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PREFACE 

 

The aim of this project is to predict the perfomance of a parallel computer system using 

an Elman recurrent neural network model. Data about several attributes of computers - 

like CPU speed, problem dimension, arithmetic operation time, memory access, 

network connection and so on - are given the created network to train it in order to be 

able to predict future performance of the system. 

 

The two methods of heuristic search, Genetic Algorithm and Simulated Annealing 

Algorithm are separately used to optimize the weights of the recurrent multi-layer 

neural network system. 

 

I would like to express my thanks to the supervisor of this project, dear Mrs. Assist. 

Prof. Dr. Sırma Yavuz, for her help and support in all respects on every time. 
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ABSTRACT 

 

This project is an implementation of Elman recurrent neural network model which is 

then optimized with Genetic Algorithm and Simulated Annealing Algorithm. These 

models are used to predict the arithmetic operation and communication performance of 

parallel systems using preceding data taken from them. 

 

In opposition to multi-layer feed-forward networks, the output of a hidden unit on 

recurrent networks is sent back in order to be used as an input on the next step. Beside 

the input, hidden and output layer, a set of "context units" is added in the input layer 

here. There are connections from hidden layer to these context units with random 

weights or fixed with a value of one. At each time step, the input is propagated in a 

standard feed-forward fashion, and then a learning rule (usually back-propagation) is 

applied. The back connections result in the context units always maintaining a copy of 

the previous values of the hidden units (since they propagate over the connections 

before the learning rule is applied). 

 

Since Elman network is basically trained with a standard back-propagation algorithm, 

there are trained the feed-forward connections only, and the feed-back connections are 

left as constant values. The right selection of these connection values is very important 

on training success of these networks, so in order to eliminate the limitations and make 

the training more effective, one of the best approaches is to use heuristic search 

algorithms which perceive the weights of the network as parameters.  

 

So, first the Genetic Algorithm and then the Simulated Annealing Algorithm is used to 

train an Elman network. Finally the results are compared.    
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ÖZET 

 

Bu projede temel genetik algoritma ve benzetilmiş tavlama algoritmaları ile optimize 

edilmiş basit geri dönüşümlü Elman ağı modeli gerçeklenmiştir. Gerçeklenen model 

gerçek veriler kullanılarak paralel sistemlerin aritmetik işlem ve haberleşme 

performansı tahmini için kullanılmıştır. 

 

Çok katmanlı ileri beslemeli yapay sinir ağlarının aksine, geri dönüşümlü ağlarda, işlem 

elemanlarının çıktıları ağa belirli bir şekilde geri gönderilerek girdi olarak kullanılır.  

Girdi, ara katman ve çıktı elemanlarının yanı sıra bir de içerik elemanları vardır. İçerik 

elemanları, ara katman elemanlarının bir önceki aktivasyon değerlerini hatırlamak için 

kullanılırlar. Ağın bir t zamanındaki durumu, hem o andaki girdilere, hem de t-1 

zamanındaki ara katman elemanlarının aktivasyon değerlerine bağlıdır. İleri doğru 

hesaplama yapıldıktan sonra oluşan ara katman elemanlarının aktivasyon değerleri, 

geriye doğru içerik elemanlarına gönderilir ve bir sonraki iterasyonda kullanılmak üzere 

saklanır.  

 

Elman ağı temelde standart geriyayılım (back-propagation) öğrenme algoritması ile 

eğitilmektedir. Bu algoritmanın uygulanmasında, ağın sadece ileribesleme bağlantıları 

eğitilebilmekte, geribesleme bağlantıları ise, kullanıcının önceden deneme yanılma 

yoluyla belirlediği değerlerde sabit kalmaktadır.  Bu ağlarda eğitme başarısı için, 

geribesleme bağlantı değerlerinin doğru seçilmesi oldukça önemlidir. Bu sınırlamaları 

ortadan kaldırarak ağın daha başarılı bir şekilde eğitilebilmesi için yapılan 

yaklaşımlardan birisi, ağdaki her bir ağırlık değerini birer parametre olarak algılayabilen 

dolayısıyla ileribesleme ya da geribesleme bağlantısı ayrımı yapmayan sezgisel 

algoritmaların eğitme amacıyla kullanılması olmuştur.  

 

Bu projede, bu  amaçla önce temel genetik algoritma kullanılmıştır. Daha sonra da etkili 

bir rasgele araştırma algoritması olan benzetilmiş tavlama algoritması gerçeklenerek 

sonuçlar kıyaslanmıştır. 



 

 

1. INTRODUCTION 

 

Before we move to the steps of the project let’s see something about structures which 

are going to be used. The main structure here is an artificial neural network. 

1.1. ARTIFICIAL NEURAL NETWORKS 

 

As it was noticed, this project is a kind of implementation of neural network, so it is 

necessary to first take some knowledge about neural networks.  

 

 
Figure 1.1 A simple neural network structure 

 

1.1.1. What is a Neural Network? 

 

An Artificial Neural Network (ANN) is an information processing paradigm that is 

inspired by the way biological nervous systems, such as the brain, process information. 

The key element of this paradigm is the novel structure of the information processing 

system. It is composed of a large number of highly interconnected processing elements 

(neurones) working in unison to solve specific problems. ANNs, like people, learn by 

example. An ANN is configured for a specific application, such as pattern recognition 

or data classification, through a learning process. Learning in biological systems 

involves adjustments to the synaptic connections that exist between the neurones. This 

is true of ANNs as well. 
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1.1.2. Historical Background 

Neural network simulations appear to be a recent development. However, this field was 

established before the advent of computers, and has survived at least one major setback 

and several eras.  

Many importand advances have been boosted by the use of inexpensive computer 

emulations. Following an initial period of enthusiasm, the field survived a period of 

frustration and disrepute. During this period when funding and professional support was 

minimal, important advances were made by relatively few reserchers. These pioneers 

were able to develop convincing technology which surpassed the limitations identified 

by Minsky and Papert. Minsky and Papert, published a book (in 1969) in which they 

summed up a general feeling of frustration (against neural networks) among researchers, 

and was thus accepted by most without further analysis. Currently, the neural network 

field enjoys a resurgence of interest and a corresponding increase in funding.  

