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ABSTRACT 
SPNs (Substitution Permutation Networks) are one of the 
important architectures used for designing block ciphers. In 
our study, we applied differential cryptanalysis method for a 
3-round SPN. We have used a 16-bit input as plaintext and 
16-bit output as ciphertext and chosen the first row of the 
third S-box of DES (Data Encryption Standard) for the 
necessary S-box and ShiftRows transformation which is used 
to permute bytes in AES (Advanced Encryption Standard) 
for permutation of bits for our SPN. As a result, we have 
obtained 12-bit key of 16-bit key from the last round of the 
cipher using differential cryptanalysis method. 

 
I. INTRODUCTION 

Encryption algorithms are very important for 
cryptography and they are used to provide security and 
privacy. Block ciphers are symmetric algorithms and use 
one key to encrypt and decrypt the data. SPNs which 
represent one of the two important architectures are used 
for designing block ciphers. While AES [6, 10] 
(Advanced Encryption Standard) which is recent adoption 
of Rijndael has an SPN architecture, DES [5] (Data 
Encryption Standard) which was developed in 
cooperating with IBM and National Security Agency 
(NSA) in 1974 has a feistel architecture. Square cipher [9] 
which is the predecessor of AES has also an SPN 
architecture. 
 
On the other hand, the security of block ciphers depends 
on cryptanalitic attacks and statistical tests which can give 
some useful information to the attacker. Key size, 
substitution boxes and round number, which are important 
components of encryption algorithm, should be chosen 
very carefully in order to make the encryption algorithm 
resistant to the cryptanalytic attacks and to pass it the 
statistical tests.  
 
Cryptanalysis [1] is the science of breaking ciphers. 
Successful cryptanalysis may recover the plaintext or the 
key. From attacker's point of view, it is necessary that he 
should have the information available to mount his attack. 
There are four main attack models on cryptosystems 
according to the information available for the attacker:  
 

- ciphertext only attack, when attacker 
possesses a string of ciphertext y,  

- known plaintext attack, when attacker 

possesses a string of plaintext x and the 
corresponding ciphertext string y,  

- chosen plaintext attack, when attacker can 
choose a plaintext string x and constructs the 
corresponding ciphertext string y,  

- chosen ciphertext attack, when attacker can 
choose a ciphertext string y and constructs 
the corresponding plaintext string x.  

 
There is an important criterion to decide whether 
cryptanalysis method for block ciphers is successful or 
not. If the cryptanalysis method breaks a block cipher 
with an effort less then exhaustive key search, it is then 
considered as a successful one. In exhaustive search, for 
any n-bit block cipher with a key size of k, the attacker 
tries all 2k possible key values and verifies if he can 
derive meaningful plaintext.  
 
The two most popular attacks, differential [2, 3] and 
linear [14] attacks for block ciphers, were developed by 
Biham in 1991 and Matsui in 1993. These were methods 
of statistical cryptanalysis and they were used against 
DES algorithm. There was a mathematical idea behind 
these attacks and the attacks were a big contribution for 
designing stronger encryption algorithms. After these 
attacks, other cryptanalysis methods have been developed, 
like truncated differential cryptanalysis [13], higher order 
differential cryptanalysis [13] and impossible differential 
cryptanalysis [4].  
 
Differential cryptanalysis which was developed by Biham 
is a chosen plaintext attack and it exploits the high 
probability of certain occurrences of plaintext differences 
and differences into the last round of the cipher. The 
security of SPNs against differential cryptanalysis 
depends on maximum differential probability (MDP) [11, 
12]. To guarantee provable security against differential 
cryptanalysis, it is necessary to demonstrate that MDP is 
sufficiently small that corresponding data complexity (the 
number of chosen plaintext pairs used by the attacker) is 
prohibitively large.  
 
In our study, we have applied differential attack against 
the 3-round SPN cipher. As a result, we have obtained 12-
bit key used in the last round of the cipher. 

