear

SUTOK IRQ

}

void ISR_Sof(void) interrupt 0

{



EZUSB_IRQ CLEAR();
USBIRQ = bmSOF; // Clear SOF

IRQ

void ISR_Ures(void) interrupt 0
{
// Whenever we get a USB Reset, we
should revert to full speed mode
pConfigDscr = pFullSpeedConfigDscr;
((CONFIGDSCR xdata *)
pConfigDscr)->type = CONFIG_DSCR;
pOtherConfigDscr =
pHighSpeedConfigDscr;
((CONFIGDSCR xdata *)
pOtherConfigDscr)->type =

OTHERSPEED DSCR;

EZUSB_IRQ_CLEAR();
USBIRQ = bmURES; /I Clear

URES IRQ

}

void ISR_Susp(void) interrupt 0
{

Sleep = TRUE;

EZUSB_IRQ CLEAR();

USBIRQ = bmSUSP;

72

void ISR_Highspeed(void)
interrupt 0

{

if (EZUSB_HIGHSPEED())
{
pConfigDscr =
pHighSpeedConfigDscr;
((CONFIGDSCR xdata *)
pConfigDscr)->type = CONFIG_DSCR;
pOtherConfigDscr =
pFullSpeedConfigDscr;
((CONFIGDSCR xdata *)
pOtherConfigDscr)->type =

OTHERSPEED DSCR;

// This register sets the number of Isoc
packets to send per

// uFrame. This register is only valid
in high speed.

EP2ISOINPKTS = 0x03;

else

pConfigDscr = pFullSpeedConfigDscr;
pOtherConfigDscr =

pHighSpeedConfigDscr;

}



EZUSB IRQ CLEAR();
USBIRQ = bmHSGRANT;

}
void ISR_Ep0Oack(void) interrupt

{

}

void ISR _Stub(void) interrupt 0

{

}

void ISR_Ep0Oin(void) interrupt 0
{

}
void ISR_EpOQout(void) interrupt

{
}
void ISR_Eplin(void) interrupt 0
{

}
void ISR_Ep1lout(void) interrupt

// ISR_Ep2inout is called on every OUT
packet receieved.
// We don't do anything with the data. We

just indicate we are done with the buffer.

73

void ISR_Ep2inout(void)
interrupt 0
{
// Perform USB activity based upon the
Alt. Interface selected
switch (AlternateSetting)
{
case Altl_BulkOUT:
case Alt4 IsocOUT:
// check EP2 EMPTY (busy) bit in

EP2468STAT (SFR), core set's this bit when FIFO

is empty

if((EP2468STAT &
bmEP2EMPTY))

{

EP2BCL = 0x80; // re(arm)

EP20UT

}

break;

case Alt2 BulkINOUT:
case Alt6_IsocINOUT:
// check EP6 EMPTY (busy) bit in
EP2468STAT (SFR), core set's this bit when FIFO
is empty
if(I(EP2468STAT &

bmEP6EMPTY))

{



EP6BCL = 0x80; // re(arm)

EP60OUT

break;

}

void ISR_Ep4inout(void)
interrupt 0

{

}

void ISR_Ep6inout(void)
interrupt 0

{

}

void ISR_Ep8inout(void)
interrupt 0

{

}

void ISR_Ibn(void) interrupt 0

{

}

void ISR_EpOpingnak(void)
interrupt 0

{

}

void ISR_Ep1pingnak(void)
interrupt 0

{

74

}

void ISR_Ep2pingnak(void)
interrupt 0

{

}

void ISR_Ep4pingnak(void)
interrupt 0

{

}

void ISR_Ep6pingnak(void)
interrupt 0

{

}

void ISR_Ep8pingnak(void)
interrupt 0

{

H
void ISR_Errorlimit(void)

interrupt 0

{

}

void ISR_Ep2piderror(void)
interrupt 0

{

}

void ISR_Ep4piderror(void)
interrupt 0

{

}



void ISR_Epé6piderror(void)
interrupt 0

{

}

void ISR_Ep8piderror(void)
interrupt 0

{

}

void ISR_Ep2pflag(void)
interrupt 0

{

}

void ISR_Ep4pflag(void)
interrupt 0

{

}

void ISR_Ep6pflag(void)
interrupt 0

{

}

void ISR_Ep8pflag(void)
interrupt 0

{

}

void ISR_Ep2eflag(void)
interrupt 0

{

}

75

void ISR_Ep4eflag(void)
interrupt 0

{

}

void ISR_Ep6eflag(void)
interrupt 0

{

}

void ISR_Ep8eflag(void)
interrupt 0

{

}

void ISR _Ep2fflag(void)
interrupt 0

{

}

void ISR _Ep4fflag(void)
interrupt 0

{

}

void ISR _Ep6fflag(void)
interrupt 0

{

}

void ISR _Ep8fflag(void)
interrupt 0

{

}



void ISR_GpifComplete(void)
interrupt 0
{

}
void ISR_GpifWaveform(void)

interrupt 0
{
}

// File: fw.c

//

#include "fx2.h"

#include "fx2regs.h"

//

// Constants

//

#define DELAY COUNT 0x9248*8L //

Delay for 8 sec at 24Mhz, 4 sec at 48

#define IFREQ 48000 // IFCLK
constant for Synchronization Delay
#define CFREQ 48000 //

CLKOUT constant for Synchronization Delay

//

76

// Random Macros

//

#define min(a,b) ((2)<(b))?(a):(b))