The first artificial neuron was produced in 1943 by the neurophysiologist Warren 

McCulloch and the logician Walter Pits. But the technology available at that time did 

not allow them to do too much.  

1.1.3. Why Use Neural Networks? 

Neural networks, with their remarkable ability to derive meaning from complicated or 

imprecise data, can be used to extract patterns and detect trends that are too complex to 

be noticed by either humans or other computer techniques. A trained neural network can 

be thought of as an "expert" in the category of information it has been given to analyze. 

This expert can then be used to provide projections given new situations of interest and 

answer "what if" questions. Other advantages include:  

1. Adaptive learning: An ability to learn how to do tasks based on the data given 
for training or initial experience.  

2. Self-Organisation: An ANN can create its own organisation or representation of 
the information it receives during learning time.  

3. Real Time Operation: ANN computations may be carried out in parallel, and 
special hardware devices are being designed and manufactured which take 
advantage of this capability. 

4. Fault Tolerance via Redundant Information Coding: Partial destruction of a 
network leads to the corresponding degradation of performance. However, some 
network capabilities may be retained even with major network damage. 
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1.1.4. Architecture of Neural Networks 

There are several types of neural networks. The commonest type of artificial neural 

network consists of three groups (layers) of units: a layer of "input" units is connected 

to a layer of "hidden" units, which is connected to a layer of "output" units.  

• The activity of the input units represents the raw information that is fed into the 

network.  

• The activity of each hidden unit is determined by the activities of the input units 

and the weights on the connections between the input and the hidden units.  

• The behaviour of the output units depends on the activity of the hidden units and 

the weights between the hidden and output units. 

We also distinguish single-layer and multi-layer architectures. The single-layer 

organization, in which all units are connected to one another, constitutes the most 

general case and is of more potential computational power than hierarchically structured 

multi-layer organizations. In multi-layer networks, units are often numbered by layer, 

instead of following a global numbering 

1.1.4.1 Feed-forward networks 

Feed-forward ANNs allow signals to travel one way only; from input to output. There is 

no feedback (loops) i.e. the output of any layer does not affect that same layer. Feed-

forward ANNs tend to be straight forward networks that associate inputs with outputs. 

They are extensively used in pattern recognition. This type of organization is also 

referred to as bottom-up or top-down.  

1.1.4.2. Feedback networks 

Feedback networks can have signals travelling in both directions by introducing loops 

in the network. Feedback networks are very powerful and can get extremely 

complicated. Feedback networks are dynamic; their 'state' is changing continuously 

until they reach an equilibrium point. They remain at the equilibrium point until the 

input changes and a new equilibrium needs to be found. Feedback architectures are also 

referred to as interactive or recurrent, although the latter term is often used to denote 

feedback connections in single-layer organisations. 
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1.1.5. Recurrent Neural Networks  

 

Recurrent Neural Networks (RNN) have a closed loop in the network topology. They 

are developed to deal with the time varying or time-lagged patterns and are usable for 

the problems where the dynamics of the considered process is complex and the 

measured data is noisy. Specific groups of the units get the feedback signals from the 

previous time steps and these units are called context unit. The RNN can be either fully 

or partially connected. In a fully connected RNN all the hidden units are connected 

recurrently, whereas in a partially connected RNN the recurrent connections are omitted 

partially. Examples of recurrent neural networks are Hopfield networks, Regressive 

networks, Jordan-Elman networks, and Brain-State-In-A-Box (BSB) networks. 

 

 
Figure 1.2 A recurrent neural network architecture 

 

All types of recurrent neural networks are normally trained with the back-propagation 

learning rule by minimizing the error by the gradient descent method. Mostly they use 

some computational units which are called associative memories or context units, that 

can learn associations among dissimilar binary objects, where a set of binary inputs is 

fed to a matrix of resistors, producing a set of binary outputs. The outputs are '1' if the 

sum of the inputs is above a given threshold, otherwise it is zero. The weights (which 

are binary) are updated by using very simple rules based on Hebbian learning. These are 

very simple devices with one layer of linear units that maps N inputs (a point in N 

dimensional space) onto M outputs (a point in M dimensional space). However, they 

remember the past events.  

 



 

 

5

1.1.5.1. Jordan-Elman Networks 

 

Jordan and Elman networks combine the past values of the context unit with the present 

input (x) to obtain the present net output. The Jordan context unit acts as a so called 

lowpass filter, which creates an output that is the weighted (average) value of some of 

its most recent past outputs. The output (y) of the network is obtained by summing the 

past values multiplied by the scalar parameter τ n. The input to the context unit is copied 

from the network layer, but the outputs of the context unit are incorporated in the net 

through their adaptive weights. 

     (1.1) 

In these networks, the weighting over time is inflexible since we can only control the 

time constant (i.e. the exponential decay). Moreover, a small change in time is reflected 

as a large change in the weighting (due to the exponential relationship between the time 

constant and the amplitude). In general, we do not know how large the memory depth 

should be, so this makes the choice of τ problematic, without having a mechanism to 

adopt it.  

In linear systems, the use of past input signals creates the moving average (MA) 

models. They can represent signals that have a spectrum with sharp valleys and broad 

peaks. The use of the past outputs creates what is known as the autoregressive (AR) 

models. These models can represent signals that have broad valleys and sharp spectral 

peaks. The Jordan net is a restricted case of a non-linear AR model, while the 

configuration with context units fed by the input layer is a restricted case of non-linear 

MA model. Elman’s net does not have a counterpart in linear system theory. These two 

topologies have different processing power. 
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1.2. GENETIC ALGORITHM 

 

A Genetic Algorithm (GA) is a heuristic search technique used in computing to find 

true or approximate solutions to optimization and search problems. Genetic algorithms 

are a particular class of evolutionary algorithms that use techniques inspired by 

evolutionary biology such as inheritance, mutation, selection, and cross-over (also 

called mating or recombination). 

 

The genetic algorithm is a method for solving both constrained and unconstrained 

optimization problems that is based on natural selection, the process that drives 

biological evolution. The genetic algorithm repeatedly modifies a population of 

individual solutions. At each step, the genetic algorithm selects individuals at random 

from the current population to be parents and uses them produce the children for the 

next generation. Over successive generations, the population "evolves" toward an 

optimal solution. The genetic algorithm can solve a variety of optimization problems 

that are not well suited for standard optimization algorithms, including problems in 

which the objective function is discontinuous, nondifferentiable, stochastic, or highly 

nonlinear. 

