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ABSTRACT 

In this paper, a test pattern generation system for 
combinational circuits including test pattern 
generator, fault simulator, and test set compactor is 
introduced. The techniques that improve test pattern 
generation process are used in an implemented test 
pattern generation system called COM_TEST. The 
results of COM_TEST on ten circuits are given.  
 

I. INTRODUCTION 
As the complexity of VLSI circuits are increasing, the 
problem of test pattern generation is becoming more 
important. Since the scan-based design for testability 
techniques are increasingly used in VLSI circuits, test 
pattern generation for combinational circuits is getting 
even more important. The test pattern generation problem 
can be viewed as a finite space search problem of finding 
appropriate logic assignments to the primary inputs such 
that the given fault is detected [1]. Since the size of the 
search space is exponential in the number of primary 
inputs and the test generation problem is proven to be NP-
complete [2], it is very important to find efficient methods 
to speed up test generation process. In order to find a 
solution in the search space, ATPG (Automatic Test 
Pattern Generation) algorithms usually build a decision 
tree and apply a backtracking search procedure. This 
decision tree is usually divided up into one solution area 
and into several non-solution areas and the aims of ATPG 
algorithms are to minimize the unidentified non-solution 
areas and avoid all non-solution areas during the search 
process. These aims can be achieved by special 
techniques that optimize the pruning of the search space, 
reduce the number of backtracks, recognize conflicts as 
early as possible [3]. In this paper the methods that reduce 
the size of search space and number of backtracks in the 
search are introduced and an ATPG system is presented. 
The rest of the paper is organized as follows. Section II 
gives the problem definition and ATPG system is 
introduced in Section III. In Section IV, V, and VI, test 
generation method, fault simulation methods and test set 
compaction methods are given respectively. Experimental 
results are given in Section VII and finally Section VIII 
presents conclusions. 

II. PROBLEM REPRESENTATION 
The problem of deterministically generating a test pattern 
for a given stuck at fault (s_a_v, vε{0,1}) is to find a 
combination of assignments of logic values (0 or 1) to the 
primary inputs which simulate the given fault (line 
justification) and monitor the given fault at at least one of 
the primary outputs (fault propagation) [3]. The task of a 
deterministic test pattern generator is to generate a test 
pattern or identify the fault as untestable (redundant) for 
every fault in the fault list and form a test set for testable 
faults. Since the search in finding a test pattern consumes 
unacceptable amounts of computation time, an aborting 
criterion is used in all test generators. If the search for a 
given fault could not be completed, the fault is identified 
as aborted [4]. 

 
III. TEST PATTERN GENERATION SYSTEM 

A deterministic ATPG system called COM_TEST for 
single stuck at faults in combinational circuits that include 
primitive gates, is implemented as a computer program 
using MATLAB. COM_TEST is composed of test pattern 
generator, critical path tracing based fault simulator, 
redundancy fault simulator, and test set compactor.  
 
The test pattern generator is based on structural methods. 
It uses the single stuck at fault model and the five-valued 
logic alphabet containing 0 (0/0), 1 (1/1), X (don’t care, 
unidentified), D (1/0), D (0/1) values (a/b, “a” denotes 
the value in unfaulty circuit and “b” denotes the value in 
faulty circuit). It uses the observability and controllability 
values given in SCOAP [5] to guide the search process. 
Direct implication, forward and backward implications, is 
used as an implication method to find uniquely 
determined values, and to determine inconsistency. It uses 
a recursive unique sensitization method based on the 
method proposed in FAN [6] algorithm.  
 
As a test pattern is generated for a given fault, critical path 
tracing based fault simulator [7] is used to find the faults 
in the fault list that are detected by this test pattern. When 
a fault is identified as an untestable fault, redundancy fault 
simulator is used to find other untestable faults in the fault 



list with identified untestable fault. By doing so, speeding 
up the test pattern generation process is aimed. 
 
When test pattern generation is completed, test set 
compactor that is based on the method proposed in 
COM_TEST, is used to find a test set that contains a 
minimum number of test pattern. So, easing of testing 
VLSI circuits with small amount of test pattern and 
storage requirement is achieved. 