#define max(a,b) (((2)>(b))?(a):(b))

// Registers which require a

synchronization delay, see section 15.14

// FIFORESET FIFOPINPOLAR

// INPKTEND OUTPKTEND

// EPxBCH:L REVCTL

// GPIFTCB3 GPIFTCB2

// GPIFTCBI1 GPIFTCBO

// EPXFIFOPFH:L
EPxAUTOINLENH:L

// EPXFIFOCFG  EPxGPIFFLGSEL

// PINFLAGSxx  EPxFIFOIRQ

// EPXFIFOIE GPIFIRQ

/I GPIFIE GPIFADRH:L

// UDMACRCH:L  EPxGPIFTRIG

// GPIFTRIG

// Note: The pre-REVE EPxGPIFTCH/L
register are affected, as well...
/I ..these have been replaced by
GPIFTC[B3:B0] registers
#include "fx2sdly.h" // Define

_IFREQ and _CFREQ above this #include



//

// Global Variables

//

volatile BOOL GotSUD;

BOOL Rwuen;

BOOL  Selfpwr;

volatile BOOL Sleep; // Sleep

mode enable flag

WORD pDeviceDscr; // Pointer to
Device Descriptor; Descriptors may be moved

WORD pDeviceQualDscr;

WORD pHighSpeedConfigDscr;

WORD pFullSpeedConfigDscr;

WORD pConfigDscr;

WORD pOtherConfigDscr;

WORD pStringDscr;

//

// Prototypes

//

void SetupCommand(void);

void TD_Init(void);

void TD_Poll(void);

77

BOOL TD_Suspend(void);

BOOL TD_Resume(void);

BOOL DR_GetDescriptor(void);
BOOL DR_SetConfiguration(void);
BOOL DR_GetConfiguration(void);
BOOL DR_SetInterface(void);
BOOL DR_Getlnterface(void);
BOOL DR_ GetStatus(void);

BOOL DR _ClearFeature(void);
BOOL DR_SetFeature(void);

BOOL DR _VendorCmnd(void);

// this table is used by the epcs macro
const char code
EPCS Offset Lookup Table[] =

{

0, //EP10OUT

1, //EP1IN

2, //EP20UT

2, //EP2IN

3, //EP4OUT

3, //EP4IN

4, //EP60OUT

4, // EP6IN

5, //EP8OUT

5, //EP8IN



// macro for generating the address of an
endpoint's control and status register (EPnCS)

#define epcs(EP)
(EPCS_Offset Lookup Table[(EP & 0x7E) | (EP >

128)] + 0xE6A1)

//

// Code

//

// Task dispatcher

void main(void)

{

DWORD i

WORD offset;
DWORD DevDescrlLen;
DWORD j=0;

WORD IntDescrAddr;

WORD ExtDescrAddr;

// Initialize Global States

78

Sleep = FALSE; // Disable
sleep mode

Rwuen = FALSE; // Disable
remote wakeup

Selfpwr = FALSE; // Disable self
powered

GotSUD = FALSE; // Clear

"Got setup data" flag

// Initialize user device

TD_Init();

// ' The following section of code is used
to relocate the descriptor table.

// Since the SUDPTRH and SUDPTRL
are assigned the address of the descriptor

// table, the descriptor table must be
located in on-part memory.

// The 4K demo tools locate all code
sections in external memory.

/I ' The descriptor table is relocated by the
frameworks ONLY if it is found

// to be located in external memory.

pDeviceDscr = (WORD)&DeviceDscr;

pDeviceQualDscr =
(WORD)&DeviceQualDscr;

pHighSpeedConfigDscr =

(WORD)&HighSpeedConfigDscr;



pFullSpeedConfigDscr =
(WORD)&FullSpeedConfigDscr;

pStringDscr = (WORD)&StringDscr;

if (WORD)&DeviceDscr & 0xe000)
{

IntDescrAddr =
INTERNAL DSCR ADDR;

ExtDescrAddr =
(WORD)&DeviceDscr;

DevDescrLen = (WORD)&UserDscr -
(WORD)&DeviceDscr + 2;

for (i = 0; i < DevDescrLen; i++)

*((BYTE xdata *)IntDescrAddr+i) =

0xCD;

for (i = 0; 1 < DevDescrLen; i++)

*((BYTE xdata *)IntDescrAddr+i) =

*((BYTE xdata *)ExtDescrAddr+i);

pDeviceDscr = IntDescrAddr;

offset = (WORD)&DeviceDscr -
INTERNAL DSCR ADDR;

pDeviceQualDscr -= offset;

pConfigDscr -= offset;

pOtherConfigDscr -= offset;

pHighSpeedConfigDscr -= offset;

pFullSpeedConfigDscr -= offset;

pStringDscr -= offset;

79

EZUSB_IRQ_ENABLE(); /
Enable USB interrupt (INT2)
EZUSB_ENABLE_RSMIRQ(); /

Wake-up interrupt

// What is INT2 is for USB & INT4 is
for the Slave FIFOs

INTSETUP |= (bmAV2EN |
bmAV4EN); // Enable INT 2 & 4 autovectoring

//' 1 don't think we care about Setup PIDs
only the Setup data; commented out

// bmSUTOK but we want bmSUDAV.

