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Abstract 
This study presents a model reduction method based on 
stability boundary locus (SBL) fitting for PID controller 
design problems. SBL analysis was commonly applied for 
controller stabilization problems. However, we use SBL 
analysis for the reduction of high order linear time 
invariant system models to second-order approximate 
models to facilitate analytical design of closed loop PID 
control systems. The PID design is implemented by a 
multiple pole placement strategy which enforces the control 
system had real poles with a desired time constant 
specification. Illustrative design examples are presented for 
the analytical PID design of high-order plant models by 
means of second-order SBL model approximations. 
 

1. Introduction 
Effective model order reduction strategies are mainly 

needed for the development of analytical methods for the 
solutions of design and analysis problems of control 
engineering practice due to fact that real control problems may 
introduce high-order models. Model order reduction aims to 
obtain a low-order approximation of high-order systems which 
exhibits similar time and frequency response as much as 
possible under the operation ranges of control systems. In the 
control points of view, it is very desirable to have a good 
approximation for time and frequency domain properties of 
high-order systems, particularly within the low frequency 
region. Some important studies on model order reduction can 
be found in [1-8]. 

In the current paper, we proposed a model identification 
approach that fits SBL of the high-order LTI model of original 
systems to SBL of a lower order approximate LTI model in the 
closed loop PI controller design plane. Here, we consider SBL 
lines of original system as the finger prints of original system 
model and hence SBL of the order reduced system model is 
fitted the sampled SBL points of the original LTI model. In the 
literature, SBL analyses were widely utilized for stabilization 
of PID control systems [9-11]. SBL analyses are based on the 
solution of characteristic equation of unity feedback closed 
loop control system for controller parameters. SBL is mainly 
plotted in ( pk , ik ) parameter plane to illustrate visually the 
stability region of PI controller coefficients. Essentially, the 
fitting of SBL lines of original model and approximate models 
provide an approximation of characteristic equations of their 
transfer functions at the sampled frequency points and the main 
advantage of SBL fitting in model approximation is that it aims 
to match stability regions of original and approximate models.  

Also, in the paper, we employ the model order reduction 
based on SBL fitting in the analytical design problem of closed 
loop PID control systems. Firstly, we obtain the second order 
model reduction of high order plant function by the fitting the 
SBL in a predefined frequency range and express the 

coefficients of the second order approximate plant model by 
solving linear equation set. Secondly, we used these 
coefficients for design of PID controller that formulated based 
on pole placement on real axis for a desired time constant 
specification of control systems. These two tasks provide a 
straightforward solution for the analytical PID tuning problem 
for high-order plant models according to second-order 
approximate models. Since the second order models have a 
phase limit of -180o, the proposed method is very effective for 
the high-order plants with a phase limitation of -180o. 
Numerical examples illustrate application of the proposed 
method for analytical controller tuning and model identification 
problems. 
 

2. Methodology 
 

2.1. Theoretical Background 
This section summarizes calculation of SBL for high order 

plant transfer functions according to closed loop PI control 
system given in Figure 1 [9,10]. SBL analysis was employed to 
figure out the ranges of controller parameters stabilizing 
control systems. In this study, we used SBL curvatures for 
model approximation proposes. By considering transfer 
function of PI controller as 1)( −+= skksC ip  and transfer 

function of the high-order plant model as )(/)()( sDsNsG =  in 
Figure 1, one can write the characteristic equation of the system 
as follows, 

0)()()()()(1)( 1 =++=++=Δ − sNkskssDsGskks ipip  (1) 

In order to obtain SBL of )(sG , characteristic equation given 
by equation (1) is solved for ωjs =  in frequency domain. 
When this complex characteristic equation, expressed as 

0)( =Δ ωj , is solved real and imaginary parts of the complex 
characteristic equation yield the following equation set: 

)()()( ωωωωω IIpRi DNkNk =−   (2) 

)()()( ωωωωω RRpIi DNkNk −=+  (3) 

where, )(ωRN  and )(ωIN  are real and imaginary parts of the 
numerator polynomial. Similarly, the polynomials )(ωRD  and 

)(ωID  are real and imaginary parts of denominator 
polynomial. By solving )(ωpk  and )(ωik  from equations (2) 
and (3), we obtain SBL line denoted by ))(),(( ωω ip kkS  in 
( pk , ik ) plane as follows. 
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The SBL of plant )(sG  can be expressed as a set of points in 
( pk , ik ) plane as  

)},(0),,(:))(),({( ∞−∞∈∧=Δ= ωωωω ipip kkkkS  (6) 
 
 
 
 
 
 

Fig. 1. The unity feedback PI control system for SBL 
calculation of high order plant model )(sG  . 
 