 

The genetic algorithm uses three main types of rules at each step to create the next 

generation from the current population: 

• Selection rules select the individuals, called parents, that contribute to the 

population at the next generation.  

• Cross-over rules combine two parents to form children for the next generation.  

• Mutation rules apply random changes to individual parents to form children. 

 

Popular and well-studied selection methods include roulette wheel selection and 

tournament selection. There can be several methods of cross-over. Three basic methods 

are uniform, one-point and two-point cross-over.  
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1.3. SIMULATED ANNEALING ALGORITHM 

 

Simulated Annealing (SA) is a generic probabilistic meta-algorithm for the global 

optimization problem, namely locating a good approximation to the global optimum of 

a given function in a large search space. It was independently invented by S. 

Kirkpatrick, C. D. Gelatt and M. P. Vecchi in 1983, and by V. Černý in 1985. It 

originated as a generalization of a Monte Carlo method for examining the equations of 

state and frozen states of n-body systems. 

The name and inspiration come from annealing in metallurgy, a technique involving 

heating and controlled cooling of a material to increase the size of its crystals and 

reduce their defects. The heat causes the atoms to become unstuck from their initial 

positions (a local minimum of the internal energy) and wander randomly through states 

of higher energy; the slow cooling gives them more chances of finding configurations 

with lower internal energy than the initial one. 

By analogy with this physical process, each step of the SA algorithm replaces the 

current solution by a random "nearby" solution, chosen with a probability that depends 

on the difference between the corresponding function values and on a global parameter 

T (called the temperature), that is gradually decreased during the process. The 

dependency is such that the current solution changes almost randomly when T is large, 

but increasingly "downhill" as T goes to zero. The allowance for "uphill" moves saves 

the method from becoming stuck at local minima – which are the bane of greedier 

methods. 

In the simulated annealing (SA) method, each point s of the search space is compared to 

a state of some physical system, and the function E(s) to be minimized is interpreted as 

the internal energy of the system in that state. Therefore the goal is to bring the system, 

from an arbitrary initial state, to a state with the minimum possible energy. At each 

step, the SA heuristic considers some neighbor s' of the current state s, and 

probabilistically decides between moving the system to state s' or staying put in state s. 

The probabilities are chosen so that the system ultimately tends to move to states of 

lower energy. Typically this step is repeated until the system reaches a state which is 

good enough for the application, or until a given computation budget has been 

exhausted. 
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2. FEASIBILITY ANALYSIS 

 

This application is planned to be completed on about 10 weeks (50 work-days) 

including here all the steps needed for software development. First 4 weeks are 

dedicated for research and preliminary studies about recurrent artificial neural networks 

and algorithms which have to be used to train the network, and also their earlier 

performances on this kind of implementation. On the following two weeks the system 

model structure has to be designed, the related diagrams have to be drawn, all these 

based on the scenario described earlier. Then the classes have to be created and the 

coding phase has to take the next three weeks. On the final week the results will be 

compared and other analysis have to be done. 

 

2.1. Technical  and Economical Feasibility   

 

The program is planned to be written on Java. The minimum system requirements for 

the application are as follows: 

 

Table 2.1 Hardware requirements 

 

Equipment Attribute Cost

CPU 1.8 GHz 60 $ 

Motherboard 400 MHz FSB 40 $ 

RAM 512 MB 20 $ 

Monitor 15” 40 $ 

Video Card 64 MB 25 $ 

Hard Disk 40 GB 20 $ 

 

Since there will be only a single Java application, a computer with minimal system 

configuration will be enough to run it. The total cost for the hardware would be about 

250 $, including here other necessary accessories like input devices (keyboard, mouse), 

PC case, etc. 
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As for software requirements, there will be enough for operating system to have a JVM 

(Java Virtual Machine) – JRE (Java Run-time Environment) and JDK (Java 

Development Kit) installed – whatever is it (Linux or Windows), of course, it is more 

logical to use the cheaper one. 

 

Table 2.2 Software requirements 

 

Type Name Cost 

Operating System Linux FREE 

Environment/Compiler program JRE FREE 

 

 

The project has to be developed by one person working 4 hours daily with a cost 5$ per 

hour. The total labor cost for this project is expected to be: (10 weeks)*(5 days)*(4 

hours)*(5 $) = 1000 $. 
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3. THE ELMAN RECURRENT NEURAL NETWORK STRUCTURE AND ITS’ 

IMPLEMENTATION 

 

As it was noticed earlier, the characteristic of an Elman network is the addition of 

copies of the hidden unit values to its’ input layer which already contains the real 

inputs. In this way the number of neurons on the input layer is increased by the number 

of neurons on the hidden layer, which will act as input units at further steps of training 

in order to get better results. Before we pass to an implementation of the Elman net, let 

us first see its’ structure and workflow. 

 

3.1. The Elman Recurrent Neural Network Structure 

A simple recurrent Elman net consists of three layers: input, hidden and output; where 

each neuron of a layer is connected to those of the subsequent one and vice versa, i.e. 

the connections between two layers, one with m units and the other with n units, can be 

represented by an m-to-n matrix. 

 
 

Figure 3.1 Elman recurrent neural network model structure 

The Elman network has sigmoid or tangent hyperbolic neurons in its hidden (recurrent) 

layer, and linear neurons in its output layer. This combination is special in that two-

layer networks with these transfer functions can approximate any function (with a finite 
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number of discontinuities) with arbitrary accuracy. The only requirement is that the 

hidden layer must have enough neurons. More hidden neurons are needed as the 

function being fitted increases in complexity. 

 

Note that the Elman network differs from conventional two-layer networks in that the 

first layer has a recurrent connection. The delay in this connection stores values from 

the previous time step, which can be used in the current time step. Thus, even if two 

Elman networks, with the same weights and biases, are given identical inputs at a given 

time step, their outputs can be different because of different feedback states. Because 

the network can store information for future reference, it is able to learn temporal 

patterns as well as spatial patterns. The Elman network can be trained to respond to, and 

to generate, both kinds of patterns. 