USBIE |= bmSUDAYV | bmSUTOK |
bmSUSP | bmURES | bnHSGRANT; // Enable

selected interrupts

/I Global interrupt enable. Controls
masking of all interrupts except USB wakeup

// (resume). EA = 0 disables all
interrupts except USB wakeup. When EA =1,
interrupts are

// enabled or masked by their individual
enable bits.
// Enable 8051

EA=1;

interrupts

#ifndef NO_RENUM



// Renumerate if necessary. Do this by
checking the renum bit. Ifit

// is already set, there is no need to
renumerate. The renum bit will

// already be set if this firmware was
loaded from an eeprom.

if({(USBCS & bmRENUM))

{

EZUSB_Discon(TRUE); //

renumerate

}

#endif

// unconditionally re-connect. If we
loaded from eeprom we are

// disconnected and need to connect. If
we just renumerated this

// is not necessary but doesn't hurt
anything

USBCS &=~bmDISCON;

// 'The three LSBs of the Clock Control
Register (CKCON, at SFR location 0x8E) control
the stretch

// value; stretch values between zero and
seven may be used. A stretch value of zero adds

ZEero

80

// instruction cycles, resulting in MOVX
instructions which execute in two instruction
cycles.

CKCON = (CKCON&(~bmSTRETCH))
| FW_STRETCH_VALUE; // Set stretch to 0 (after

renumeration)

// clear the Sleep flag.
Sleep = FALSE;
EZUSB InitI2C();

// Initialize EZ-USB 12C

controller
// Task Dispatcher
while(TRUE) // Main Loop
{
if(GotSUD) // Wait for SUDAV
{
SetupCommand(); // Tmplement

setup command

GotSUD = FALSE; // Clear
SUDAV flag
}
// Poll User Device

// NOTE: Idle mode stops the
processor clock. There are only two
// ways out of idle mode, the

WAKEUP pin, and detection of the USB



// resume state on the USB bus. The
timers will stop and the
// processor will not wake up on any
other interrupts.
if (Sleep)
{
if(TD_Suspend())

{

Sleep = FALSE; // Clear
the "go to sleep"” flag. Do it here to prevent any
race condition between wakeup and the next sleep.
do
{

EZUSB_Susp(); // Place

processor in idle mode.
}
while('Rwuen &&
EZUSB EXTWAKEUP());
// Must continue to go back into
suspend if the host has disabled remote wakeup
// *and* the wakeup was caused

by the external wakeup pin.

// 8051 activity will resume here
due to USB bus or Wakeup# pin activity.

EZUSB_Resume(); // If source is
the Wakeup# pin, signal the host to Resume.

TD_Resume();

81

}

TD Poll();

// Device request parser

void SetupCommand(void)

{

void *dscr_ptr;

switch(SETUPDAT[1])

{

case SC_GET_DESCRIPTOR:

/I #** Get Descriptor

if(DR_GetDescriptor())

switch(SETUPDAT(3])
{
case GD_DEVICE: //
Device
SUDPTRH =
MSB(pDeviceDscr);
SUDPTRL =
LSB(pDeviceDscr);
break;
case
GD _DEVICE QUALIFIER: // Device
Qualifier
SUDPTRH =
MSB(pDeviceQualDscr);



SUDPTRL =
LSB(pDeviceQualDscr);
break;
case GD_CONFIGURATION:
// Configuration
SUDPTRH =
MSB(pConfigDscr);
SUDPTRL =
LSB(pConfigDscr);
break;
case
GD OTHER SPEED CONFIGURATION: //
Other Speed Configuration
SUDPTRH =
MSB(pOtherConfigDscr);
SUDPTRL =
LSB(pOtherConfigDscr);
break;
case GD_STRING: /!
String
if(dscr_ptr = (void
*)EZUSB_GetStringDscr(SETUPDAT][2]))
{
SUDPTRH = MSB(dscr_ptr);
SUDPTRL = LSB(dscr_ptr);
H
else
EZUSB STALL EPO(); //

Stall End Point 0

82

break;
default: // Invalid request
EZUSB STALL EPO(); //
Stall End Point 0
}
break;
case SC_GET_INTERFACE:
/] ¥%* Get Interface
DR_GetInterface();
break;
case SC_SET INTERFACE:
/] *¥%* Set Interface
DR_Setlnterface();
break;
case SC_SET CONFIGURATION:
/I #** Set Configuration
DR _SetConfiguration();
break;
case SC_GET_CONFIGURATION:
/I #** Get Configuration
DR_GetConfiguration();
break;
case SC_GET_STATUS: I
*#% Get Status
if(DR_GetStatus())
switch(SETUPDATI0])
{
case GS_DEVICE: /!

Device



EPOBUF[0] = (BYTE)Rwuen
<< 1) | (BYTE)Selfpwr;
EPOBUEF[1] = 0;
EPOBCH = 0;
EPOBCL =2;
break;
case GS_INTERFACE: /
Interface
EPOBUF[0] = 0;
EPOBUEF[1] = 0;
EPOBCH = 0;
EPOBCL =2;
break;
case GS_ENDPOINT: /I
End Point
EPOBUF[0] = *(BYTE xdata
*) epcs(SETUPDATI[4]) & bmEPSTALL;

EPOBUF[1] = 0;

EPOBCH = 0;
EPOBCL =2;
break;
default: // Invalid
Command
EZUSB STALL EPO(); //
Stall End Point 0

}

break;
case SC_CLEAR _FEATURE:

