
COM_TEST : A TEST PATTERN GENERATION SYSTEM

Levent Aksoy Ece Olcay Güneş
e-mail:levent@ehb.itu.edu.tr e-mail:olcay@ehb.itu.edu.tr

Istanbul Technical University, Faculty of Electrical & Electronics Engineering, Department of Electronics Engineering,
34496 Maslak, Istanbul, Turkey

Key words: Test pattern generation, OR and AND/OR decision tree, fault simulation, test set compaction

ABSTRACT

In this paper, a test pattern generation system for
combinational circuits including test pattern
generator, fault simulator, and test set compactor is
introduced. The techniques that improve test pattern
generation process are used in an implemented test
pattern generation system called COM_TEST. The
results of COM_TEST on ten circuits are given.

I. INTRODUCTION
As the complexity of VLSI circuits are increasing, the
problem of test pattern generation is becoming more
important. Since the scan-based design for testability
techniques are increasingly used in VLSI circuits, test
pattern generation for combinational circuits is getting
even more important. The test pattern generation problem
can be viewed as a finite space search problem of finding
appropriate logic assignments to the primary inputs such
that the given fault is detected [1]. Since the size of the
search space is exponential in the number of primary
inputs and the test generation problem is proven to be NP-
complete [2], it is very important to find efficient methods
to speed up test generation process. In order to find a
solution in the search space, ATPG (Automatic Test
Pattern Generation) algorithms usually build a decision
tree and apply a backtracking search procedure. This
decision tree is usually divided up into one solution area
and into several non-solution areas and the aims of ATPG
algorithms are to minimize the unidentified non-solution
areas and avoid all non-solution areas during the search
process. These aims can be achieved by special
techniques that optimize the pruning of the search space,
reduce the number of backtracks, recognize conflicts as
early as possible [3]. In this paper the methods that reduce
the size of search space and number of backtracks in the
search are introduced and an ATPG system is presented.
The rest of the paper is organized as follows. Section II
gives the problem definition and ATPG system is
introduced in Section III. In Section IV, V, and VI, test
generation method, fault simulation methods and test set
compaction methods are given respectively. Experimental
results are given in Section VII and finally Section VIII
presents conclusions.

II. PROBLEM REPRESENTATION
The problem of deterministically generating a test pattern
for a given stuck at fault (s_a_v, vε{0,1}) is to find a
combination of assignments of logic values (0 or 1) to the
primary inputs which simulate the given fault (line
justification) and monitor the given fault at at least one of
the primary outputs (fault propagation) [3]. The task of a
deterministic test pattern generator is to generate a test
pattern or identify the fault as untestable (redundant) for
every fault in the fault list and form a test set for testable
faults. Since the search in finding a test pattern consumes
unacceptable amounts of computation time, an aborting
criterion is used in all test generators. If the search for a
given fault could not be completed, the fault is identified
as aborted [4].

III. TEST PATTERN GENERATION SYSTEM

A deterministic ATPG system called COM_TEST for
single stuck at faults in combinational circuits that include
primitive gates, is implemented as a computer program
using MATLAB. COM_TEST is composed of test pattern
generator, critical path tracing based fault simulator,
redundancy fault simulator, and test set compactor.

The test pattern generator is based on structural methods.
It uses the single stuck at fault model and the five-valued
logic alphabet containing 0 (0/0), 1 (1/1), X (don’t care,
unidentified), D (1/0), D (0/1) values (a/b, “a” denotes
the value in unfaulty circuit and “b” denotes the value in
faulty circuit). It uses the observability and controllability
values given in SCOAP [5] to guide the search process.
Direct implication, forward and backward implications, is
used as an implication method to find uniquely
determined values, and to determine inconsistency. It uses
a recursive unique sensitization method based on the
method proposed in FAN [6] algorithm.

As a test pattern is generated for a given fault, critical path
tracing based fault simulator [7] is used to find the faults
in the fault list that are detected by this test pattern. When
a fault is identified as an untestable fault, redundancy fault
simulator is used to find other untestable faults in the fault

list with identified untestable fault. By doing so, speeding
up the test pattern generation process is aimed.

When test pattern generation is completed, test set
compactor that is based on the method proposed in
COM_TEST, is used to find a test set that contains a
minimum number of test pattern. So, easing of testing
VLSI circuits with small amount of test pattern and
storage requirement is achieved.