The input values are given from the outside, so it is not necessary to keep them in a 

special data structure, therefore it will be enough to keep them on an array which will be 

used to train the network. The length of this array has to be equal to the number of input 

units plus the number of hidden units.  

The output data are also given from the outside to train the network, while on the other 

hand the network adjustes the weights between layers and gives the predicted output 

values. Training the network can be done based on several patterns, so in order to 

understand and make the operations easier, it is appropriate to use two dimensional 

arrays to keep all these data. 

 

As it is shown on the figure below, there are two matrices which will be used on 

training the net, trainInputs[][] and trainOutputs[][]. Throughout the training phase, 

the weights of synapses between input-hidden layer; and hidden-output layer are 

adjusted on each epoch. The weight values are also kept on matrices, weightsIH[][] and 

weightsHO[][]. Finally, there are two more structures, one for hidden unit values 

hiddenVal[] and the other for predicted output values outPred[], all these calculated 

based on the error rate of one step earlier kept on errThisPat[]. 
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Figure 3.2 Elman recurrent neural network model class-diagram 

 

The other data types used on the application are numEpochs (number of training 

epochs), numInputs (input neurons), numHidden (hidden neurons), numOutputs 

(outputs), numPatterns (input-output patterns), LR_IH (input-hidden synapse learn 

ratio), LR_HO (hidden-output synapse learn ratio) and RMSerror (root mean square 

error) or PRCerror (percentage error) 

 

snumPattern

errThisPat
RMS i

i∑
=

2

     (3.1) 

 

snumPattern

tstrainOutpuerrThisPat
PRC i

ipatNumi )/100*( ,∑
=    (3.2) 
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3.2. The Backpropagation Training Algorithm 

 

As it was discussed earlier, for multilayer networks the output of one layer becomes the 

input to following layer. The equations that describe this operation are 

 

)( 1111 ++++ += mmmmm baWfa  for 1,...,1,0 −= Mm   (3.3) 

 

where M is the number of layers in the network. The layers in the first layer receive 

external inputs: 

istrainInputpa ==0      (3.4) 

 

which provides the starting point for Equation 3.3. The outputs of the neurons in the last 

layer are considered the network outputs: 

i
M edoutaa Pr==       (3.5) 

The backpropagation algorithm uses a mean square error as a performance index. The 

algorithm is provided with a set of examples of proper network behavior: 

 

},{},...,,{},,{ 2211 QQ tptptp     (3.6) 

or  },{},...,,{ ,,1,1, QpatNumQpatNumpatNumpatNum tstrainOutpustrainInputtstrainOutpustrainInput  

 

where p is an input and t is a corresponding target output of the network. And the error 

which has to be minimized is the RMSerror of Equation 3.1, expressed here as: 

 

])[(][)( 22 atEeExF −==      (3.7) 

 

The steepest descent algorithm for the approximate RMSerror is 
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where w’s are the weights of the synapses, b’s are the bias and α  is the learning rate. 
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By applying the partial derivatives of functions using the chain rule, it becomes: 

 

,)()()1( 1 Tmmmm askWkW −−=+ α     (3.10) 
mmm skbkb α−=+ )()1(      (3.11) 

where    m
m

n
Fs

∂
∂

≡        (3.12)  

 

is a backpropagation sensitivity which will be used on adjusting the wights and n’s are 

the output values of neurons. Then another application of the chain rule on the partial 

derivative of the error function gives us the Jacobian matrix which can be written as: 
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∂      (3.13) 

where       (3.14) 
11 ))(( ++= mTmmmm sWnFs      (3.15) 

 

Now we can see where the backpropagation algorithm derives its name. The 

sensitivities are propagated backward through the network from the last layer to the first 

layer: 

.... 121 ssss MM →→→→ −     (3.16) 

 

Finally, the starting point Ms for the recurrence relation of Equation 3.15 is obtained at 

the final layer by taking a partial derivative of an error function on the last layer output, 

and is expressed as 

))((2 atnFs MMM −−=     (3.17) 
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3.3. The Elman Recurrent Neural Network Training Algorithm 

 

To better understand the mathematical operations on the Elman net, it would be useful 

to take a glance at the flow diagrams designed in here. 

The first one is the main program. After initializing the data and weight values, on the 

first step of training, the methods are called once for each pattern in order to assign the 

first values to the hidden units. Then these values are copied to the additional units of 

the input layer, and beginning from the second step of the training, this procedure is 

done on every step. 

 
Figure 3.3 The main program flow-diagram 
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The calcNet() method is called on each training epoch, to calculate the values of hidden 

and output values of the network. The activation functions used for the hidden units are 

tanh (Tangent Hyperbolic) and/or sigm (Sigmoid). 

 

 
 

Figure 3.4 Flow-diagram for a method calcNet() 

 

The tangent hyperbolic activation function is used most commonly when the output 

values are supposed to be bipolar (-1,1) 

 

xx

xx

ee
eex −

−

+
−

=)tanh(      (3.18) 

 

The sigmoid activation function is used for the positive output values 

xe
xsigm −+
=

1
1)(      (3.19) 
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The weight-change methods also depend to the activation functions. As the hidden 

neurons are tanh and the output neurons are linear here, the flow diagrams of 

weightChangesIH() and weightChangesHO() look like on the figure below. 

 

 
 

Figure 3.5 Methods used to calculate the weight changes on each epoch, 

weightChangesIH() and weightChangesHO() 
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3.4. Implementation of the Elman Recurrent Neural Network Model to the XOR 

Problem 

 

As it was noticed earlier, a neural network can be taught to recognize different functions 

or patterns by adjusting the weights of the neuron connections. The goal here is to teach 

our neural network model to learn the XOR problem. The learning algorithm used on 

training the Elman net is ususally a standard back-propagation algorithm, which trains 

the feed-forward connections only. The initial weights of these connections can be 

generated randomly or given manually. The learning rates can also be given manually. 