/] ¥** Clear Feature

&3

if(DR_ClearFeature())
switch(SETUPDATI0])
{
case FT_DEVICE: /!
Device
if(SETUPDAT[2] == 1)
Rwuen = FALSE; //
Disable Remote Wakeup
else
EZUSB STALL EPO(); //
Stall End Point 0
break;
case FT_ENDPOINT: /!
End Point
if(SETUPDAT[2] == 0)
{
*(BYTE xdata *)

epcs(SETUPDAT([4]) &= ~bmEPSTALL;

EZUSB RESET DATA TOGGLE(
SETUPDATI[4] );
H
else
EZUSB STALL EPO(); //
Stall End Point 0

break;

break;



case SC_SET FEATURE:
/] ¥** Set Feature

if(DR_SetFeature())

switch(SETUPDATI[0])
{
case FT_DEVICE: /!
Device
if(SETUPDAT[2] == 1)
Rwuen=TRUE; // Enable
Remote Wakeup

else if(SETUPDAT[2] == 2)
// Set Feature Test Mode.
The core handles this request. However, it is
// necessary for the firmware
to complete the handshake phase of the
// control transfer before the
chip will enter test mode. It is also
// necessary for FX2 to be
physically disconnected (D+ and D-)
// from the host before it will
enter test mode.
break;
else
EZUSB STALL EPO(); //
Stall End Point 0

break;

84

case FT_ENDPOINT: /!
End Point
*(BYTE xdata *)

epcs(SETUPDAT[4]) = bmEPSTALL;

break;
}
break;
default: /I *%* Invalid
Command
if(DR_VendorCmnd())
EZUSB STALL EPO(); /
Stall End Point 0
H

/I Acknowledge handshake phase of
device request

EPOCS |= bmHSNAK;

// Wake-up interrupt handler

void resume _isr(void) interrupt
WKUP_VECT

{

EZUSB CLEAR RSMIRQ();



APPENDIX B

CODE OF THE MAIN FORM:

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;
using System.Diagnostics;

using System.IO;

using CyUSB;

using System.Threading;

namespace CyControl

{

public partial class Form1 : Form

{

USBDeviceList usbDevices;

85



CyUSBDevice myDevice;

CyUSBEndPoint curEndpt;
App_PnP_Callback evHandler;

byte AdmDev = CyConst. DEVICES CYUSB;
string dataCaption;
bool progOK = true;

public string FileNameToBeSaved=null;

bool ChangeAxColor = false;
bool ChangeGrColor = false;

public ColorDialog AxCh; //To make the dialog result public

public ColorDialog GrCh; //They will used in click menu items

public int keeptime, keepvolt;

public float timeScale = 1, voltScale = 1; //Useless scales.

public int bytes = 512; /1# of bytes for one reading.
public byte[] buffer = new byte[512];
public bool bXferCompleted = false;

int counter = 0;

public Color buttonColorl = SystemColors.ActiveCaption;
/[For easy modification of the button colors.

public Color buttonColor2 = Color.BlanchedAlmond;
I/Will be used.

public Color buttonColor3 = Color.BurlyWood;

86



System.Windows.Forms.Timer MyTimer = new System. Windows.Forms.Timer();

public Form1()
{
InitializeComponent();
evHandler = new App PnP_Callback(PnP_Event Handler);
usbDevices = new USBDeviceList(AdmDev, evHandler);
myDevice = (CyUSBDevice)usbDevices[0x04B4, 0x1004];
//Get the first device having VendorID == 0x04B4 and ProductlD ==0x1004

if (myDevice == null)

{
progOK = false;
myDevice = (CyUSBDevice)usbDevices[0x04B4, 0x8613];
/IConnect the device part which will be programmed.
/IVendorID == 0x04B4 and ProductID == 0x8613
if (myDevice != null)
{

MessageBox.Show("Cypress connected
now."+Environment.NewLine+"But it should be programmed before usage!" +
Environment.NewLine + "Program the device with 'digos.hex' file", "Info",
MessageBoxButtons.OK, MessageBoxIcon.Information);

return;

}

Form1_ Resize(this, null);

87



public void PnP_Event Handler(IntPtr pnpEvent, IntPtr hRemovedDevice)

{
if (pnpEvent.Equals(CyConst. DBT DEVICEREMOVECOMPLETE))

{
usbDevices.Remove(hRemovedDevice);  //Warn when device is removed.
MessageBox.Show("Cypress device removed.", "Info",

MessageBoxButtons.OK, MessageBoxIcon.Information);

if (pnpEvent.Equals(CyConst. DBT DEVICEARRIVAL))
{
usbDevices.Add();  //Warn when device id added.
MessageBox.Show("Cypress device successfully programmed!" +
Environment.NewLine + "Plot menu is enabled!!!", "Info", MessageBoxButtons.OK,
MessageBoxIcon.Information);
myDevice = (CyUSBDevice)usbDevices[0x04B4, 0x1004];
if (myDevice!=null)
progOK = true;
/INow, programmed part of the device is connected.Make progOK=true.

}

private void Form1 FormClosing(object sender, FormClosingEventArgs ¢)

{

if (usbDevices != null) usbDevices.Dispose();

/[Clean up memory, clean the USB devices added to memory.

}

88



private void AboutMenultem_Click(object sender, EventArgs ¢)

{
MessageBox.Show(Util. Assemblies, Text);

//Show info about the program.

private void Periodic_Read(object sender, System.EventArgs ¢)

{
curEndpt = myDevice.EndPointOf(0x86);

/[Catch the endpoint of the microcontroller.
CyBulkEndPoint bulkEpt = curEndpt as CyBulkEndPoint;

//Define the endpoint of the device.

if (curEndpt == null)
{

MessageBox.Show("Be sure that 'digos' dis connected.");
//Warn when the device is disconnected.

return;

bXferCompleted = bulkEpt.XferData(ref buffer, ref bytes);

//Send a message when data transfer is completed.

