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ABSTRACT 

A combined neural network model based on the 
consideration that electrocardiogram (ECG) signals are 
chaotic signals was presented for detection of 
electrocardiographic changes in patients with partial 
epilepsy. This consideration was tested successfully using 
the nonlinear dynamics tools, like the computation of 
Lyapunov exponents. Two types of ECG beats (normal and 
partial epilepsy) were obtained from the MIT-BIH 
database. The computed Lyapunov exponents of the ECG 
signals were used as inputs of the combined neural network 
model and then performance of the proposed model was 
evaluated. 
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I. INTRODUCTION 
The electrocardiogram (ECG) signal is the recording of 
the bioelectrical and biomechanical activities of the 
cardiac system. It provides valuable information about 
the functional aspects of the heart and cardiovascular 
system. Epileptic seizures are associated with several 
changes in autonomic functions, which may lead to 
cardiovascular, respiratory, gastrointestinal, cutaneous, 
and urinary manifestations. Cardiovascular changes have 
received the most attention, because of their possible 
contribution to sudden unexplained death in epilepsy 
patients. The ECG should be reviewed for high risk 
cardiac abnormalities during epileptic seizures. A change 
in heart rate can be used as an extra clinical sign and can 
be very informative with respect to the first manifestation 
of the epileptic discharge [1, 2]. 
 
Many authors have shown that combining the predictions 
of several models often results in a prediction accuracy 
that is higher than that of the individual models [3-5]. The 
general framework for predicting using an ensemble of 
models consists of two levels and is often referred to as 
stacked generalization [6]. In the first level, various 

learning methods are used to learn different models from 
the original data set. The predictions of the models from 
the first level along with the corresponding target class of 
the original input data are then used as inputs to learn a 
second level model. As neural networks are among the 
most popular models for pattern classification, numerous 
studies that report on theoretical and experimental results 
on combining the neural network predictions can be 
found in the literature [3-5].  
 
In this study, experimental results on combining neural 
network predictions for detection of electrocardiographic 
changes in partial epileptic patients were presented. The 
computation of Lyapunov exponents was the basis for 
feature extraction from the ECG signals. The ECG 
signals from the MIT-BIH database [7] were used to train 
and test the proposed model. A rectangular window, 
which was formed by 256 discrete data, was selected so 
that it contained a single ECG beat. In the development 
of combined neural network for the detection of 
electrocardiographic changes in partial epileptic patients, 
for the first level models we used two sets of neural 
networks because there were two possible outcomes of 
the detection of electrocardiographic changes (normal 
beat, partial epilepsy beat). In order to reduce the 
dimensionality of the extracted feature vectors, statistics 
were used over the set of the Lyapunov exponents. The 
selected Lyapunov exponents defining the chaotic 
behavior of the ECG signals were used as inputs of the 
first level neural network. Networks in each set were 
trained so that they are likely to be more accurate for one 
type of beat than the other beat. The predictions of the 
networks in the first level were combined by a second 
level neural network. We were able to achieve significant 
improvement in accuracy by applying neural networks as 
the second level model compared to the stand-alone 
neural network used in our previous study [2]. 
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II. LYAPUNOV EXPONENTS 
Lyapunov exponents are a quantitative measure for 
distinguishing among the various types of orbits based 
upon their sensitive dependence on the initial conditions, 
and are used to determine the stability of any steady-state 
behavior, including chaotic solutions. The reason why 
chaotic systems show aperiodic dynamics is that phase 
space trajectories that have nearly identical initial states 
will separate from each other at an exponentially 
increasing rate captured by the so-called Lyapunov 
exponent [2, 8]. This is defined as follows. Consider two 
(usually the nearest) neighboring points in phase space at 
time 0 and at time t , distances of the points in the i -th 
direction being )0(ixδ  and )(txiδ , respectively. The 
Lyapunov exponent is then defined by the average 
growth rate iλ  of the initial distance, 
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The existence of a positive Lyapunov exponent indicates 
chaos. This shows that any neighboring points with 
infinitesimal differences at the initial state abruptly 
separate from each other in the i -th direction. In other 
words, even if the initial states are close, the final states 
are much different. This phenomenon is sometimes called 
sensitive dependence on initial conditions. Generally, the 
Lyapunov exponents can be estimated either from the 
equations of motion of the dynamic system (if it is 
known), or from the observed time series. The latter is 
what is of interest due to its direct relation to the work in 
this paper. The idea is based on the well-known technique 
of state space reconstruction with delay coordinates to 
build a system with Lyapunov exponents identical to that 
of the original system from which our measurements 
have been observed. Generally, Lyapunov exponents can 
be extracted from observed signals in two different ways. 
The first is based on the idea of following the time-
evolution of nearby points in the state space. This method 
provides an estimation of the largest Lyapunov exponent 
only. The second method is based on the estimation of 
local Jacobi matrices and is capable of estimating all the 
Lyapunov exponents [2, 8]. 
 

III. COMBINED NEURAL NETWORK MODELS 
Combined neural network models often result in a 
prediction accuracy that is higher than that of the 
individual models. This construction is based on a 
straightforward approach that has been termed stacked 
generalization. The stacked generalization concepts 
formalized by Wolpert [6] and refer to schemes for 
feeding information from one set of generalizers to 
another before forming the final predicted value (output). 

The unique contribution of stacked generalization is that 
the information fed into the net of generalizers comes 
from multiple partitionings of the original learning set. 
The stacked generalization scheme can be viewed as a 
more sophisticated version of cross validation and has 
been shown experimentally to effectively improve 
generalization ability of artificial neural network (ANN) 
models over using stand-alone neural networks [3-5].  
 