IV. TEST PATTERN GENERATION

Test pattern generation is cone-oriented [8] where a cone
contains all the paths from the fault to a primary output.
Test pattern generation for a stuck at fault is composed of
fault injection, fault propagation, and line justification
phases. During test pattern generation, necessary and
optional assignments are made and all line values must be
consistent. Consistency is controlled during direct
implication. In fault propagation phase, another control
level is X-path check. A cone passes X-path check
control, if there is at least one path starting from the faulty
line to the end of the cone (a primary output) where all
lines have X value. Whenever one of these control levels
fail, there exists a conflict. Before starting test generation,
the levels of lines in the circuit, 0 and 1 controllability
values of the lines, and paths of the lines to the primary
outputs (cones) with observability values are obtained.

With given f s_a_v fault, initially fault injection phase is
applied. In this phase, f = v assignment is made, direct
implication is applied and fault value is inserted to the
circuit. In fault propagation phase, a cone is selected
among the cone list according to minimum observability
values. By doing so, completing this phase with a
minimum number of assignment is aimed. Unique
sensitization method is applied to find necessary
assignments for fault propagation by finding dominators
in the selected cone. Since a dominator is a bottleneck in
the circuit that the fault effect must be passed through, a
gate which has a dominator as an output, must be
sensitized according to the fault [6]. In application of the
unique sensitization method, X-path check control is
made and the cone is reduced to a structure containing the
paths that pass X-check control recursively. If there is a
conflict, selected cone is rejected and another cone is
selected if there is any. Assume a circuit has a g s_a_0
fault and fault injection phase is applied as given in Figure
1.

Figure 1. A combinational circuit with g s_a_0 fault

Line g has three paths, given in bold, g-h-m-s-v, g-i-n-q-t-
v, g-i-n-r-u-v, and a dominator, v. In this condition, there
is not any necessary assignment to be made. Since the
first path of the cone fails to pass X-path check control,
this path is removed from the cone and the new cone is
formed with g-i-n-q-t-v, g-i-n-r-u-v as paths, and n, v as
dominators. By making necessary assignments, j=1 and
s=0, the second path of the cone fails to pass X-check
control. This path is also removed from the cone, and the
cone has g-i-n-q-t-v path and n, t, and v dominators. In
this condition, p=1 assignment is made. Additionally,
fault effect is reached to the primary output with
consistency as shown in Figure 2. Since there is no
unjustified gates, abcdp=11111 is determined as a test
pattern for g s_a_0 fault.

Figure 2. Application of unique sensitization method

If the fault effect is not reached to a primary output, OR
decision tree [1] is constituted to complete fault
propagation. OR decision tree’s node is the line that is a
input of a gate contains a unidentified valued output and
at least one faulty valued input, and the line that is in a
path which passes X-path check control. The edge of this
node is a decision that is made to approach the faulty
value one level higher to a primary output. In OR decision
tree, at any time only one node and its decision are
considered. Order in considering nodes is determined by
the level of lines in the circuit and order in making
decisions is determined by controllability value of the
lines, if there are more than one node and decision
respectively. When a value is assigned to a line, direct
implication is applied to find uniquely determined values.
After applying direct implication, X-path check control is
made. If a conflict occurs, the decision that is made for
the current node is rejected and the other decision is made
if there is any. If there is not, current node is removed
from the OR decision tree. This progress continues until a
fault effect is reached to a primary output or decision tree
is exhausted. When the decision tree is exhausted, another
cone in the cone list is selected for fault propagation if
there is any. When a fault effect is reached to a primary
output, line justification phase is applied. Suppose a
circuit has a e s_a_1 fault and fault injection and unique
sensitization phases are applied as given in Figure 3.

Fault propagation using OR decision tree is based on
multiple path fault propagation method. In constituting
OR decision tree for e s_a_1 fault, initially i and j lines
are determined as to be a node. Line j is located in OR
decision tree as a root node and its decision is considered.

Figure 3. A combinational circuit with e s_a_1 fault

Decisions that are considered, are categorized as the ones
that carry and do not carry the fault effect from input to
output of the gate. The decision that carries the fault effect
to output for node j is f=0 and g=0. The decisions that do
not carry the fault effect to output for node j are f=1 and
g=X, and f=X and g=1. So, searching in OR decision tree
with smaller number of decisions is achieved. Initial
decisions for a node are the ones that carry the fault effect
from input to output of the gate. OR decision tree that is
constituted for e s_a_1 fault is given in Figure 4 and since
there exits no unjustified gate, abcdfghk=01110010 is
identified as a test pattern for e s_a_1 fault.

