Implementation of Enigma Machine Using
Verilog on an FPGA

Deniz Engin
Istanbul Technical University
Istanbul, Turkey
Email: enginde @itu.edu.tr

Abstract—The Enigma machine was used in the twentieth
century for enciphering and deciphering secret messages. It
has been implemented on an Field Programmable Gate Array
(FPGA) in this paper. The Enigma machine is kind of poly
alphabetic cipher. In other words, even if input is the same letter,
output can be a different letter. Therefore, the Enigma machine
can not be broken by using easy methods of cryptanalysis as
frequency analysis.

The Enigma machine in this paper has common properties
with the Enigma machine which was used in the Second World
War. The only difference is that it has been implemented on
an FPGA rather than a mechanical implementation. Verilog
hardware description language (HDL) has been used in this
implementation.

Keywords—The Enigma Machine, Digital System Design,
Cryptography

I. INTRODUCTION

The Enigma machine was an electromechanical device and
was used for ciphered communication [1]. Arthur Sherbius
invented the Enigma machine and he took out his first patent
in 1918. Different types of Enigma machines were produced
between 1918 and 1938. The German military bought about
thirty thousand Enigma machines and these machines had been
sent distinctive areas during wars for secret communication.
The Enigma machine is known by its fame in the Second
World War. Because of breaking Enigma machine, course of
events changed during the Second World War. Each type of
Enigma machine has different parts. For instance, first Enigma
machine which is basic while the Enigma machine which was
used the Second World War is complicated. Day by day, the
Enigma machines had been improved encryption features.

This project has been designed based on report titled
“Enigma code breaking using a Field Programmable Gate
Array” [2]. In this report, authors illustrated simple implemen-
tation of the Enigma machine on an FPGA and the brute-force
breaking of the Enigma machine using Java.

In this work, some properties have been added such as
plugboard and key settings, therefore hardware design has
been altered. Plugboard settings can be defined as one of key
settings which are important inputs for encryption. These set-
tings were changed for each day during the Second World War.
In previous project [2], key settings was not inputs, therefore
key settings were identified once during the implementation. In
this project, key settings can be altered for each encryption.

Berna Ors
Istanbul Technical University
Istanbul, Turkey
Email: siddika.ors @itu.edu.tr

Key settings are not only inputs but also they are used to
configure the Enigma Machine before encryption.

This paper is organised as follows: Specifications of the
Enigma machine and key settings have been described in
Section II. Section III shows that how the Enigma machine
works and implementation of the Enigma Machine on an
FPGA. Simulation results are given in Section IV. Finally,
conclusions are in Section V.

II. THE ENIGMA MACHINE

The Enigma machine consists of some components which
are a 26 letters keyboard, a 26 letters lampboard, an en-
try wheel, three rotating wheels (rotors), a reflector, and
a plugboard (stecker). These components are illustrated in
Fig. 1. There are 26 letters on the keyboard. When a letter
is pressed on the keyboard, an electric signal is created on
the keyboard and later another letter is sent to plugboard.
The last part of the Enigma machine is lampboard which is
connected to the plugboard and it demonstrates cipher letter.
The entry wheel connects to the plugboard to the right wheel.
It does not perform any changes. Three wheels come from
the Enigma machine scrambler. Each wheel has 26 contacts
which represent letters of the alphabet on each side. The
reflector exchanges each letter in pair which is determined
before encryption. There are some types of reflector such as
B, C, and D. Due to reflector, a letter can never turn into itself,
this feature makes easier cryptanalysis. In plugboard, number
of cable which depends on key can be most 13. Some of the
letters on the plugboard can be wired up to other letters. If one
of them is not plugged to another letter, plugboard step skip.
In other words, a letter can never change on the plugboard and
then the letter is sent to next step which can be lampboard or
wheel [1], [3], [4].

A. Key Settings

A key consists of some properties which are ordering of
three wheels and initial wheel settings. Moreover, plugboard
settings and type of reflector can be defined as key settings
for encryption. According to these, encryption results change.

Firstly, three wheels can be positioned in six ways which
are 70127, 70217, 102, 1207, 7201, ”210”. For example,
order of wheels has been chosen as 210" in Figure 2.
Secondly, wheel initial positions can be chosen from letters.

945

"0
BN E
EE L R

-

Plaghoasd

Figure 1: The Enigma Machine [1]

Also, people who use the Enigma machine decide how many
wire is used for encryption and which letters can be pair on
the plugboard. Type of reflector is another important setting
for the Enigma machine. In the Second World War, reflector
B was used. As wheel, types of reflector is determined during
manufacturing [1].