}

private void GetData()//Gets one point to plot.

{

89



MyTimer.Tick += new EventHandler(Periodic Read)
/[Each tick,each fixed time interval elapsed, call the Periodic_Read to get info from
the device.
MyTimer.Interval = 1;
/[For now, time interval is fixed at the minimum time interval the Timer function

permit.

curEndpt = myDevice.EndPointOf(0x86);

/[Catch the endpoint of the microcontroller.

CyBulkEndPoint bulkEpt = curEndpt as CyBulkEndPoint;

//Define the endpoint of the device.

curEndpt. TimeOut = 2000;

/N1 there is no response until a fixed time elapsed, warn the user about the problem.

if (curEndpt == null)
{
MessageBox.Show("Be sure that 'digos' dis connected.");

return;

/[This part is to fill the info output text box to be informed about the data coming.
/IWill be deleted at the end.

BuildDataCaption();

OutputBox.Text += dataCaption;

OutputBox.SelectionStart = OutputBox.Text.Length;

OutputBox.ScrollToCaret();

90



if (bulkEpt != null)
{
bXferCompleted = false;//for each 512.
bXferCompleted = bulkEpt. XferData(ref buffer, ref bytes);
//Send a message when data transfer is completed.
MyTimer.Start();

//Start the timer to konuw how many seconds elapsed.

if (bXferCompleted)
graphControll.ReadData(ref buffer, bytes);
//buf and bCnt sent
//When the flag for data transfer complete stage is enabled,

//send the data to ReadData function for plotting.

}

/[For isynchoronous data acquisition.
CylsocEndPoint isocEpt = curEndpt as CylsocEndPoint;
if (isocEpt != null)

bXferCompleted = isocEpt. XferData(ref buffer, ref bytes);

DisplayInfoWriteFile(buffer, bytes);
/[To fill the output text file with the data coming.

/ITo enable the data save function.

private void BuildDataCaption()

91



StringBuilder dataStr = new StringBuilder();

switch (curEndpt.Attributes)
{
case 0: dataStr.Append("CONTROL ");
break;
case 1: dataStr.Append("ISOC ");
break;
case 2: dataStr.Append("BULK ");
break;
case 3: dataStr.Append("INTERRUPT ");
break;

if (curEndpt.bln)
dataStr.Append("IN transfer ");
else

dataStr.Append("OUT transfer ");

dataCaption = dataStr.ToString();

public void DisplayInfoWriteFile(byte[] buf, int bCnt)

{
StringBuilder dataStr = new StringBuilder();

",
b

string resultStr =

if (bCnt > 0)

92



resultStr = dataCaption + "completed\r\n";
else

resultStr = dataCaption + "failed\r\n";

//When save file item clicked in the menu, this will be activated.
if(FileNameToBeSaved!=null)
using(StreamWriter myWriter = new StreamWriter(FileNameToBeSaved))

{
for(int j=0;j<bCnt;j++)
myWriter. WriteLine((int)buf[j]);

/[Prepare the text file which will be written in the output text file.
for (int i = 0; 1 < bCnt; i++)
{
if ((1 % 16) == 0) dataStr.Append(string. Format("\r\n {0: X4} ", 1));
dataStr.Append(string.Format(" {0:X2}", buf[i]));

/[Fill the output text on the form.
OutputBox.Text += dataStr.ToString() + "\r\n" + resultStr + \r\n";
OutputBox.SelectionStart = OutputBox.Text.Length;

OutputBox.ScrollToCaret();
;

private void Form1 Resize(object sender, EventArgs e)

{

93



bool bControlEpt = ((curEndpt != null) && (curEndpt.Attributes == 0));
int oBoxAdj = bControlEpt ? 200 : 100;
OutputBox.SetBounds(0, 0, 5, XferTab.Size.Height - o0BoxAdj);

private void exitToolStripMenultem_Click(object sender, EventArgs e)

{
Close();

/[Exit the application.

private void ProgE2Item_Click(object sender, EventArgs e)

{//Function to program the X2 device using the .hex file.

CyFX2Device fx2 = myDevice as CyFX2Device;

/[Take the adress of the FX2 device using the adress of the connected USB device.

string tmpFilter = FOpenDialog.Filter;
if (sender == ProgE2Item)
FOpenDialog.Filter = "Hex Files (*.hex) | *.hex";

if ((fx2 !=null) && (FOpenDialog.ShowDialog() == DialogResult.OK))

{
bool bResult = false;

if (sender == ProgE2Item)
{

94



StatLabel. Text = "Programming EEPROM of " + fx2.FriendlyName;

Refresh();
bResult = fx2.LoadEEPROM(FOpenDialog.FileName);

}

else

{
StatLabel. Text = "Programming RAM of " + fx2.FriendlyName;

Refresh();
bResult = fx2.LoadRAM(FOpenDialog.FileName);

}

StatLabel. Text = "Programming " + (bResult ? "succeeded." : "failed.");

Refresh();

FOpenDialog.Filter = tmpFilter;

private void Haltltem Click(object sender, EventArgs e)

{

/[Call this function to halt the data write process.