Figure 4. OR decision tree constituted for e s_a_1 fault in
Figure 3

In line justification phase, if there is not any unjustified
gate, current primary input values are taken as a test
pattern for a given fault. An unjustified gate is a gate with
a determined output value that, this value is not
determined by the gate input(s)’ value(s). If an unjustified
gate exists, AND/OR decision tree [4] is constituted to
justify the gate. Initially all faulty line values are
converted to their unfaulty values according to 5-valued
logic alphabet. There are two kind of levels; AND, and
OR. In an AND level, AND nodes are the outputs of the
unjustified gates and in an OR level, a OR node of an
AND node is a combination of decisions that include
gate’s input(s) and value(s) that justify the gate. In AND
level, order of locating AND nodes is done by maximum
level of output line in the circuit. In OR level, order of
locating decisions in an OR node is done by minimum
controllability values of inputs of the gate. In line

justification phase, consistency control is made after every
assignment. If there is a conflict, current decision is
rejected and another decision is made if there is any. This
progress continues until there exists no unjustified gate
with consistency, decision tree is exhausted, or a
backtrack limit, determined as 16, is exceeded. If decision
tree is exhausted, or the backtrack limit is exceeded, the
last taken decision in fault propagation is rejected and
another decision is made if there is any. Suppose a circuit
has a t s_a_1 fault, fault propagation phase is applied and
all faulty line values are converted to their unfaulty values
as given in Figure 5.

Figure 5. A combinational circuit with t s_a_1 fault

Line justification method is based on traversing along
multiple paths. Initially for the first level, unjustified gates
are found as the ones whose outputs are u and t lines.
Then u line is located in the first AND level with its value
and an OR node is formed to justify u line as decisions
that can be made. There are two decisions that can be
considered, f=1, s=X and f=X, s=1. The decisions are
taken in order of minimum controllability values of the
lines. By doing so, completing line justification phase
with a minimum number of assignment is aimed. After
making f=1 assignment, direct (backward) implication is
applied to find uniquely determined line values. After
direct implication, since t line is still unjustified, t=0 is
located in the first AND level as an AND node and its OR
node is constituted. With assignments made in the first
OR level, a new unjustified gate is introduced and so,
second level is formed in the decision tree. Constituted
AND/OR decision tree for t s_a_1 fault is given in Figure
6. Additionally, abcde=10001 is found as a test pattern for
t s_a_1 fault.

Figure 6. AND/OR decision tree constituted for t s_a_1
fault in Figure 5

V. FAULT SIMULATION
In COM_TEST, critical path tracing based fault simulator
is implemented. Fault simulation is cone-oriented and
starts from a primary output and traverse along the critical
paths through primary inputs. Initially unfaulty circuit is
obtained by applying test pattern for a given fault to
primary inputs and determining primary outputs as
critical. Determining a line as critical denotes that a stuck
at fault containing the critical line and its complement
value in the unfaulty circuit, can be tested by the applied
test pattern. Critical lines are determined by finding
sensitive inputs of a gate along the path. For a primary
output, a critical path tracing continues until there is no
critical path, or the critical path is reached to a primary
input. When critical path tracing is completed for a
primary output, the other primary output is considered and
when encounter a line that was determined as critical in
another cone, tracing along this line is halted.

A fault is identified as untestable only when the test
generator fails to generate a test pattern to detect it after
exhausting the search space. ATPG algorithm spends a
large portion of its time dealing with untestable faults. In
COM_TEST, when a fault is determined untestable,
redundancy simulator is used to find other untestable
faults in the fault list by this information. Identifying other
faults as untestable is done by determining the
assignments that are necessary for identified untestable
fault, finding the faults that require these assignments to
be detected.

VI. TEST SET COMPACTION

In COM_TEST, test pattern generation can be applied
with fault simulators and without fault simulators. In test
pattern generation with fault simulators, test patterns in
the test set are identified, i.e. include no X value, and a
table is constituted including test patterns and faults
detected by the test patterns. Compaction of the test set is
implemented by associating with the methods that find
minimal sum of product form of a Boolean function with
given minterms. Since only one test set that contains
minimum number of test pattern is required, techniques
that are used to speed up the method are used.

In test pattern generation without fault simulators, test
patterns in the test set may be unidentified, i.e. include X
value. Test pattern compaction definition can be made as,
two test patterns can be compacted if both have the same
value, or different values if one of them has a X value, for
all values in the test pattern array. For example A :
X01X0X and B : X0X10X test patterns can be compacted
as C : X0110X. With given test set, the aim is to find a
test set that contains minimum number of test pattern.
This aim is realized by associating with the methods that
find minimal covered compatible classes in state
reduction of incompletely specified sequential circuits [9].
In this phase, this aim is realized by finding compactable
pairs, forming compactable class, constituting a table of

compactable class elements and compactable classes,
finding minimal covered class and compacting these
classes. In addition to this method, test set compaction is
realized by an optimal and faster method because of
computational complexity of the minimal method.