 

The model used in here is one with two input units (two input values of binary 0 and 1), 

four hidden neurons and one output. After the first epoch, the copies of hidden neurons 

are made to act as input units, so the number of input units is increased to seven. The 

number of patterns used in here is equal to the number of input combinations (0-0, 0-1, 

1-0 and 1-1) of the XOR operation. The weights between input layer and hidden layer 

on the epoch t are calculated in relation with the activation function of the hidden 

neurons (sigm or tanh), the output values, error ratio on t-1 and input-hidden learning 

rate which is set to 0.5, while the hidden-output learning rate is supposed to be several 

times less (here it is set to 0.2). The initial values of the weights are assigned random 

values. 

The net is trained with 200 epochs. Depending on the activation functions used on the 

hidden layer the results below were taken. Meanwhile, the activation function for the 

outputs was set to linear. 

 

Table 3.1 Elman network model training results for the XOR problem 

Activation function RMSerror PRCerror 

Tangent hyperbolic 3.193677903391579E-11 2.1654660388069725E-8 

Sigmoid 1.0017472443744082E-8 3.9129976506488164E-6 

 

As it is shown on the table, the results for both activation functions, tanh and sigm, are 

acceptable. We will analyze these results in more details later in Section 6, 

Experimental Results. 
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4. USING GENETIC ALGORITHM TO OPTIMIZE THE ELMAN NETWORK 

 

In Section 3.2 back-propagation was introduced. Back-propagation is a very effective 

means of training a neural network. However, there are some inherent flaws in the back-

propagation training algorithm. One of the most fundamental flaws is the tendency for 

the back-propagation training algorithm to fall into a “local minima”. A local minimum 

is a false optimal weight matrix that prevents the back-propagation training algorithm 

from seeing the true solution. 

 

In this section we will see how we can use genetic algorithm (GA) to supplement back-

propagation and elude local minima by seeking a more optimal solution, if one does 

exist. The genetic algorithm theory was introduced in Section 1.2, and now we will see 

its structure and operations. 

 

Genetic algorithm works by generating new individuals on the population created at the 

beginning. Every individual is a complete solution for the problem where the algorithm 

is used and is represented by a chromosome. Chromosomes are consisted of genes, 

which are, depending on the problem nature, the individual components of a solution. 

Determining a way to break a problem into related components (genes) is a very 

important part of the analysis of the problem that is to be used with a genetic algorithm. 

Here, on the neural networks, the set of all weights and bias is represented by a 

chromosome and each weight or bias value is a gene. 

 

4.1. How Genetic Algorithms Work? 

 

Now that we have seen the structure of a genetic algorithm, we will proceed to discuss 

how genetic algorithms actually work. A genetic algorithm begins by creating an initial 

population. This population consists of chromosomes that are given a random collection 

of genes. The steps involved in a genetic algorithm are as follows: 
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1. Create an initial population of chromosomes 

2. Evaluate the fitness or “suitability” of each chromosome that makes up the 

population 

3. Based on this fitness, select the chromosomes that will mate or those that have the 

“privilege” to mate 

4. Cross-over or mate the selected chromosomes and produce offspring 

5. Randomly mutate some of the genes of the chromosomes 

6. Repeat steps three through five until a new population is created 

7. The algorithm ends when the best solution has not changed for a preset number of 

generations 

 

Genetic algorithms strive to determine the optimal solution to a problem by utilizing 

three genetic operators. These operators are selection, cross over, and mutation. GAs’ 

search for the optimal solution until specific criteria is met causing termination. These 

results include providing good solutions as compared to one “optimal” solution for 

complex (such as “NP hard” or non-polynomial hard) problems. NP-hard defers to a 

problem which cannot be solved in polynomial time. Most problems solved with 

computers today are not NP-hard and can be solved in polynomial time. A P-problem or 

polynomial problem is a problem where the number of steps to complete the answer is 

bounded by a polynomial. A polynomial is a mathematical expression involving 

exponents and expressions. A NP-hard problem does not increase exponentially. An 

NP-hard problem often increases at a much greater rate, often described by the factorial 

operator (n!). One example of an NP-hard problem is the traveling salesman problem. 

 

As it was noticed earlier, in a genetic algorithm, the population is comprised of 

organisms. Each of these organisms is composed of the single chromosome which 

represents one complete solution to the defined problem. On the initial population the 

genes of the chromosomes are usually initialized to random values based on the 

boundaries defined. 
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4.1.1. Calculating Fitness 

Once the population is initialized, the fitness (suitability) for each organism has to be 

calculated. These is done by transforming genes of the chromosome to the weights and 

bias of the neural network, and calling the CalcNet() function defined earlier to 

calculate the outputs for each layer. Finally the RMSerror calculated here is a fitness 

value of the related chromosome.  

Based to their fitness, the chromosomes inside the population are sorted beginning from 

that with a smallest fitness (RMSerror here, which will be minimized) which also 

represents the best solution to the neural network. 

 

4.1.2. Mating 

Usually the first few chromosomes (1/4 from the top of the population) are selected as 

most favored mating individes which have to mate with theirself or with the other 

quarter (these together form the group of mating chromosomes), while the other half of 

population is intented to die. This is called tournament selection. 

The cross-over (mating) process is done by simply taking the two chromosomes which 

are going to mate and selecting two cut points. On this way both mating chromosomes 

are divided into three pieces. There would be created two new chromosomes (offspring) 

now, one taking its first and third part from the first parent and the second part from the 

second parent, and another taking the opposite parts. 

This method of crossing-over can lead us to the problem of no new genetic material 

being produced, so to escape this probability we have to mutate the children when 

created. 

 

4.1.3. Mutation 

Mutation allows new genetic patterns to be introduced that were not already contained 

in the population. The main parameter used here is the mutationRate which is taken 

from the user. This parameter simply decides how many genes on the new created 

chromosome have to be changed/mutated. These genes are selected randomly and 

replaced with the random values. 

It is practical to choose the mutation rate somewhere between 10% and 30%. If the high 

mutation rate is chosen, it will be performing nothing more than a random search. 
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5. USING SIMULATED ANNEALING ALGORITHM TO OPTIMIZE THE 

ELMAN NETWORK 

 

There was introduced in Section 1.3 the simulated algorithm theory. Now we will 

examine this another technique to train and optimize our neural network model. 

Simulated annealing has become a popular method of neural network training. 