 
 



II. SUBSTITUTION-PERMUTATION NETWORKS 
An SPN [1, 7, 8, 12] is a special type of iterative cipher. 
For an Nr-round and N-bit block SPN, it requires (Nr+1) 
N-bit sub-keys K1, K2,..., KNr, KNr+1. Each round consists 
of three layers: key mixing, substitution, linear 
transformation (permutation). In the key mixing layer, N-
bit round input is XOR-ed with the sub-key for that 
round. In the substitution layer, the output of mixing layer 
is partitioned into sub-blocks of size n which is the 
number of bits becoming the input to a bijective n x n 
substitution box (S-box), denoted Sπ  :{ } { }nn 1,01,0 → .  
In the permutation layer, the output of substitution     
layer becomes an input to the permutation - denoted     

Pπ  :{ } { }NN ,.....1,.....1 →  and permutation layer is used to 
replace N-bit with a different set of N-bit. In the last 
round, permutation is omitted since it adds no 
cryptographic strength.  
 
For decryption, the sub-keys are applied in reverse order. 
The mappings used in S-boxes are the inverse of the 
mappings in the encryption network and we should use 
the inverse linear transformation. In Figure 1, we showed 
an SPN algorithm which we will use to describe and to 
apply the differential cryptanalysis.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Used SPN Algorithm (Nr = 3, N = 16, n = 4). 

 
 

In Figure 1, x, u, v, w, and y values, which are the places 
when we proceed through the network, will make 
understandable the SPN algorithm and differential 
cryptanalysis. 
 
In Table 1 and Table 2, there are displayed the S-box and 
permutation for the SPN shown in Figure 1. The mapping 
chosen for our cipher is selected from S-boxes of DES: it 
is the first row of the third S-box. The values for 
permutation are selected from ShiftRows transformation 
of the AES. In AES, ShiftRows transformation is used to 
permute the bytes of that round. In our cipher, we have 
used this transformation to permute the bits of that round. 
AES also includes an additional linear transformation 
(MixColumns) in each round. 
 

III. DIFFERENTIAL CRYPTANALYSIS 
As we have said before differential cryptanalysis [8] is a 
chosen plaintext attack and it exploits the high probability 
of certain occurrences of plaintext differences and 
differences into the last round of the cipher. Attacker can 
choose plaintext string and construct ciphertext string in 
an attempt to derive the key. Consider our cipher with 
input [ ]N....XXXX 21=  and output [ ]N....YYYY 21= . 
Differential cryptanalysis seeks to exploit a scenario 
where a particular Y∆  occurs given a particular input 
difference X∆  with a high probability DP (Differential 
Probability). The pair ( X∆ , Y∆ ) is referred to as a 
differential where XXX ′=⊕ ∆  or XXX ∆=′⊕  and 

YYY ′=⊕ ∆  or YYY ∆=′⊕ .  
 
To realize differential attack against our SPN, we should 
find a differential characteristic (sequence of input and 
output differences) for one round with a high probability. 
We can develop it for the whole cipher that is why output 
difference from one round corresponds to the input 
difference for the next round. For Nr-round block cipher, 
we can construct (N r - 1)-round differential characteristic 
and we can derive the key used in the last round of the 
cipher. To construct a highly likely differential 
characteristic, we should examine properties of nonlinear 
part of our cipher, S boxes, to determine the complete 
differential characteristic.  
 
Let S: nn ZZ 22 →  be a bijective mapping. Differential 
Probability [11] for the S is defined in equation (1) where 
the a and b are called input and output difference, 
respectively and they are n-bit vectors. 
 

n

n
S baxSxSZx

baDP
2

})()(|{#
),( 2 =⊕⊕∈
=             (1) 

 
 
 

nZ2 : n dimensional vector over  the finite field )2(2 GFZ =  

 #A : number of elements in set A

Subkey K1 mixing 

S11 S12 S13 S14

Subkey K2  mixing

S21 S22 S23 S24

Subkey K3 mixing

P1 . . . . . .     P16

Round 1

Round 2

C1 . . . . . .     C16

x

u1

v1

w1

u2

v2

w2

S31 S32 S33 S34

Subkey K4 mixing

v3

y

u3

Round 3



Table 1. S-box Representation for SPN. 

 
 
 
 
 
 

 
Table 2. Permutation for SPN. 

 
 
 
 
 
 
If we calculate input and output differences for all 
probable (a, b) then we obtain a table which we call 
difference distribution table. It means that we should 
calculate })()(|{# 2 baxSxSZx n =⊕⊕∈  for all probable 
(a, b) values. Then, we can obtain DP values easily by 
dividing values in the difference distribution table to 2n. 
The difference distribution table for the S-box of Table 1 
is given in Table 3. 
 