 
IV. TEST PATTERN GENERATION 

Test pattern generation is cone-oriented [8] where a cone 
contains all the paths from the fault to a primary output. 
Test pattern generation for a stuck at fault is composed of 
fault injection, fault propagation, and line justification 
phases. During test pattern generation, necessary and 
optional assignments are made and all line values must be 
consistent. Consistency is controlled during direct 
implication. In fault propagation phase, another control 
level is X-path check. A cone passes X-path check 
control, if there is at least one path starting from the faulty 
line to the end of the cone (a primary output) where all 
lines have X value. Whenever one of these control levels 
fail, there exists a conflict. Before starting test generation, 
the levels of lines in the circuit, 0 and 1 controllability 
values of the lines, and paths of the lines to the primary 
outputs (cones) with observability values are obtained. 
 
With given f s_a_v fault, initially fault injection phase is 
applied. In this phase, f = v assignment is made, direct 
implication is applied and fault value is inserted to the 
circuit. In fault propagation phase, a cone is selected 
among the cone list according to minimum observability 
values. By doing so, completing this phase with a 
minimum number of assignment is aimed. Unique 
sensitization method is applied to find necessary 
assignments for fault propagation by finding dominators 
in the selected cone. Since a dominator is a bottleneck in 
the circuit that the fault effect must be passed through, a 
gate which has a dominator as an output, must be 
sensitized according to the fault [6]. In application of the 
unique sensitization method, X-path check control is 
made and the cone is reduced to a structure containing the 
paths that pass X-check control recursively. If there is a 
conflict, selected cone is rejected and another cone is 
selected if there is any. Assume a circuit has a g s_a_0 
fault and fault injection phase is applied as given in Figure 
1.  

Figure 1. A combinational circuit with g s_a_0 fault 
 

Line g has three paths, given in bold, g-h-m-s-v, g-i-n-q-t-
v, g-i-n-r-u-v, and a dominator, v. In this condition, there 
is not any necessary assignment to be made. Since the 
first path of the cone fails to pass X-path check control, 
this path is removed from the cone and the new cone is 
formed with g-i-n-q-t-v, g-i-n-r-u-v as paths, and n, v as 
dominators. By making necessary assignments, j=1 and 
s=0, the second path of the cone fails to pass X-check 
control. This path is also removed from the cone, and the 
cone has g-i-n-q-t-v path and n, t, and v dominators. In 
this condition, p=1 assignment is made. Additionally, 
fault effect is reached to the primary output with 
consistency as shown in Figure 2. Since there is no 
unjustified gates, abcdp=11111 is determined as a test 
pattern for g s_a_0 fault. 

Figure 2. Application of unique sensitization method 
 
If the fault effect is not reached to a primary output, OR 
decision tree [1] is constituted to complete fault 
propagation. OR decision tree’s node is the line that is a 
input of a gate contains a unidentified valued output and 
at least one faulty valued input, and the line that is in a 
path which passes X-path check control. The edge of this 
node is a decision that is made to approach the faulty 
value one level higher to a primary output. In OR decision 
tree, at any time only one node and its decision are 
considered. Order in considering nodes is determined by 
the level of lines in the circuit and order in making 
decisions is determined by controllability value of the 
lines, if there are more than one node and decision 
respectively. When a value is assigned to a line, direct 
implication is applied to find uniquely determined values. 
After applying direct implication, X-path check control is 
made. If a conflict occurs, the decision that is made for 
the current node is rejected and the other decision is made 
if there is any. If there is not, current node is removed 
from the OR decision tree. This progress continues until a 
fault effect is reached to a primary output or decision tree 
is exhausted. When the decision tree is exhausted, another 
cone in the cone list is selected for fault propagation if 
there is any. When a fault effect is reached to a primary 
output, line justification phase is applied. Suppose a 
circuit has a e s_a_1 fault and fault injection and unique 
sensitization phases are applied as given in Figure 3.   
 
Fault propagation using OR decision tree is based on 
multiple path fault propagation method. In constituting 
OR decision tree for e s_a_1 fault, initially i and j lines 
are determined as to be a node. Line j is located in OR 
decision tree as a root node and its decision is considered. 