CyFX2Device fx2 = myDevice as CyFX2Device;

if (fx2 !=null)
if (sender == Haltltem)
fx2.Reset(1);

else

95



fx2.Reset(0);

private void graphControll Load(object sender, EventArgs e)

{
hideAllGroupBoxes();

/[for easy color change of the buttons
btnAcquire.BackColor = buttonColorl;
btnCursor.BackColor = buttonColorl;
btnDisplay.BackColor = buttonColor1;
btnMeasure.BackColor = buttonColorl;
btnResume.BackColor = buttonColorl;

btnStop.BackColor = buttonColor1;

private void AcNormal Click(object sender, EventArgs e)
{
graphControl1.Clear = false;
graphControl1.StartApp = true;
GetData();

//Get the data from the device.
¥

public void hideAllGroupBoxes()

96



//Hide all of the groupboxes.
{
groupBoxAcquire.Hide(); //menu
groupBoxCursor.Hide(); //menu
groupBoxDisplay.Hide(); //menu
groupBoxDilnformation.Hide();  //comenu
groupBoxAcInformation.Hide();  //comenu

groupBoxCulnformation.Hide();  //comenu

groupBoxGridAxis.Hide(); /[submenu
groupBoxScale.Hide(); //submenu
groupBoxDiTypee.Hide(); /lcosubmenu

groupBoxDiAccumulate.Hide();  //cosubmenu
groupBoxMeOnelInformation.Hide(); /lcomenu

groupBoxMeTwolnformation.Hide(); /lcomenu

private void btnAcquire Click(object sender, EventArgs ¢)
{
hideAllGroupBoxes();
/[Hide previously used groupboxes.
groupBoxAcquire.Show();
/IMake the acquire group visible.

groupBoxAcInformation.Show();

private void btnCursor_Click(object sender, EventArgs e)

{

97



hideAllGroupBoxes();
/[Hide previously used groupboxes.

groupBoxCursor.Show();
//Make the cursor group visible.

groupBoxCulnformation.Show();

private void btnDisplay Click(object sender, EventArgs e)
{
hideAllGroupBoxes();
/[Hide previously used group boxes.
groupBoxDisplay.Show();
/IMake the display group visible
groupBoxDilnformation.Show();

/[Simultaneously show the info box

}

private void DiGridAxis_Click(object sender, EventArgs e)
{
hideAllGroupBoxes();
/[Hide previously used group boxes.
groupBoxDisplay.Show();
groupBoxGridAxis.Show();

//IShow submenu of comenu info of display

}

98



private void DiScale Click(object sender, EventArgs e)
{
hideAllGroupBoxes();
/[Hide previously used group boxes.
groupBoxDisplay.Show();
groupBoxScale.Show();

//Show submenu of comenu info of display

}

private void DiRefresh Click(object sender, EventArgs e)
{

graphControl1.Clear=true;

Invalidate(); /[Activate the OnPaint function.

}

private void checkBoxShowAxis CheckedChanged(object sender, EventArgs e)
{
if (ChangeAxColor)
graphControl1.AxPenColorStatus(AxCh.Color);

/lNmmedeately change the color of the axis pen, send the realted data.

graphControl1.SetAxisStatus(checkBoxShowAxis.Checked);

//Send the data that shows the checkbox status change.

private void checkBoxShowGrid CheckedChanged(object sender, EventArgs e)

99



if (ChangeGrColor)
graphControl1.GrPenColorStatus(GrCh.Color);

/llmmedeately change the color of the grid pen, send the realted data.

graphControl1.SetGridStatus(checkBoxShowGrid.Checked);

//Send the data that shows the checkbox status change.

private void DiType_ Click(object sender, EventArgs ¢)
{
hideAllGroupBoxes();
/[Hide previously used group boxes.
groupBoxDisplay.Show();

groupBoxDiTypee.Show();

private void DiSum_Click(object sender, EventArgs e)
{
hideAllGroupBoxes();
/[Hide previously used group boxes.

groupBoxDisplay.Show();

100



private void checkedListBox1 SelectedIndexChanged(object sender,EventArgs e)
{
keeptime = checkedListBox1.SelectedIndex;
/lUncheck other indices
for (int i = 0; 1 < checkedListBox1.Items.Count; i++)
checkedListBox1.SetltemChecked(i, false);
checkedListBox1.SetltemChecked(keeptime, true);
/IKeep selected index.
scaling();

//Send the necessary scaling values to the related places.

}

private void checkedListBox2 SelectedIndexChanged(object sender, EventArgs ¢)
{
keepvolt = checkedListBox2.SelectedIndex;
/lUncheck other indices
for (int i = 0; i < checkedListBox2.Items.Count; i++)
checkedListBox2.SetltemChecked(i, false);
checkedListBox2.SetltemChecked(keepvolt, true);
/IKeep selected index.
scaling();

//Send the necessary scaling values to the related places.