5.1. The Simulated Annealing Algorithm Usage Areas 

Simulated annealing can be used to find the minimum of an arbitrary equation that has a 

specified number of inputs. It will find the inputs to the equation that will produce a 

minimum value. In the case of a neural network, this equation is the error function of 

the neural network. 

When simulated annealing was first introduced the algorithm was very popular for 

integrated circuit (IC) chip design. Most IC chips are composed internally of many logic 

gates. Simulated annealing is often used to find an IC chip design that has fewer logic 

gates than the original. This causes the chip to generate less heat and run faster. 

The weight and bias matrix of a neural network makes for an excellent set of inputs for 

the simulated annealing algorithm to minimize for. Different sets of weights and bias 

are used for the neural network, until one is found that produces a sufficiently low 

return from the error function. 

5.2. The Simulated Annealing Algorithm Structure 

We will now examine the structure of the simulated annealing algorithm. There are 

several distinct steps that the simulated annealing process goes through as the 

temperature is decreased, and randomness is applied to the input values. Figure 5.1 

shows this process as a flowchart. 

There are two major processes that are occurring during the simulated annealing 

algorithm. First, for each temperature the simulated annealing algorithm runs through a 

number of cycles. This number of cycles is predetermined by the programmer. As the 

cycle runs the inputs are randomized. Only randomizations which produce a better 

suited set of inputs will be kept. 
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Figure 5.1 The simulated annealing process flow-chart 

 

Once the specified number of training cycles has been completed, the temperature can 

be lowered. Once the temperature is lowered, it is determined of the temperature has 

reached the lowest allowed temperature. If the temperature is not lower than the lowest 

allowed temperature, then the temperature is lowered and another cycle of 

randomizations will take place. If the temperature is lower than the minimum 

temperature allowed, the simulated annealing algorithm is completed. 

 

At the core of the simulated annealing algorithm is the randomization of the input 

values. This randomization is ultimately what causes simulated annealing to alter the 

input values that the algorithm is seeking to minimize. This randomization process must 

often be customized for different problems. In the next section we will examine how 

this randomization occurs. 

 



 

 

24

To apply the simulated annealing algorithm to a neural network we simply treat the 

weights and bias of the neural network as the individual ions/atoms in the metal like 

were the genes of chromosomes on genetic algorithms. As the temperature falls, the 

weights of the neural network will achieve less excited states. As this process 

progresses the most optimal weight matrix is chosen, based on the error of the neural 

network. 

 

A neural network's weight matrix can be thought of as a linear array of floating point 

numbers. Each weight is independent of the others. It does not matter if two weights 

contain the same value. The only major constraint is that there are ranges that all 

weights must fall within. 

 

Because of this the process generally used to randomize the weight matrix of a neural 

network is relatively simple. Using the temperature, a random ratio is applied to all of 

the weights in the matrix. This ratio is calculated using the temperature and a random 

number. The higher the temperature, the more likely the ratio will cause a larger change 

in the weight matrix. A lower temperature will most likely produce a smaller ratio. 

 

 

5.2.1. The Input Matrix Randomization 

 

An important part of the simulated annealing process is how the inputs are randomized. 

This randomization process takes the previous values of the inputs and the current 

temperature as inputs. The input values are then randomized according to the 

temperature. A higher temperature will result in more randomization, while a lower 

temperature will result in less randomization. 

 

There is no exact method defined by the simulated annealing algorithm for how to 

randomize the inputs. The exact nature by which this is done often depends on the 

nature of the problem being solved. 
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5.2.2. Temperature Reduction 

 

There are several different methods that can be used for temperature reduction. The 

most common is to simply reduce the temperature by a fixed amount through each 

cycle. 

Another method is to specify a beginning and ending temperature. This is the method 

that is used by the simulated annealing algorithm to train a neural network. To do this 

we must calculate a ratio at each step in the simulated annealing process. This is done 

by using an equation that guarantees that the step amount will cause the temperature to 

fall to the ending temperature in the number of cycles requested. The following equation 

shows how to logarithmically decrease the temperature between a beginning and ending 

temperature. 

1

log
ln

10

−
=

cycles
raturestartTempe
aturestopTemper

ratio     (5.1) 

 

Equation 5.1 calculates a ratio that should be multiplied against the current temperature. 

This will produce a change that will cause the temperature to reach the ending 

temperature in the specified number of cycles. 
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6. EXPERIMENTAL RESULTS 

 

In this section we will first implement the XOR problem, and then we will train the 

network with performance data from a parallel system in order to be able to predict the 

future performance of the system. On the first step for both problems, the neural 

network (which will be an Elman or a simple backpropagation model) will be trained 

until the acceptable result is achieved. On the second step the genetic algorithm will be 

used to optimize the not-well trained neural network, and on the third step the simulated 

annealing algorithm will be used and the results will be compared. The optimization 

here means the escaping from the local minima, so it must be done before the network is 

trained for too much epochs. 

 

6.1. The XOR Problem Results 

The Elman network is trained with XOR patterns and then the simple backpropagation 

network is trained with the same patterns. It is concluded that at the same circumstances 

an Elman net is more successful than the simple backpropagation net because among 

the training phase it can remember values from the previous step. Both Elman and 

simple backpropagation networks have the same structure here, with 2 input units, 4 

hidden units and 1 output unit, except an Elman net has weights between hidden layer 

and previous hidden layer. The results for both neural network structures are: 

 

Table 6.1 XOR problem with Elman net 
------------------------------------------------------------------------------------------- 

Network structure: Elman; Epochs: 100; Training patterns: 4 

Function: sigm; Learning Rate IH: 0.5; Learning Rate HO: 0.5 

------------------------------------------------------------------------------------------- 

pattern 1 : actual = 0.0 ; neural model = 2.599468829018736E-4 

pattern 2 : actual = 1.0 ; neural model = 1.000208116342466 

pattern 3 : actual = 1.0 ; neural model = 0.9998675564381211 

pattern 4 : actual = 0.0 ; neural model = -1.7784932485009897E-4 

====================================================== 

RMS error: 2.000352927389775E-4     % error: 0.00117189049764016 
---------------------------------------------------------------------------- 
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------------------------------------------------------------------------------ 
Test patterns: 4 

---------------------------------------------------------------------------------------------- 

pattern 1 : actual = 0.0 ; neural model = 2.632502531191294E-4 

pattern 2 : actual = 1.0 ; neural model = 1.0001606461371022 

pattern 3 : actual = 1.0 ; neural model = 0.999854639828709 

pattern 4 : actual = 0.0 ; neural model = -1.7796729846647485E-4 

======================================================== 

Test RMS: 1.9229522605510783E-4   Test %: 0.0011725907672351856 
------------------------------------------------------------------------------- 

As it is seen, the train error and test error values aren’t exactly equal, so from here we 

can conclude that even if two Elman networks, with the same weights and biases, are 

given identical inputs at a given time step, their outputs can be different because of 

different feedback states. But this conclusion isn’t valid for the simple backpropagation 

network. These are the results for the gradient-descent backpropagation net. 