III. IMPLEMENTATION

As shown in Figure 2, the block diagram explains the
algorithm in this project. First of all, the input letter comes at
the plugboard. If the input letter is one of the letter pairs on the
plugboard, alteration is performed. Otherwise, the input letter
without alteration is sent to entry drum which transmits the
letter to the right wheel. After essential alteration is performed
on the right wheel, this wheel rotates one position. If the
right wheel turns 26 times, the middle wheel turns once.
Accordingly, if the middle wheel turns 26 times, the left wheel
turns once. Therefore, the left wheel turns slowly. The letter
is proceed throughout three wheels and performed alteration.
When the letter comes at the reflector, it is swapped with the its
pair and later it turn back the same path. Wheel positions are
never changed in the return path. In this implementation, each
letter has been linked to a number which defines as macro.
For instance; A has been linked to zero, B has been linked
to one, C has been linked to two and so on. In addition, new
module has been written in order to display result as letter.
This module assigns each number to ascii code. Thanks to
this module, simulation results are meaningful that is input
and output can be letter. Plugboard, wheel, and reflector are
submodules in this project. Enigma is also the top module.
All wheels have distinctive enciphering. For example, A has
been linked to B on the left wheel, on the other hand,
A has been linked to E on the right wheel. As mention
above, encryption rules of the wheels are settled on during
manufacturing and never change. Base wheel settings have

Left Middle Right Entry
Reflector Wheel Wheel Wheel Drum
2 1 0
G G
D D N W W W
4 B!
| ‘ Y| X
| /H H\
| \
X b4 \B P
—
- O -
) 1

Plugboard
i

INPUT OuTPUT

Figure 2: Block Diagram

been defined for each wheel in the top module, therefore
same wheel module has been used for three wheels. Wheel
orders and initial positions are determined by user. According
to these, base wheel settings are applied and then the letter
is enciphered in the system. Reflector has been chosen type
B and keyed to the type B. Plugboard settings have been
specified randomly. In this project, implementation of the

Figure 3: RTL Schematic 1

Enigma machine has been realised. Register Transfer Level
(RTL) Schematic demonstrates inputs and output of the overall
system in Figure 3. Key settings which are wheel order, wheel
positions and input letter have been defined as input. Besides,
output has been defined as encrypted letter. As illustrated in
Figure 4, components of the Enigma machine can be shown.

946

Figure 4: RTL Schematic 2

IV. SIMULATION RESULTS

There are four main modules which are plugboard, reflector,
enigma, wheel in this project. Different modules of the Enigma
machine have been tested separately and then overall system
has been tested.

In this project, Xilink ISE Design Suite 14.7, Verilog HDL
and ISIM simulator have been used and Spartan 3E has been
chosen for implementation. Device utilization summary of the
design has been generated and it is demonstrated in Figure 5.
Synthesis results illustrate that estimated footprint and blocks
before running on the board.

[Device Utilization Summary (estimated vahues) =]
Used Available:

| utilization

354 560 8%

140 1920

T 1920 33%

27 o 5%6%
\ : = =

Figure 5: Device Utilization Summary

A. Plugboard Test

Plugboard settings have been chosen that B has been linked
to T, G has been linked to Z, M has been linked to U, Q has
been linked to Y. Pin has been defined as number of the input
letter, Pout has been defined as number of the output letter.
Letter displays the output letter. If the input letter is G which
refers to 6, the expected output letter is Z which refers to 25.

Simulation results demonstrate that the output letter is Z in
Figure 6.

» B2 Pouti4:0]
» B fetters:0]
» B Pinfa:0]

Figure 6: Plugboard simulation result

B. Reflector Test

As mention in the implementation section, Reflector B has
been chosen for this project. According the this reflector, if
the input letter is A, the output letter must be Y. Similarly, if
the input letter is Y, the output letter must be A. Din has been
defined as number of the input letter, Dout has been defined
as number of the output letter. Letter displays the output letter.
If the input letter is C which refers to 2, the expected output
letter is U which refers to 22. Simulation results demonstrate
that the output letter is U in Figure 7.

Figure 7: Reflector simulation result

947

C. Rotate Test

If the right wheel rotates 26 times, the middle wheel rotates
once. In other words, when 26 letters are enciphered on the
Enigma machine, the middle wheel rotates once.