 
Figure 3. A combinational circuit with e s_a_1 fault 
 
Decisions that are considered, are categorized as the ones 
that carry and do not carry the fault effect from input to 
output of the gate. The decision that carries the fault effect 
to output for node j is f=0 and g=0. The decisions that do 
not carry the fault effect to output for node j are f=1 and 
g=X, and f=X and g=1. So, searching in OR decision tree 
with smaller number of decisions is achieved. Initial 
decisions for a node are the ones that carry the fault effect 
from input to output of the gate. OR decision tree that is 
constituted for e s_a_1 fault is given in Figure 4 and since 
there exits no unjustified gate, abcdfghk=01110010 is 
identified as a test pattern for e s_a_1 fault. 

 
Figure 4. OR decision tree constituted for e s_a_1 fault in 
Figure 3 
 
In line justification phase, if there is not any unjustified 
gate, current primary input values are taken as a test 
pattern for a given fault. An unjustified gate is a gate with 
a determined output value that, this value is not 
determined by the gate input(s)’ value(s). If an unjustified 
gate exists, AND/OR decision tree [4] is constituted to 
justify the gate. Initially all faulty line values are 
converted to their unfaulty values according to 5-valued 
logic alphabet. There are two kind of levels; AND, and 
OR. In an AND level, AND nodes are the outputs of the 
unjustified gates and in an OR level, a OR node of an 
AND node is a combination of decisions that include 
gate’s input(s) and value(s) that justify the gate. In AND 
level, order of locating AND nodes is done by maximum 
level of output line in the circuit. In OR level, order of 
locating decisions in an OR node is done by minimum 
controllability values of inputs of the gate. In line 

justification phase, consistency control is made after every 
assignment. If there is a conflict, current decision is 
rejected and another decision is made if there is any. This 
progress continues until there exists no unjustified gate 
with consistency, decision tree is exhausted, or a 
backtrack limit, determined as 16, is exceeded. If decision 
tree is exhausted, or the backtrack limit is exceeded, the 
last taken decision in fault propagation is rejected and 
another decision is made if there is any. Suppose a circuit 
has a t s_a_1 fault, fault propagation phase is applied and 
all faulty line values are converted to their unfaulty values 
as given in Figure 5. 

Figure 5. A combinational circuit with t s_a_1 fault 
 
Line justification method is based on traversing along 
multiple paths. Initially for the first level, unjustified gates 
are found as the ones whose outputs are u and t lines. 
Then u line is located in the first AND level with its value 
and an OR node is formed to justify u line as decisions 
that can be made. There are two decisions that can be 
considered, f=1, s=X and f=X, s=1. The decisions are 
taken in order of minimum controllability values of  the 
lines. By doing so, completing line justification phase 
with a minimum number of assignment is aimed. After 
making f=1 assignment, direct (backward) implication is 
applied to find uniquely determined line values. After 
direct implication, since t line is still unjustified, t=0 is 
located in the first AND level as an AND node and its OR 
node is constituted. With assignments made in the first 
OR level, a new unjustified gate is introduced and so, 
second level is formed in the decision tree. Constituted 
AND/OR decision tree for t s_a_1 fault is given in Figure 
6. Additionally, abcde=10001 is found as a test pattern for 
t s_a_1 fault. 

 
Figure 6. AND/OR decision tree constituted for t s_a_1 
fault in Figure 5 



V. FAULT SIMULATION 
In COM_TEST, critical path tracing based fault simulator 
is implemented. Fault simulation is cone-oriented and 
starts from a primary output and traverse along the critical 
paths through primary inputs. Initially unfaulty circuit is 
obtained by applying test pattern for a given fault to 
primary inputs and determining primary outputs as 
critical. Determining a line as critical denotes that a stuck 
at fault containing the critical line and its complement 
value in the unfaulty circuit, can be tested by the applied 
test pattern. Critical lines are determined by finding 
sensitive inputs of a gate along the path. For a primary 
output, a critical path tracing continues until there is no 
critical path, or the critical path is reached to a primary 
input. When critical path tracing is completed for a 
primary output, the other primary output is considered and 
when encounter a line that was determined as critical in 
another cone, tracing along this line is halted. 
 
A fault is identified as untestable only when the test 
generator fails to generate a test pattern to detect it after 
exhausting the search space. ATPG algorithm spends a 
large portion of its time dealing with untestable faults. In 
COM_TEST, when a fault is determined untestable, 
redundancy simulator is used to find other untestable 
faults in the fault list by this information. Identifying other 
faults as untestable is done by determining the 
assignments that are necessary for identified untestable 
fault, finding the faults that require these assignments to 
be detected. 