2.2. Second Order Model Reduction by SBL Fitting 

 
Lets express the second-order approximate system in a general 
form as follows, 
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The characteristic polynomial of unity feedback closed loop PI 
control system for )(2 sG  can be expressed as, 

)()(1)( 22 sGsCs +=Δ   (8) 
In order to find out SBL of )(2 sG  as explained in previous 
section, the characteristic equation of system is written in the 
frequency domain as, 

0)()( 2
200

2
102 =−++−=Δ ωωωω bakbjbakj pi  (9) 

To find the coefficients of )(2 sG , which are fitting the 
sampled SBL points {( ))(),(( 1111 ωω ip kkS , 

))(),(( 2222 ωω ip kkS } for angular frequency sampling 

],[ maxmin ωωω ∈i , one can write the following equation sets 
by considering equation (9) , 

0))((

)()(
2

120101

2
110112

=−++

−=Δ

ωωω

ωωω

bakbj

bakj

p

i   (10) 

0))((

)()(
2

220202

2
210222

=−++

−=Δ

ωωω

ωωω

bakbj

bakj

p

i  (11) 

Then, four homogenous linear equations to obtain four plant 
function coefficients { 0a , 0b , 1b , 2b } are written for two real 
part equations as,  

0)( 2
1101 =− ωω baki  & 0)( 2

2102 =− ωω baki     (12) 
and two imaginary part equations as follows, 

0)( 3
1201101 =−+ ωωωω bakb p               

0)( 3
2220220 =−+ ωωωω bakb p                    (13) 

The solution of these homogenous equations can be dependent 
on an arbitrary 0a  as follows, 
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When these equations are used in second-order approximate 
system model (equation (7)), 0a  coefficients can be reduced 
because of 0a  factorization in numerator and denominator 

polynomials and one obtains the reduced model with respect to 
sampled SBL points as, 
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According to equation (17), while calculating numerically 
0b , 1b  and 2b by equations 14-16, one can select value of the 

coefficient 0a equal to one for the sake of simplicity. Here, 
SBL sampling points from high-order model )(sG , which are 

)( 1ωpk , )( 2ωpk , )( 1ωik  and )( 2ωik , can be calculated by 
considering equations (4) and (5) for a desired frequency 
sampling ],[ maxmin ωωω ∈i . The )(2 ωjG  permits the second-

order dynamics containing squared of frequency ( 2ω ) in 
frequency domain and provides SBL (equation (4) and (5)) 
written as, 
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Fig. 2. The Bode diagrams and SBLs of the second order 
reduced models obtained by SBL model reduction method and 
Xue’s optimal model reduction method. 
 
We used the phase limitation of the second order transfer 
functions to determine whether the high-order model can be 
reduced to the second order model approximately. The phase of 
the second order model can be expressed as, 
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))/((tan))(( 2
201

1
2 ωωω bbbjGArg −−= −  (19) 

 
The phase of  )(2 ωjG  is limited to πω <))(( 2 jGArg  for 

∞<< ω0 . When the phase of the high-order model is in the 
range of πω <))(( jGArg , this system can be reduced to the 
second order approximate model for PID control system 
design. This condition is referred to phase limitation condition 
for second order model reduction. 
Figure 2 shows the bode diagrams and SBL lines of the second 
order reduced models of a high-order plant model, 
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This plant transfer function complies with phase limitation 
condition of second order model reduction and second order 
approximate model well represents this plant model. Figure 
2(a) demonstrates that frequency responses of the proposed 
SBL model reduction method and Xue’s optimal model 
reduction method [7] are well agreement with the frequency 
response of high-order model. Figure 2(b) clearly shows that 
SBL model reduction method can provide better fitting to SBL 
of high order model. Because, SBL model reduction method 
provides a solution enforcing to match SBL lines at the 
sampling points. 
 
