'ELECO'99 INTERNATIONAL CONFERENCE ON ELECTRICAIL. AND ELECTRONICS ENGINEERING”

E01.39/A4-43

MODELING MAGNETIZATION CHARACTERISTICS OF MATERIALS USED IN POLE LEG OF
DC MACHINES WITH ARTIFICIAL NEURAL NETWORKS AND ITS COMPARISON WITH CUBIC
SPLINE METHOD

K.Nur BEKIROGLU, Thsan CANAKOGLU, ibrahim SENOL, Sibel ZORLU
Yildiz Technical University, Faculty of Electric and Electronics, Department of Electrical Engineering, 80750
Yildiz, Besiktas-Istanbul, TURKIYE Tel: 902122597070/ Ext. 2555
Fax: 902122594967 E-mail: nbekir@yildiz.edu.tr

Abstract: In this study, magnetization characteristics of
materials constituting polar leg in DC machines is
modeled with artificial neural networks applied to
Sfinite elements method. Cubic spline method is
preferred for modeling magnetization curves of
electrical materials when solving non-linear field
problems with finite elements method. As the method
results in large errors at the points where the curve
changes fast, modeling is processed after the curve is
divided into several parts at those points. This leads to
an increase in modeling costs. Such a disadvantage is
dismissed by modeling the curves with artificial neural
networks. For learming processes in the artificial
neural networks, the back propagation training
algorithm is used.

1LINTRODUCTION

This present paper deals first with Cubic spline method
in numerical modeling of v-B® curves when solving
non-linear problems with the finite elements method and
then the v-B? curve obtained by using the magnetization
curve of the chosen DC machine is modeled with cubic
spline and artificial neural networks in order to compare
the results.

2. OBTAINING v - B> CURVES FOR ELECTRICAL
MATERIALS

In order to apply Newton-Raphson method on non-linear
isotropic problems in solving non-linear problems with
finite elements method, reluctivity of elements and their
slopes with respect to B? must be calculated [1].

By using the energy expression,

W=B.H 1
curves v = f ( B?) are obtained from B-H curves by
using the following:

W=v.B? @
B’=W/v A3)
3.MODELLING v - B> CURVES WITH CUBIC
SPLINE

The cubic spline method, onc of the exponential
function approximation methods for B-H curves, is
highly preferred in the application of finite elements
method to electromagnetic problems. In this paper, the

algorithm given below [2] is used to model the
magnetization curve of a DC shunt motor (3.5 kW, 440

V, 9.5 A, 2900 rpm)with cubic spline. Used material is

rolled out vertically and has a thickness of 5 mm.

In order to construct and evaluate a cubic spline

interpolant S(x) for N+1 data points (3, v0 ) , (X, 1 )
(xx , Y~ ), provision is made for the following

choices of endpoint constraints:

(i) “ Clamped cubic spline” ; specify S'(xo) and
S.(XN).

(ii ) *“ Natural cubic spline”

(iii ) Extrapolate S" (X) to the endpoints.

(iv)S’(x) is constant near the endpoints.

(v) Specify S"(x) at each endpoint.

H(0):=X(1)-X(0)
D(O):=[Y(1)-Y(0)VH(0)

FOR K=l TO N-1 DO

(Difference in abcissa)
(Difference quotient)

HEK)=X(K+1)-X(K)
D(K):=[Y(K+1)-Y(K)VH(K)
A(K):=H(K)
B(K):=2*[H(K-1)+H(K)]
CK):=H(K)

FOR K=1TON-1DO (Determine the column vector)
V(K) =6*[DK) - DK-1)]
CASES (Modify the matrix and/or column vector)

(Difference in abcissa)
(Difference quotient)
(Subdiagonal elements)
(Diagonal elements)
(Superdiagonal elements)

(i) SetB(1):=B(1) - H(0)/2

V(1):=V(1)-3*[D(0)-S  (xo)]
B(N-1):=B(N-1) - H(N-1)/2

VN-1):=V(N-1)-3%[ S (xy)-D(N-1)]
(Input S’ (x x))

(Input S (x o))

(ii) Set M(0):=0 and M(N) :=0

(iii) Set B(1):= B(1) + H(0) + H(0)*H(0)/H(1)
C(1):= C(1) - H(O)*H(0)/H(1)
B(N-1):=B(N-1) + H(N-1)
+ H(N-1)*H(N-1)/H(N-2)
AN-2):= A(N-2) - H(N-1)*H(N-1)/H(N-2)

(iv) Set B(1):= B(1) + H(0) and
B(N-1):= B(N-1) + H(N-1)
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(InputS (xq))
(InputS’ (xx))