Two variables which are “rotate_in” and “rotate_out” have
been used to control rotating. “rotate_in” and ‘“rotate_out”
have been defined as one bit. If “rotate_in” is one, the
wheel rotates once. On the other hand, if the wheel turns 26
times, “rotate_out” is one. Then, next wheel rotates once. “ro-
tate_out” of the right wheel has been connected to “rotate_in”
of the middle wheel. In a similar way, “rotate_out” of the
middle wheel has been connected to “rotate_in” of the left
wheel. Position which is the top of simulation results rep-
resents the right wheel position. “rotate_in” and “rotate_out”
belong to the right wheel. Second position which is the middle
of the simulation results represents the middle wheel position.
In addition, “rotate_in” and ‘“rotate_out” which are below in
simulation results belong to the middle wheel.

As demonstrated in Figure 8, simulation results show that
if the right wheel turns 26 times, “rotate_out” which belogs
to the right wheel is one. Then, “rotate_in"" which belongs to
the middle wheel is one. Moreover, position alters.

Figure 8: Rotate simulation results

D. Wheel Test

The right wheel has been tested in this section. One module
has been written for all wheels. If the one wheel works
properly, all wheels work properly that can be assumed. There
are two encryption on the wheel. Correspondingly, there are
two inputs and two outputs. “Din_left” has been defined as
input of forward encryption and “Dout_right” has been defined
as output of forward encryption. Similarly, “Din_right” has
been defined as input of back encryption and “Dout_left” has
been defined as output of back encryption. “rotate_in” and
“rotate_out” have been explained in the rotate test subsection.

If “Din_left” is A which refers to O and the position is B
which refers to 1, “Dout_right” must be K which refers to
10. If “Din_right” is G which refers to 6 and the position is B
which refers to 1, “Dout_left” must be K which refers to 10. In
this test, “Dout_left” and “Dout_right” are same. However, this
is coincidence. As illustrated in Figure 9, simulation results
are correct. In addition to this, when the ‘“rotate_in” is one,
position is changed. Only “rotate_in” which belongs to the
right wheel has been defined as an input. For each input letter,
it must be one.

E. Enigma Test

Enigma is the top module and Figure 10 demonstrates the
overall system results. Din has been defined as the input letter.
Dout has been defined as the output letter which is encrypted

Figure 9: Wheel test simulation results

letter. Letter displays the output letter. Key settings which are
initial positions, wheel orders and plugboard pairs have been
chosen randomly. In this settings, Din has been chosen A and
then it was encrypted. Dout is S which is refer to 18.
“initial_position_0” has been defined as initial position of
the right wheel and chosen B which refers to 1.
“initial_position_1" has been defined as initial position of
the middle wheel and chosen B which refers to 1.
“initial_position_2" has been defined as initial position of
the left wheel and chosen B which refers to 1.
“wheel_order_07, “wheel_order 17, and “wheel_order_2”
have been defined as order which can be 0, 1, or 2. According
to this order, each wheel is located in the Enigma machine. As
mention in the previous sections, “rotate_in” which belongs to
the right wheel and it has been defined as an input.

» B Douti:0]
B ietterfs0]
i start
1-L. reset
"

B Dinf:0]

Wi initial

B initial

Bl initial_po [
B& wheel_order_0[1:0]
Wi wheel_order 1[1:0]
Bl wheel_order_2[1:0]
]B rotate_in

Figure 10: Enigma simulation results

V. CONCLUSION

As a result of implementation, a cryptosystem has been
realised on an FPGA. In addition, simulation results illus-
trate that cryptosystem works properly. Implementation of
the Enigma machine is previous project [2] which has been
altered. Thus, the Enigma machine which was used to the
Second World War has been implemented.

REFERENCES

[1] S. Singh, The code book : how to make it, break it, hack it, crack it.
Delacorte Press, 2002.

[2] C.van Reeuwijk, “Enigma code breaking using a field programmable gate
array,” Delft University of Technology Parallel and Distributed Systems,
Report Series PDS-2002-001, 2002.

[3] A. M. Turing and B. J. Copeland, The Essential Turing: Seminal Writings
in Computing, Logic, Philosophy, Artificial Intelligence, and Artificial Life
plus The Secrets of Enigma. Oxford University Press, 2004.

[4] R. F. Churchhouse, Codes and Ciphers: Julius Caesar, the Enigma, and
the Internet. Cambridge University Press, 2001.

948