}

private void scaling()

{
graphControl1.DispType=false;

101



if (comboBox1.SelectedIndex == 0)

{
graphControl1.DispType=true;

switch (checkedListBox1.SelectedIndex)
//Set the scale, will be editted acc. to the length of the table.
{

case 0:
timeScale = 2;
break;

case 1:
timeScale = 3;
break;

case 2:
timeScale = 4;
break;

case 3:
timeScale = 5;
break;

case 4:
timeScale = 6;
break;

case 5:
timeScale = 7;
break;

case 6:

timeScale = §;

102



break;

case 7:
timeScale = 9;
break;

case 8:
timeScale = 10;
break;

case 9:
timeScale = 11;
break;

case 10:
timeScale = 12;
break;

case 11:
timeScale = 13;
break;

case 12:
timeScale = 14;
break;

case 13:
timeScale = 15;
break;

case 14:
timeScale = 16;
break;

case 15:
timeScale = 17;
break;

case 16:

103



timeScale = 18;
break;

case 17:
timeScale = 19;

break;

switch (checkedListBox2.SelectedIndex)
{

case 0:
voltScale = 2;
break;

case 1:
voltScale = 3;
break;

case 2:
voltScale = 4;
break;

case 3:
voltScale = 5;
break;

case 4:
voltScale = 6;
break;

case 5:
voltScale = 7;
break;

case 6:

104



voltScale = §;
break;

case 7:
voltScale = 9;
break;

case 8:
voltScale = 10;
break;

case 9:
voltScale = 11;
break;

case 10:
voltScale = 12;
break;

case 11:
voltScale = 13;
break;

case 12:
voltScale = 14;
break;

case 13:
voltScale = 15;
break;

case 14:
voltScale = 16;
break;

case 15:
voltScale = 17;

break;

105



case 16:
voltScale = 18;
break;

case 17:
voltScale = 19;

break;

graphControll.TimeScale = timeScale;

//Send the scale values to the graphcontrol part.
graphControl1.VoltScale = voltScale;
Invalidate();

//Send interrupt to the OnPaint function.

}

private void comboBox1_SelectedIndexChanged(object sender, EventArgs e)
{
if (comboBox1.SelectedIndex == 0)
/IVector draw mode ON
graphControl1.DispType=true;
else if (comboBox1.SelectedIndex == 1)
/IVector draw mode OFF
graphControl1.DispType=false;
Invalidate();

//Send interrupt to the OnPaint function.

}

106



private void btnClear Click(object sender, EventArgs e)
{
graphControll.Clear = true;
/IClear the screen.
Invalidate();

//Send interrupt to the OnPaint function.

}

private void btnFreeze Click(object sender, EventArgs e)
{
graphControl1.freeze = true;
/IFreeze the data flow on the screen.

}

private void btnResume_Click(object sender, EventArgs e)

{

graphControl1.freeze = false;

/IActivate the data flow on the screen.

private void btnStop_Click(object sender, EventArgs e)
{

//Stop the data acquisition and the data flow on the screen.

107



CODE OF THE GRAPH CONTROL PART

using System;

using System.Collections.Generic;
using System.ComponentModel;

using System.Drawing;

using System.Data;

using System.Text;

using System.Windows.Forms;

using System.Runtime.InteropServices;

using System.IO;

namespace digos2

{
public partial class GraphControl : UserControl

{

public bool ShowGrid = true;

//Default values of showgrid

108



public bool ShowAxis = false;
/fand show axis are off.

public bool StartApp = false;

public bool Clear = false;

public bool UpScale = false;

public bool DispType = false;

/[Vector or dot drawing

public bool freeze = false;

long currentDot = 0;

int timeAx;

int myIndex;

public int NumberOfPoints=600;
public float TimeScale=1,VoltScale=1;

/[For scaling Real scales

public struct CoOrds

/[Decleration of the struct type for the coordinates.

{
public float x, y;

public CoOrds(float p1, float p2)

109



Pen MyAxPen = new Pen(Color.Azure);
Pen MyGrPen = new Pen(Color.Lime);
Pen MyDrawPen = new Pen(Color.Red, 2);
CoOrds[] MyData = new CoOrds[600];

//Holds all data for one screen view.

public GraphControl()
{

InitializeComponent();

public void SetGridStatus(bool Status)

{
ShowGrid = Status;

Invalidate();

public void SetAxisStatus(bool Status)

{

ShowAXxis = Status;

Invalidate();

110



public void AxPenColorStatus(Color AxPenColor)

{
MyAxPen.Color = AxPenColor;

public void GrPenColorStatus(Color GrPenColor)

{
MyGrPen.Color = GrPenColor;

public void ReadData(ref byte[] buf, int bCnt)
{
/[Takes one bulk(512 items),writes its average to the last point, shifts the graph to the
left.

mylndex = 1;//Since we use "mylIndex-1" in the array.
while (myIndex < NumberOfPoints)
{

currentDot = 0;

//Since wee add the buffer items up, we start from 0 for each cycle.

for (int 1 = 0; 1 < bCnt; 1+=8)
//Get the average of some of the data of 1024 bytes => 512 item.
currentDot = currentDot + (480 * (buf]i] / 255));
//480/FF:Normalize the data.

111



MyData[mylIndex - 1].y = MyData[myIndex].y;
//Shift the values in the array to the left.
mylIndex++;

//Go along the array.

}
MyData[NumberOfPoints].y = currentDot/128;

//Our new point.
Invalidate();

/[call the OnPaint method to refresh the graph.