The multilayer perceptron neural networks (MLPNNs) 
were used at the first level and second level for the 
implementation of the combined neural network proposed 
in this study. This configuration occured on the theory 
that MLPNN has features such as the ability to learn and 
generalize, smaller training set requirements, fast 
operation, ease of implementation. In both the first level 
and second level analysis, the Levenberg-Marquardt 
training algorithm was used.  
 

IV. APPLICATION RESULTS 
 

FEATURE EXTRACTION BY COMPUTING 
LYAPUNOV EXPONENTS 

In the present study, the technique used in the 
computation of Lyapunov exponents was related with the 
Jacobi-based algorithms. The Lyapunov exponents of the 
typical segment of ECG signals obtained from a normal 
subject and a subject with partial epilepsy are given in 
Figures 1 and 2, respectively. It can be noted that the 
Lyapunov exponents of the typical segment of ECG 
signals obtained from normal subject differ significantly 
from the Lyapunov exponents of the typical segment of 
ECG signals obtained from subject with partial epilepsy. 
As it is seen from Figures 1 and 2 there are positive 
Lyapunov exponents, which confirm the chaotic nature of 
the ECG signals obtained from normal subjects and 
subjects with partial epilepsy. The Lyapunov exponents 
were computed using the MATLAB software package.  
 
For each ECG signal, 128 Lyapunov exponents were 
computed. The following statistical features were used to 
reduce the dimensionality of the Lyapunov exponents:  
1. Mean of the absolute values of the Lyapunov 

exponents for each signal. 
2. Maximum of the absolute values of the Lyapunov 

exponents for each signal.  
3. Average power of the Lyapunov exponents for each 

signal. 
4. Standard deviation of the Lyapunov exponents for 

each signal. 
5. Distribution distortion of the Lyapunov exponents for 

each signal. 
 

Features 1-5 represent the Lyapunov exponents 
distribution of the ECG signals. The feature vectors 
calculated for each signal were used for classification of 
the ECG beats.  
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Figure 1. Lyapunov exponents of a typical normal ECG 
beat 
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Figure 2. Lyapunov exponents of a typical partial 
epilepsy ECG beat 
 

APPLICATION OF COMBINED NEURAL 
NETWORK MODEL TO ECG SIGNALS 

The combined neural network topology used for the 
detection of electrocardiographic changes is shown in 
Figure 3. The network topology was the MLPNN with a 
single hidden layer. Each network had 5 input neurons, 
equal to the number of feature vectors (selected 
Lyapunov exponents). The feature vectors were 
calculated for each signal as explained in the section 
(feature extraction by computing Lyapunov exponents). 
Samples with target outputs normal beat and partial 
epilepsy beat were given the binary target values of (0,1), 
and (1,0), respectively. We trained second level neural 
network to combine the predictions of the first level 
networks. The second level network had 4 inputs which 
correspond to the outputs of the two groups of the first 
level networks. The targets for the second level network 
were the same as the targets of the original data. 
 
In both the first level and second level, training of neural 
networks was done in 300 epochs since the cross 
validation errors began to rise at 300 epochs. Since the 

values of mean square errors (MSEs) converged to small 
constants approximately zero in 300 epochs, training of 
the neural networks with the Levenberg-Marquardt 
algorithm was determined to be successful. The adequate 
functioning of neural network depends on the sizes of the 
training set and test set. In this study, training and test 
sets were formed by  360 vectors (180 vectors from each 
class) of 5 dimensions (selected Lyapunov exponents). 
The 160 vectors (80 vectors from each class) of 5 
dimensions were used for training and the 200 vectors 
(100 vectors from each class) of 5 dimensions were used 
for testing. A practical way to find a point of better 
generalization is to use a small percentage (around 20%) 
of the training set for cross validation. For obtaining a 
better network generalization 32 vectors (16 vectors from 
each class) of training set, which were selected randomly, 
were used as cross validation set. 
 
The test performance of the combined neural network 
was determined by the computation of the following 
statistical parameters: 
Specificity: number of correct classified normal beats / 
number of total normal beats 
Sensitivity: number of correct classified partial epilepsy 
beats / number of total partial epilepsy beats  
Total classification accuracy:  number of correct 
classified beats / number of total beats 
 
The values of these statistical parameters are given in 
Table 1. The normal beats and partial epilepsy beats were 
classified with the accuracy of 98.50%. The total 
classification accuracy of the stand-alone MLPNN 
presented in our previous study [2] (trained with the 
Levenberg-Marquardt algorithm, 128 Lyapunov 
exponents used as inputs) was 97.50%. Thus, the 
accuracy rates of the combined neural network model 
presented for this application were found to be higher 
than that of the stand-alone neural network model used in 
the previous study [2].  
 
Table 1. The values of statistical parameters 
Statistical parameters Values 
Specificity 99.00% 
Sensitivity  98.00% 
Total classification accuracy 98.50% 

 
V. CONCLUSION 

In order to classify the ECG beats, two sets of neural 
networks were trained. The learning targets were 
modified so that the trained networks would predict one 
particular beat with higher accuracy than the other type of 
beat. Improvement in accuracy was obtained by training 
new neural networks to combine the predictions of the 
original networks. The combined neural network used for 
the detection of electrocardiographic changes was trained, 
cross validated and tested with the computed Lyapunov 
exponents of the ECG signals obtained from normal 
subjects and subjects suffering from partial epilepsy. The 
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dimensionality of the extracted feature vectors was 
reduced by the usage of statistics over the set of the 
Lyapunov exponents. The conclusions drawn in the 
applications demonstrated that the Lyapunov exponents 
are the features which are best representing the ECG 
signals and by the usage of the selected Lyapunov 
exponents in the combined neural network model best 
distinction between classes can be obtained. 
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Figure 3. A combined neural network topology used for the detection of electrocardiographic changes  
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