 

Table 6.2 XOR problem with simple Back-propagation network 
------------------------------------------------------------------------------------------------ 

Network structure: Backpropagation; Epochs: 100; Training patterns: 4 

Function: sigm; Learning Rate IH: 0.5; Learning Rate HO: 0.5 

------------------------------------------------------------------------------------------------ 

pattern 1 : actual = 0.0 ; neural model = -3.854064398872703E-4 

pattern 2 : actual = 1.0 ; neural model = 0.999408116956466 

pattern 3 : actual = 1.0 ; neural model = 0.9988844859983493 

pattern 4 : actual = 0.0 ; neural model = -5.789860838435468E-4 

========================================================= 

RMS error: 7.20843262140387E-4    % error: 0.0027990260923235503 

------------------------------------------------------------------------------------------------- 

Test patterns: 4 

------------------------------------------------------------------------------------------------- 

pattern 1 : actual = 0.0 ; neural model = -3.854064398872703E-4 

pattern 2 : actual = 1.0 ; neural model = 0.999408116956466 

pattern 3 : actual = 1.0 ; neural model = 0.9988844859983493 

pattern 4 : actual = 0.0 ; neural model = -5.789860838435468E-4 

========================================================== 
Test RMS: 7.20843262140387E-4    Test %: 0.0027990260923235503 
------------------------------------------------------------------------------------------------- 
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Now that we have seen how the network is trained, let us implement the genetic 

algorithm to the seldom trained network and examine the results. The Elman net here 

will be first trained by 50 epochs. 

 

Table 6.3 XOR problem with Elman net + Genetic Algorithm 
-------------------------------------------------------------------------------------------------------- 

Network structure: Elman; Epochs: 50; Training patterns: 4 

Function: sigm; Learning Rate IH: 0.5; Learning Rate HO: 0.5 

-------------------------------------------------------------------------------------------------------- 

pattern 1 : actual = 0.0 ; neural model = 0.4440112286013108 

pattern 2 : actual = 1.0 ; neural model = 1.688279895399476 

pattern 3 : actual = 1.0 ; neural model = 1.4720734742078805 

pattern 4 : actual = 0.0 ; neural model = 0.08200389453923485 

============================================================== 

 RMS error: 0.47446105986304593    % error: 1.5787544827621267 

--------------------------------------------------------------------------------------------------------- 

Training with Genetic Algorithm; Patterns: 4; Generations: 100; Chromosomes: 20 

Genes: 33; Mutation rate: 0.1 (Genes to mutate: 3); Tolerated error: 0.1 

--------------------------------------------------------------------------------------------------------- 
Global fitness after generation 1: 0.25686650170233394 

Global fitness after generation 2: 0.25294703496841 

... 

Global fitness after generation 5: 0.22297126430482608 

Global fitness after generation 6: 0.14633793525620217 

Global fitness after generation 7: 0.18866205891859752 

Global fitness after generation 8: 0.18807751462143174 

Global fitness after generation 9: 0.16009019739851177 

Global fitness after generation 10: 0.1343656673941587 

... 

Global fitness after generation 13: 0.1380143798231657 

Global fitness after generation 14: 0.12822024305302349 

Global fitness after generation 15: 0.04801753916719025 

Minimum fitness reached. Generation: 15, Chromosome: 13 

--------------------------------------------------------------------------------------- 

pattern 1 : actual = 0.0 ; neural model = -0.032420528077555466 

pattern 2 : actual = 1.0 ; neural model = 1.0224313215002092 

pattern 3 : actual = 1.0 ; neural model = 0.9127374061101899 

pattern 4 : actual = 0.0 ; neural model = 0.007329471552531719 
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Before we implement the Simulated Annealing Algorithm, we must first clear the 

weight and bias values of the network and then train it by 50 epochs. 

 

Table 6.4 XOR problem with Elman net + Simulated Annealing Algorithm 
-------------------------------------------------------------------------------------------- 

Network structure: Elman; Epochs: 50; Training patterns: 4 

Function: sigm; Learning Rate IH: 0.5; Learning Rate HO: 0.5 

-------------------------------------------------------------------------------------------- 

pattern 1 : actual = 0.0 ; neural model = 0.2434689178163445 

pattern 2 : actual = 1.0 ; neural model = 1.4918457633155184 

pattern 3 : actual = 1.0 ; neural model = 1.5363939761963827 

pattern 4 : actual = 0.0 ; neural model = 0.34011675444619105 

======================================================= 
RMS error: 0.4196984849832267    % error: 1.6926550305454073 

--------------------------------------------------------------------------------------------- 

Training with Simulated Annealing Algorithm; Patterns: 4; Cycles: 50 

Iterations: 50; Beginning temperature: 10.0; Ending temperature: 1.0 

--------------------------------------------------------------------------------------------- 
Cycle 1; Best error: 0.5033215310316713 on cycle 1, Iteration 1 

Cycle 2; Best error: 0.5033215310316713 on cycle 1, Iteration 1 

...  

Cycle 6; Best error: 0.2475409481010761 on cycle 4, Iteration 3 

Cycle 7; Best error: 0.2475409481010761 on cycle 4, Iteration 3 

Cycle 8; Best error: 0.2475409481010761 on cycle 4, Iteration 3 

... 

Cycle 22; Best error: 0.21440644325369515 on cycle 21, Iteration 13 

Cycle 23; Best error: 0.09272519823225393 on cycle 23, Iteration 2 

... 