2.3. Analytical PID Control System Design for Second 
Order Plant Models 
 

In order to tune PID controller with respect to a desired time 
constant specification of the closed loop control system, we 
place all poles of the closed loop PID control system on the real 
axis for equal time constants. 

The closed loop PID control system with the second-order 
plant model produces three system poles. Lets denote them by 

1P , 2P  and 3P . Our pole placement constraint for the equal 
real poles is expressed as follows, 

τ
1

321 −=== PPP                   (21) 

where, parameter τ  is the dominating time constant of control 
system. For enforcement of the multiple pole placement 
constraint in PID design, the characteristic polynomial of 
control system established as follows, 
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The characteristic polynomial of the closed loop PID control 
system for the second-order approximate model, defined by 
equation (7), is written as, 
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By equating equation (22) and (23), one obtains the PID 
coefficients regarding to the pole placement constraint given in 
equation (23) as, 
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The main advantages of this PID design strategy can be 
summarized for the control of second-order plants as follows, 
(i) It enables to design PID controller by single parameter 
specification (time constant specification) and it also ensures 

the stability of the control system via the real system pole 
placement. 
(ii) Due to providing high gain control by setting a low time 
constant, the proposed PID design can exhibit good disturbance 
rejection performance for second-order plants.  
Figure 3 shows PID design of the second order unstable plant 

( )1/1)( 2
2 +−= sssG  for various time constant. As seen in 

figure, settling time of the second order system is about 
τ10≅sT . This enables to design PID controller with respect to 

settling time specification.  
Figure 4 shows unit step and unit disturbance performance 

of these PID designs for ( )3/3)( 2
2 ++= sssG  [12]. Haeri 

method [11] provides a smooth step response with low 
disturbance rejection. The method of Shen et al. [12] provides 
faster step response with high overshoot. However, the 
proposed PID design method with 2.0=τ  can provide better 
step response and disturbance rejection performance for the 
second order system because of the high gain control and 
negative reel pole placement. 

 
 
 

 
 
 
 
 
 
 
 
 

 
Fig. 3. PID design for various time constant and corresponding 
settling times. 

 
 

 
 
 
 
 
 
 
 
 

 
Fig. 4. Unit step and unit disturbance responses comparison of 
the proposed PID design method with other PID design 
methods for second order system model. 
 
By using the coefficients of second-order approximate models 

0a , 0b , 1b  and 2b  in the equation (24), one obtains PID 
design rule for SBL method as follows, 

)(
)()(

)(

))()((3

1
2

12
1

2
2

12

2
1

2
2

2
12

ωω
ωω

ωω
ωωτ

ωω

p
pp

pp
p

k
kk

kk
k

+
−

−

−
−

−
=

      (25) 

0 1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1

1.2

1.4

t (sec)

y(
t)

 

 

τ =0.2
τ =0.4
τ =0.6

2≅sT 4≅sT 6≅sT

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t (sec)

y(
t)

 

 

Proposed Method τ=0.2
Haeri’s method
Shen et al.

1 2 3 4 5 6

0.8

0.9

1

1.1

1.2

t (sec)

y(
t)

 

 
Proposed Method τ=0.2
Haeri’s method
Shen et al.

10 11 12 13 14 15

0.95

1

1.05

1.1

1.15

t (sec)

y(
t)

 

 
Proposed Method τ=0.2
Haeri’s method
Shen et al.

829



)(

))()((
2

1
2

2
3

12

ωωτ

ωω

−

−
= pp

i
kk

k                     (26) 

)/)((
)(

))()((3 2
112

1
2

2

12 ωω
ωωτ

ωω
i

pp
d k

kk
k −

−

−
=                (27) 

The parameter sT/1=τ  is set to specify a desired settling 
time of step response. 1ω  and 2ω  are lower and upper 
operating frequency bounds of control system. The control 
system works in low frequency region. Considering equations 
(25)-(27), one should select 012 >> ωω  to obtain positive 
finite real controller coefficients. 