) SetV(1):=V(1)-H(0)* S (x0)
V(N-1):=V(N-1)-H(N-D*S’

END
FOR K=2 TO N-1 DO

T:= AK-1)/BX-1)
B(K):= B(K) - T*C(K-1)
V(K):= V(K) - T*V(K-1)
M(N-1):=V(N-1)/B(N-1)
(Previous step is used to find my)

FOR K=N-2 DOWNTO 1 DO
M(K):= [V(K) - CRP*MEK+D}I/BK)

CASES{Determination of the values of M(0) and M(N)}
(i) Set M(0):=3*[D(0)-S  (x 0)}/H(0) - M(1)/2
MN):=3*[ S (x) - DIN-1)J/H(N-1) - M(N-1)/2
(ii) Set M(0) := 0 and M(N) := 0
(iii) Set M(0) := M(1) - HO)*[M(2) - M(1)/H(1)
M(N) := M(N-1) + H(N-1)*
[M(N-1) - M(N-2)}/H(N-2)

(iv) Set M(0) .= M(1) and M(N) := M(N-1)

(V) Set M(0) := 8" (x¢) and M) := S’ (x)
END
FOR K=0 TO N-1 DO

SK,0):=Y(K) (Coefficients for each cubic polynomial
Si(x) are computed and stored)

S(K, 1):=DX)-HEK)*[2*MEK)+MK+1))/6

S(K,2):= M(K)/2

S(K,3):= [MX+1) - M)/ [6*H(K)]

{Procedure for evaluating the cubic spline above on

[xoxn] }
INPUTX (Input the independent variable)

FOR J=1 TO N DO

IF X(J-1)xX<X(J) THEN

SetK:=J-1 and J:=N (Finding the interval)
IF X=X(0) THEN SetK =0

W:=X-X(K) (Spline evaluation)
Z:= [[SEK,3)*W + SK,2)PFW + SEK,D]*W +5(K,0)

PRINT “The value of the spline S(x) is” Z (Output)
B-H curve which represents magnetic flux density
varies as a function of magnetic field intensity for this
DC shunt motor is given in Figure 1.

When equation (2) is used in equation (1) in order
to obtain the reluctivity in terms of H and B,

B.H=v.B? @)
is obtained. After the necessary simplifications,
magnetic reluctivity is calculated as:
v=H/B &)
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Figure 1. Magnetic flux variation as a function of
magnetic field intensity.

Reluctivity values, as obtained by applying B-H values
read from the magnetization curve in Figure 1 in the
equation (5), are given in Table 1. The variation of
reluctivity as a function of the square of magnetic flux
density is given in Figure 2.

Table 1. Reluctivity values calculated as related to
Band H.

H(A/m) | B(T) | v(A/mT)
0 0 0
100 1.45 69
150 1.5 100
300 1.55 193.6
500 L6 312.5
600 1.62 370.4
750 1.65 454.6
1000 1.68 595.2
1200 1.7 705.9
1500 1.725 869.6
1800 175 1028.6
2300 1.775 1295.8
2900 1.8 1611.1
3800 1.825 2082.2
5000 1.85 2702.7
7500 1.87 4010.7
8700 1.88 4627.7
11500 1.9 6052.6
13200 1.91 6911
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Figure 2. v-B® characteristics obtained by using the
magnetization curve in Fig. 1.

Coefficients Sy, Sk1, Si.2 and Sy 3  obtained by using the
program written with the previously given algorithm, are
used for modeling v-B? curve with cubic spline and
given in Table 2.

Table 2. Coefficients calculated according to the
algorithm used in modeling v-B? curve with cubic
spline.

Sz
0.00
42.74
2198.17
-499.43
2120.20
3163.22
5169.19
-560.55
2781.17
-1512.41
9626.00
-2307.55
17433.84
9746.32
76895.88
38736.28
-67588.2
68096.65
0.00

B%
0.00
2.10
2.25
2.40
2.56
2.62
2.72
2.82
2.89
2.98
3.06
3.15
3.24
3.33
3.42
3.50
3.53
3.61
3.65

Sko S
0.00 2.92
68.97 92.68
100.00 | 428.82
193.55 | 683.63
312.50 | 942.96
370.37 | 880.38
454.55 | 1080.97
59524 | 1541.84
705.88 | 1697.28
869.57 | 1811.47
1028.5 | 2460.56
1295.7 | 3119,22
1611.1 | 4480.58
2082.1 | 5172.46
2702.7 | 112159
4010.7 | 20466.4
4627.6 | 196009
6052.6 | 19641.6

6910.9 0.00

Ses
6.78
| 4789.84
| -5994.67 |
5457.57 |
-29352.3 |
27774.72 |
-19099.1
15012.95
-15002.1 |
46410.01
-44198.3
73116.26
-100667
320897.0
-158998
-1181385 |
5653543 |
-567472 |
0.00 |

Reluctivity values obtained for intermediate values as
the result of modeling with cubic spline are given in
Table 3.