VII. EXPERIMENTAL RESULTS

COM_TEST is tested on ten circuits which are listed in
Table 1 according to specific properties with a computer
containing 128MB RAM and 880Mhz processor. In Table
1, i, o, c, and l denote the number of inputs, outputs,
components, and lines of the test circuits respectively.

Table 1. Test circuits

COM_TEST is ran on two modes, with fault simulation
and without fault simulation. And test generation without
fault simulation is ran on two modes, minimal and optimal
test set compaction. Table 2 and 3 give the results of test
generation with fault simulators and without fault
simulators respectively. In Table 2 and 3, tested, red, and
aborted denote the number of faults identified as testable,
redundant, and aborted respectively. BT_or and BT_aor
stand for the number of backtracks made in OR and
AND/OR tree respectively. ttpg and tpf show the test
pattern generation time and elapsed time per fault in test
pattern generation respectively. ntp, ttsc, and CPU
indicate the number of test pattern after test set
compaction, elapsed time during test set compaction and
total cputime elapsed in test generation respectively.
OOM denotes out of memory and TSC denotes test set
compaction.

In test generation progress of total 3940 faults, there are 6
aborted faults and 102 of backtrack number (BT-aor) in
c432 occur in these aborted faults. 64 redundant faults are
identified with identifying 24 fault as untestable. In c880,
test pattern generation with fault simulation consumes
much time than without fault simulation because of
selection 1 logic value instead of X value in test patterns
and owning primary outputs that are present in different
levels of the circuit. There are memory requirement
problem in compaction of test sets whose compactable
classes are too large to reduce. Therefore, optimal test set
compaction method is applied.

Table 2. Test pattern generation results with fault simulation

Table 3. Test pattern generation results without fault simulation

VIII. CONCLUSION
COM_TEST is implemented as test pattern generation
system for single stuck at faults in combinational
circuits. It searches a solution not in the entire of the
circuit instead in the cones of the circuit. It identifies as
many necessary assignments in unique sensitization
method. It finds as many possible uniquely determined
values and so avoids from unnecessary operations and
unidentified solution areas during the search. It uses
testability measures to speed up the search in decision
trees and traces all the necessary paths to find a
solution. After a test pattern is generated for a given
fault or the fault is identified as untestable, it uses fault
simulators to find the faults detected by the test pattern
or identify the faults as untestable with obtained
untestable fault respectively. After test pattern
generation, it uses test set compaction methods to find
a test set containing a minimum number of test patterns
in convenient size of memory.

REFERENCES
1. P. Goel, An Implicit Enumeration to Generate

Tests for Combinational Logic Circuits, IEEE
Transactions on Computers, Vol. 30, pp.215-222,
1981.

2. H. Fujiwara and S. Toida, The Complexity of
Fault Detection Problems for Combinational Logic
Circuits, IEEE Transactions on Computers, Vol.
31, pp. 555-560, 1982.

3. M. Schulz, E. Trischler, and T. Sarfert,
SOCRATES: A Highly Efficient Automatic Test
Pattern Generation System, IEEE Transactions on
Computer-Aided Design, Vol. 7, pp. 126-136,
1988.

4. W. Kunz, and D. Stoffel, Reasoning in Boolean
Networks: Logic Synthesis and Verification Using
Testing Techniques, Kluwer Academic Publishers,
London, 1997.

5. L. Goldstein, Controllability and Observability
Analysis of Digital Circuits, IEEE Transactions on
Computers, Vol. 30, pp. 215-222, 1979.

6. H. Fujiwara, and T. Shimono, On the Acceleration
of Test Generation Algorithms, IEEE Transactions
on Computers, Vol. 32, pp. 1137-1144, 1983.

7. M. Abramovici, J. Kulikowski, P. Menon, and D.
Miller, Critical Path Tracing: An Alternative to
Fault Simulation, IEEE Design & Test of
Computers, Vol.1, pp. 83-93, 1984.

8. U.Mahlstedt, T. Gruning, T. Ozcan, and W.
Daehn, CONTEST: A Fast ATPG Tool for Very
Large Combinational Circuits, Proceedings of
International Conference on Computer-Aided
Design, pp. 222-225, 1990.

9. O. Ucar, and A. Dervisoglu, State Reduction of
Incompletely Specified Finite Sequential Machines
by the Use of Closed Compatible Pairs,
Proceedings of European Conference on Circuit
Theory and Design, 1999.