 
3. Numerical Examples  
 
Example 1: In this example, we design PID controller with the 
time constant 1.0=τ  sec for the high order plant function 
given in equation (20) by using second-order reduced model 
obtained by SBL fitting. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 5. (a) Bode plots of the high-order system ( )(sG ) and the 
second-order approximate model ( )(2 sG ); (b) SBL lines of 

)(sG  and )(2 sG . 
Bode diagram of )(sG  shown in Figure 5(a) indicates that 
phase response of )(sG  is limited to -180o and the phase 
limitation condition of second order model reduction is 
satisfied. We used two sampling points for the angular 
frequency of 04.01 =ω  rad/sec and 12 =ω  rad/sec. The 
second-order approximate model was found as, 

30119941.0
1)( 22

++
=

ss
sG                          (28) 

PID design was obtained as 23.268=pk , 1.994=ik  and 

8.18=dk  for the time constant 1.0=τ  sec by equations (25)-
(27). Figure 5(a) reveals a satisfactory overlapping of Bode 
phase and magnitude plots. This demonstrates that a good 
frequency response matching was obtained for the both system 
in this example. Figure 5(b) shows SBL lines of the high-order 
system ( )(sG ) and the second-order approximate model 
( )(2 sG ). Almost exact overlapping of SBL lines was obtained 
due to fact that SBL of )(sG  system presents a SBL curvature 
that suitable to implement by the second-order system 
dynamics. 

The designed PID control system exhibits almost the same 
step response for the both original and approximate systems as 
shown in Figure 6. This indicates that model order reduction is 
very effective and PID control system design for the high-order 
plant )(sG  is very successful.  
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6. Step responses of closed loop PID control system for 

)(sG  and )(2 sG . 
 
Example 2: This example shows second-order SBL model 
identification of DC motor by stimulating closed loop PI 
control system for oscillation. Then, we design PID control 
system for the angular velocity of DC motor shaft ( sw ) with 
settling in 0.5 sec. 
DC motor control is getting significance for the rotor speed 
control of unmanned electrical aerial vehicle (UAV) [13] and 
simple DC motors are well characterized modeled by second 
order transfer functions. In this test, we used simple DC motor 
model in Simulink/MATLAB [14]. 
(i) The simple DC motor model in Simulink/MATLAB was 
connected to a closed loop PI control system. 
(ii) By adjusting PI coefficients, two PI configurations 
oscillating the control system was found out as illustrated in 
Figure 7(a). Two SBL points ( pk , ik )=(-4.098, 0.01) at 

0847.01 =ω  and ( pk , ik ) =(-4.092,0.1) at 2671.02 =ω  cause 
oscillation of the closed loop control system. 
(iii) The second-order model of the DC motor model was 
obtained by using proposed SBL fitting as, 

099.4394.10935.0
1)( 22

++
=

ss
sG   (29) 

In order to obtain a settling time roughly 0.5 sec, the time 
constant should be taken as 1.05/5.0 =≈τ  sec. The PID 
design for )(2 sG  was obtained for this model as 96.23=pk , 
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50.93=ik , 41.1=dk . Figure 7(b) compares the results of the 
PID controller for the both original and identified models. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

 

 

 

 

Fig. 7. (a) Oscillation of the closed loop PI control system with 
simple DC motor model, (b) Step responses of closed loop PID 
control systems for )(2 sG  and DC motor model.  

4. Conclusions  
The paper introduced a SBL based model approximation 

approach for the application of model order reduction and 
demonstrated a solution for analytical PID control system 
design examples for high-order systems by using model 
reduction. We observed that SBL model approximation method 
can be helpful for dealing with stability preservation problem in 
a desired frequency region. This property is important for 
controller design methods employing the model reduction. 

One of the main drawbacks of the proposed analytical PID 
design method is that it allows PID designs for the plant 
complying with the phase limitation condition for second order 
model reduction. 

Since SBL points yield oscillating system behavior, SBL 
approximation can be used for identification of the real plants 
by finding low frequency oscillation points of closed loop PI 
control systems. This modeling strategy can be useful for 
online auto-tuning of PID controllers for second order systems 
by detecting a couple of oscillating PI controller points. 
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