}

protected override void OnPaint(PaintEventArgs e)

{

base.OnPaint(e);

e.Graphics.TranslateTransform(0, this.Height );

e.Graphics.ScaleTransform(1, -1);//Translate the origin of the area

if (UpScale)

StartApp = true;

if (Clear)

StartApp = false;

if (ShowGrid)

112



/[Horizontal Lines

e.Graphics.DrawLine(MyGrPen, new PointF(0, 0 * this.Height / 8), new
PointF(this.Width, 0 * this.Height / 8));

e.Graphics.DrawLine(MyGrPen, new PointF(0, 1 * this.Height / 8), new
PointF(this.Width, 1 * this.Height / 8));

e.Graphics.DrawLine(MyGrPen, new PointF(0, 2 * this.Height / 8), new
PointF(this.Width, 2 * this.Height / 8));

e.Graphics.DrawLine(MyGrPen, new PointF(0, 3 * this.Height / 8), new
PointF(this.Width, 3 * this.Height / 8));

e.Graphics.DrawLine(MyGrPen, new PointF(0, 5 * this.Height / 8), new
PointF(this.Width, 5 * this.Height / 8));

e.Graphics.DrawLine(MyGrPen, new PointF(0, 6 * this.Height / 8), new
PointF(this.Width, 6 * this.Height / 8));

e.Graphics.DrawLine(MyGrPen, new PointF(0, 7 * this.Height / 8), new
PointF(this.Width, 7 * this.Height / 8));

e.Graphics.DrawLine(MyGrPen, new PointF(0, 8 * this.Height / 8), new

PointF(this.Width, 8 * this.Height / 8));

IIVertical Lines

e.Graphics.DrawLine(MyGrPen, new PointF(0 * this.Width / 10, 0), new
PointF(0 * this.Width / 10, this.Height));

e.Graphics.DrawLine(MyGrPen, new PointF(4 * this.Width / 10, 0), new
PointF(4 * this.Width / 10, this.Height ));

e.Graphics.DrawLine(MyGrPen, new PointF(3 * this.Width / 10, 0), new
PointF(3 * this.Width / 10, this.Height ));

e.Graphics.DrawLine(MyGrPen, new PointF(2 * this.Width / 10, 0), new

PointF(2 * this.Width / 10, this.Height ));

113



e.Graphics.DrawLine(MyGrPen, new PointF(1 * this.Width / 10, 0), new

PointF(1 * this.Width / 10, this.Height ));

e.Graphics.DrawLine(MyGrPen, new PointF(6 * this.Width / 10, 0), new
PointF(6 * this.Width / 10, this.Height ));

e.Graphics.DrawLine(MyGrPen, new PointF(7 * this.Width / 10, 0), new
PointF(7 * this.Width / 10, this.Height ));

e.Graphics.DrawLine(MyGrPen, new PointF(8 * this.Width / 10, 0), new
PointF(8 * this.Width / 10, this.Height ));

e.Graphics.DrawLine(MyGrPen, new PointF(9 * this.Width / 10, 0), new
PointF(9 * this.Width / 10, this.Height ));

e.Graphics.DrawLine(MyGrPen, new PointF(10 * this.Width / 10, 0), new

PointF(10 * this.Width / 10, this.Height ));

IIAXxis Lines

e.Graphics.DrawLine(MyGrPen, new PointF(0, 4 * this.Height / 8), new
PointF(this.Width, 4 * this.Height / 8));

e.Graphics.DrawLine(MyGrPen, new PointF(5 * this.Width / 10, 0), new

PointF(5 * this.Width / 10, this.Height));

if (ShowAxis)

{
e.Graphics.DrawLine(MyAxPen, new Point(this. Width / 2, 0), new

Point(this.Width / 2, this.Height));

114



e.Graphics.DrawLine(MyAxPen, new Point(0, this.Height / 2), new
Point(this.Width, this.Height / 2));

if (StartApp & DispType)
for (timeAx = 0; timeAx < NumberOfPoints;timeAx++ )
e.Graphics.DrawEllipse(MyDrawPen, timeAx / TimeScale,
(MyData[timeAx].y) / VoltScale, 1, 1);

if (StartApp)
for (timeAx = 0; timeAx < NumberOfPoints-1; time Ax++)
/[connect the points
e.Graphics.DrawLine(MyDrawPen, timeAx / TimeScale,
MyData[timeAx].y / VoltScale, (timeAx + 1) / TimeScale, MyData[timeAx + 1].y /
VoltScale);

115



APPENDIX C

SCHEMATIC

116



OPABSY

[
-INR

™™ 00w my)

+

+INP L

L]

O

=

=) IC1
LI T

CAeP+  0sc

2 uc

[ 81371 o SO

DC-to-DC
Converter

Cap-

13
u

[y

%

GMD

Amplifier
With Gain

117



23

C

0.

GHD
—_=

+Hihw

1u
G
2

AD Converter

+Hi'ly

R&
1k

RE

118

=

Amplifier T o |2
THEH H DM 2 { pvoo an 2
] =
WIN- Ve [ o wREF [
LI REFES |22
sl o - REFEF |-2*
+ = L4 mooe 2
WCE+ woe- B O 1w REFTF |22
! 7 * E
M = == REFTS
W.ﬁk
WOUTH  wouT- O e L mem -
[ ) szHpz |2
: Nie REFSENSE [
2] S
3 LT T oe &
e
ad LU T o
o
—=
(=] L=
_ 2 fe
G GHD P -
(]
4]
=/ |
Rl |
=

=



BIBLIOGRAPHY

[1] http://en.wikipedia.org/wiki/USB

[2]http://developer.apple.com/documentation/DeviceDrivers/Conceptual/USBBook/U

SBOverview/chapter 2_section_3.html

[3] www.usb.org/developers/whitepapers/usb 20t.pdf

[4] http://www.lvr.com/usbcenum.htm

[5] http://www.beyondlogic.org/usbnutshell/usb5.htm

[6] http:// www.beyondlogic.org/usbnutshell/usb4.htm#Control

119