Table 3. v-B? values obtained as the result of modeling
with cubic spline.

B o |
0.50 2.31
0.75 5.05
1.00 971
1.50 27.28
200 60.12
2.10 68.97
2.15 7431
2.20 83.46
230 126.19
2.45 227.17
[ 2.50 262.38
2.60 351.73
2.66 394 68
275 | 491.12
285 | 64142
2.94 795.71
3.00 905.57
3.10 1139.57
3.20 1455.10 |
3.30 1920.96 |
3.47 343586
357 5339.74
3.62 6255.29
3.65 6910.93

In modeling with cubic spline, initial values of the curve
deviate excessively as shown in Figure 3.
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Fig. 3. v-B? curve obtained in the result of modeling
with cubic spline.

4. MODELLING v - B> CURVES WITH ARTIFICIAL
NEURAL NETWORKS

The cubic spline method generates large errors at points
where the curve varies drastically; therefore modeling
operation must be carried out after dividing the curve
into several parts at those points. This requirement
increases modeling costs. This flaw is corrected by the
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application of artificial ncural networks for modeling the
curves. In artificial neural nctworks meinod, back-
propagation of crror algorithm is uscd for learning
operation. [3]

As it is known, back propagation algorithm is used in
order to minimize the squared error function between
the desired output and actual output of a multi-layer
feedforward perceptron In this present paper, the
algorithm is applied as it is shown below in order to
model the curve with artificial neural networks.

STEP 1 Designate the initial weight values as small
random values.

Enter input and desired outputs. Present a
continuous input vector Xo, Xi,...., Xu.
and determine outputs dg, d,...., dy. If
the net is used as a classifier, all outputs
except the one corresponding to the class
from which the input originates are set to
0. The desired output is 1. Input may be a
new one at each trial or samples from a
training set can be presented over and over
until the weights become balanced.
Calculate actual outputs,

Adjust weights. Use an algorithm that
works backwards starting from the output
nodes and repeats itself by returning to the
first hidden layer. Adjust weights with the
following formula:

wi(t+1) = w () +ndx

In this equation, w;(t) is a weight from a
hidden node i or is a weight from an input

STEP 2.

STEP 3.
STEP 4.

at time t from node j. x'j is either an

output from node j or an input, n is a gain

term and §,, is the error term for node j.
STEP 5. Go back to Step 2 and repeat [4].
The net is trained first by choosing small random
weights and internal thresholds and then by introducing
all training data over and over again. Weights are
adjusted after each trial until the correct approach is
obtained by using additional data and the cost function
has an acceptable value. In back propagation, methods
such as permitting extra hidden layers, lowering the gain
term used in order to adjust weights and repeating many
training trials with different random weight sets are
proposed in order to increase performance and decrease
formation of local minimums. A difficulty arising from
back propagation error is the fact that in most cases,
number of training data presentations necessary for
approximation is high.
As there is only one input and one output for artificial
neural networks in modeling the curve v -B? , number of
nodes in input and output layers is identical and equal
to 1. Four nodes are chosen in hidden layer. Network
structure for this architecture is presented in Figure 4.

Results of modeling with artificial neural networks has
been calculated for different iteration values and

learning cocfficients As there is not any linear
relationship between iteration and learning, appropriate
number of iterations has been investigated and 10,000
tterations have been found to be sufficient.

Error variation as related to iteration as a result of
modeling with artificial neural networks is presented in
Figure 5. Absolute error is approximately 2% around
10,000 iterations.
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Figure 4. Network architecture used in modeling.
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Figure 5. Error variation as related to iteration in
modeling with artificial neural networks
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Curve v-B® as a result of this modeling is presented in

Figure 6.
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Figure 6. Curve v-B’ obtained as a result of modeling
with artificial neural networks
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5 RESULTS

Curve v-B obtained by modeling with artificial neural
networks method, when compared to the curve obtained
by modeling with cubic spline method, shows that the
former approach is more successful. Application of
artificial neural networks is not susceptible to extreme
deviations in the initial values as it is the case in
modeling with cubic spline and both modeling costs and
duration decrease considerably.

A single hidden layer is used in modeling with artificial
neural networks. The effects of an increase in the
number of hidden layers on the modeling results are not
investigated. As other parameters (momentum
coefficient, learning coefficient and number of
iterations) vary with the number of hidden layers,
learning is affected largely but no linear relationship
exists between an increase in the values of those
parameters and improvement in learning.
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