Table 3. Difference Distribution Table 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV. DIFFERENTIAL CRYPTANALYSIS FOR A 3-
ROUND SPN 

To derive the key in the last round of the cipher, we 
should construct a differential characteristic with a high 
DP so that we use a small number of plaintext pairs. For 
3-round SPN, we can construct a 2-round differential 
characteristic and attack sub-key K4. In Figure 2, a sample 
differential characteristic we will use is shown.  
 
 

 
We use the following difference pairs of the S-box: 

16
6  8:12 ==→= DPwithbEaS  

16
8  8:22 ==→= DPwithDbaS  

  
In Figure 3, while we proceed through the network, it is 
shown that we obtain a relation between P∆  and 3u∆  

with DP = 19,0
256
48

16
8

16
6

≅=× . In addition to that we 

can obtain 12-bit key of 16-bit key, K4, using differential 
cryptanalysis. Because we are interested in non-zero 
differences in differential output, Yoru ∆∆   3 . We refer to 
12-bit key [K4,1, K4,2,....K4,12], which we will attack to 
derive, as target partial sub-key. To realize differential 
attack for our cipher, we should construct some number of 
chosen plaintext pairs in which a pair contains 

),,,( YYPP ′′ (2 plaintexts: P  and P′ , 2 ciphertexts: Y   
and Y ′ ) where PPP ∆⊕=′  or PPP ′⊕=∆ . After that, 
a partial decryption of the last round which involves the 
XOR of ciphertexts with the target partial sub-key bits 
and running data backwards through the S boxes, where 
all possible values for the target key bits would be tried is 
executed. 
 
For our cipher, a count is incremented for all possible 
target sub-key values when 3u∆  is obtained as “481” in 
hexadecimal notation for a pair. This process is executed 
for all possible target partial sub-keys and for all chosen 
plaintext pairs and the partial sub-key value which has the 
largest count is assumed to indicate the correct values of 
the sub-key bits. ND value which is the number of chosen 
plaintext pairs can be found for our cipher using equation 
(2). In equation (2), c is a small constant and DP is 
differential probability for (Nr - 1) round differential 
characteristic.  
 

DP
cN D =                                                                       (2) 
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In our study, if we choose c = 10 then ND value is found 

as 5052
19,0

10
≅= . We have simulated our attack using 

50 chosen plaintext pairs.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Sample Differential Characteristic  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Relation between P∆  and 3u∆  
 
During the cryptanalysis process, we will generate 50 
chosen plaintext pairs for which 

[ ]0000  0000  1110  0000=P∆   
and differential characteristic illustrated will occur with 
high probability, DP = 0,19. We call such pairs for P∆  as 
right pairs. On the contrary, chosen plaintext pairs for 
which the differential characteristic (That means 3u∆  is 
“481” in hexadecimal notation for our sample differential 

characteristic) does not occur are referred to as wrong 
pairs. Estimated probability of the occurrences of right 
pairs for the candidate partial sub-key can be derived 
from equation (3). 
 

50
countp =                                                                      (3) 

 
Table 4. Experimental Results for Differential Attack      

in which Probability (p) > 0.05 for Partial Sub-key Values  
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∆u3 =  [0100  1000  0001  0000] 
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In Table 4, experimental results for differential attack in 
which probability (p) > 0,05 for partial sub-key values are 
shown. In our study, we have tried 212 probable partial 
sub-key values and showed some partial sub-key values 
which satisfy p > 0,05. As a result, partial sub-key value 
which is “627” in hexadecimal notation is the largest 
count value (or probability) and the correct sub-key value. 
In addition to that we would expect the probability of the 
occurrences of the right pair to be DP = 0,19 and we 
found experimentally the probability for the sub-key 
value “627” gave p = 0,22. Other large count values like  
p = 0,14 for the sub-key value “6F7” may be occurred for 
the reason of the S-box properties. 
 

V. CONCLUSION 
In our study, we applied differential cryptanalysis method 
for 3-round SPN and obtained 12-bit key [K4,1, 
K4,2,....K4,12], which is “627” in hexadecimal notation, 
from the last round of the cipher. Roughly speaking, 
second linear transformation used in AES - MixColumns 
which is 32-bit additional linear transformation when it is 
compared with an SPN structure - is very important and it 
makes impossible to find differential characteristics for 
differential cryptanalysis and linear approximations for 
linear cryptanalysis that involve few active S-boxes 
(active S boxes - S boxes involved in the differential 
characteristic or in the linear approximation). 
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