 
VI. TEST SET COMPACTION 

In COM_TEST, test pattern generation can be applied 
with fault simulators and without fault simulators. In test 
pattern generation with fault simulators, test patterns in 
the test set are identified, i.e. include no X value, and a 
table is constituted including test patterns and faults 
detected by the test patterns. Compaction of the test set is 
implemented by associating with the methods that find 
minimal sum of product form of a Boolean function with 
given minterms. Since only one test set that contains 
minimum number of test pattern is required, techniques 
that are used to speed up the method are used.  
 
In test pattern generation without fault simulators, test 
patterns in the test set may be unidentified, i.e. include X 
value. Test pattern compaction definition can be made as, 
two test patterns can be compacted if both have the same 
value, or different values if one of them has a X value, for 
all values in the test pattern array. For example A : 
X01X0X and B : X0X10X test patterns can be compacted 
as C : X0110X. With given test set, the aim is to find a 
test set that contains minimum number of test pattern. 
This aim is realized by associating with the methods that 
find minimal covered compatible classes in state 
reduction of incompletely specified sequential circuits [9]. 
In this phase, this aim is realized by finding compactable 
pairs, forming compactable class, constituting a table of 

compactable class elements and compactable classes, 
finding minimal covered class and compacting these 
classes. In addition to this method, test set compaction is 
realized by an optimal and faster method because of 
computational complexity of the minimal method. 

 
VII. EXPERIMENTAL RESULTS 

COM_TEST is tested on ten circuits which are listed in 
Table 1 according to specific properties with a computer 
containing 128MB RAM and 880Mhz processor. In Table 
1, i, o, c, and l denote the number of inputs, outputs, 
components, and lines of the test circuits respectively.  

 
Table 1. Test circuits  
 
COM_TEST is ran on two modes, with fault simulation 
and without fault simulation. And test generation without  
fault simulation is ran on two modes, minimal and optimal 
test set compaction. Table 2 and 3 give the results of  test 
generation with fault simulators and without fault 
simulators respectively. In Table 2 and 3, tested, red, and 
aborted denote the number of faults identified as testable, 
redundant, and aborted respectively. BT_or and BT_aor 
stand for the number of backtracks made in OR and 
AND/OR tree respectively. ttpg and tpf show the test 
pattern generation time and elapsed time per fault in test 
pattern generation respectively. ntp, ttsc, and CPU 
indicate the number of test pattern after test set 
compaction, elapsed time during test set compaction and 
total cputime elapsed in test generation respectively. 
OOM denotes out of memory and TSC denotes test set 
compaction. 
 
In test generation progress of total 3940 faults, there are 6 
aborted faults and 102 of backtrack number (BT-aor) in 
c432 occur in these aborted faults. 64 redundant faults are 
identified with identifying 24 fault as untestable. In c880, 
test pattern generation with fault simulation consumes 
much time than without fault simulation because of 
selection 1 logic value instead of X value in test patterns 
and owning primary outputs that are present in different 
levels of the circuit. There are memory requirement 
problem in compaction of test sets whose compactable 
classes are too large to reduce. Therefore, optimal test set 
compaction method is applied.  
 



 
Table 2. Test pattern generation results with fault simulation 

 
Table 3. Test pattern generation results without fault simulation 
 

VIII. CONCLUSION 
COM_TEST is implemented as test pattern generation 
system for single stuck at faults in combinational 
circuits. It searches a solution not in the entire of the 
circuit instead in the cones of the circuit. It identifies as 
many necessary assignments in unique sensitization 
method. It finds as many possible uniquely determined 
values and so avoids from unnecessary operations and 
unidentified solution areas during the search. It uses 
testability measures to speed up the search in decision 
trees and traces all the necessary paths to find a 
solution. After a test pattern is generated for a given 
fault or the fault is identified as untestable, it uses fault 
simulators to find the faults detected by the test pattern 
or identify the faults as untestable with obtained 
untestable fault respectively. After test pattern 
generation, it uses test set compaction methods to find 
a test set containing a minimum number of test patterns 
in convenient size of memory.  
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