Cycle 48; Best error: 0.09272519823225393 on cycle 23, Iteration 2 

Cycle 49; Best error: 0.08857221337604591 on cycle 49, Iteration 7  

Cycle 50; Best error: 0.08857221337604591 on cycle 49, Iteration 7 

--------------------------------------------------------------------------------------------- 

pattern 1 : actual = 0.0 ; neural model = -0.05397223081416869 

pattern 2 : actual = 1.0 ; neural model = 0.8519022714293203 

pattern 3 : actual = 1.0 ; neural model = 0.9200968332601307 

pattern 4 : actual = 0.0 ; neural model = 0.012234907740365009 
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The two heuristic search algorithms used here to optimize the neural network, can also 

be used to train the untrained network. When used on untrained networks, these 

algorithms help the network find later the right way to the best solution and sometimes 

can also produce acceptable results. 

Now, let us see how the genetic algorithm trains the Elman network by 100 generations 

from the beginning and then with 50 epochs more the network achieves a good result: 

 

Table 6.5 XOR problem with Genetic Algorithm + Elman net 
--------------------------------------------------------------------------------------------------------- 

Training with Genetic Algorithm; Patterns: 4; Generations: 100; Chromosomes: 20 

Genes: 33; Mutation rate: 0.1 (Genes to mutate: 3); Tolerated error: 0.1 

--------------------------------------------------------------------------------------------------------- 

Global fitness of generation 1: 0.4826821018914213 

Global fitness of generation 2: 0.4873319197088622 

Global fitness of generation 3: 0.45935467520448736 

Global fitness of generation 4: 0.4596012847348321 

Global fitness of generation 5: 0.4596026834224938 

... 

Global fitness of generation 96: 0.3914234616416671 

Global fitness of generation 97: 0.3902614319098676 

Global fitness of generation 98: 0.39246451050253806 

Global fitness of generation 99: 0.392282929488879 

Global fitness of generation 100: 0.3913236101608219 

Maximum number of generations reached. 
============================================================== 

Network structure: Elman; Epochs: 50; Training patterns: 4 

Function: sigm; Learning Rate IH: 0.5; Learning Rate HO: 0.5 

--------------------------------------------------------------------------------------------------------- 

pattern 1 : actual = 0.0 ; neural model = -0.0034435765667126805 

pattern 2 : actual = 1.0 ; neural model = 0.9927042190126174 

pattern 3 : actual = 1.0 ; neural model = 0.9825246120897857 

pattern 4 : actual = 0.0 ; neural model = -0.00849173222889954 

============================================================== 

RMS error: 0.010518856147966629     % error: 0.035468083102120754 
--------------------------------------------------------------------------------------------------------- 
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This can also be done with Simulated Annealing algorithm. The weight and bias values 

of an untrained Elman neural network are simulated with annealing algorithm and then 

the network is trained by 50 epochs more. 

 

Table 6.6 XOR problem with Simulated Annealing Algorithm + Elman net 
---------------------------------------------------------------------------------------------------- 

Training with Simulated Annealing Algorithm; Patterns: 4; Cycles: 50 

Iterations: 50; Beginning temperature: 10.0; Ending temperature: 1.0 

---------------------------------------------------------------------------------------------------- 

Cycle 1; Best error: 0.6328501770268985 on cycle 1, Iteration 1 

Cycle 2; Best error: 0.6328501770268985 on cycle 1, Iteration 1 

... 

Cycle 13; Best error: 0.50204778317415 on cycle 10, Iteration 1 

Cycle 14; Best error: 0.50204778317415 on cycle 10, Iteration 1 

... 

Cycle 30; Best error: 0.35746206876490483 on cycle 30, Iteration 5 

Cycle 31; Best error: 0.35746206876490483 on cycle 30, Iteration 5 

... 

Cycle 40; Best error: 0.19196602927699388 on cycle 36, Iteration 9 

Cycle 41; Best error: 0.19196602927699388 on cycle 36, Iteration 9 

... 

Cycle 46; Best error: 0.17096161434240256 on cycle 46, Iteration 1 

Cycle 47; Best error: 0.17096161434240256 on cycle 46, Iteration 1 

Cycle 48; Best error: 0.17096161434240256 on cycle 46, Iteration 1 

Cycle 49; Best error: 0.17096161434240256 on cycle 46, Iteration 1 

Cycle 50; Best error: 0.17096161434240256 on cycle 46, Iteration 1 

------------------------------------------------------------------------------------------------------ 

Network structure: Elman; Epochs: 50; Training patterns: 4 

Function: sigm; Learning Rate IH: 0.5; Learning Rate HO: 0.5 

------------------------------------------------------------------------------------------------------ 

pattern 1 : actual = 0.0 ; neural model = -0.004071633984435774 

pattern 2 : actual = 1.0 ; neural model = 0.9957956685035073 

pattern 3 : actual = 1.0 ; neural model = 0.9927381840795297 

pattern 4 : actual = 0.0 ; neural model = -0.0016696276743943805 

============================================================ 

RMS error: 0.004737516059854354       % error: 0.016959096741839694 

------------------------------------------------------------------------------------------------------ 
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6.2. Parallel System Performance Prediction Results 

 

In previous section there was examined an example of training the neural network with 

XOR patterns, and now let us see how the neural network is trained with more complex 

data, such as those of a parallel system performance. Here the network structure is a bit 

wider than the previous one, consisting of 6 neurons on the input layer, 5 neurons on the 

hidden layer, and a linear output neuron. 

The Elman network is trained by 2000 epochs with 80 patterns of performance data 

taken from a parallel system of processors, and then the network is tested with 10 other 

patterns from the same data set. 

 

Table 6.7 Parallel System Performance Prediction problem with Elman net 
--------------------------------------------------------------------------------------------------------- 

Network structure: Elman; Epochs: 2000; Training patterns: 80 

Function: sigm; Learning Rate IH: 0.5; Learning Rate HO: 0.5 

--------------------------------------------------------------------------------------------------------- 

pattern 1 : actual = 0.002738336 ; neural model = 0.00277204424769828 

pattern 2 : actual = 0.012065316 ; neural model = 0.011524138794547278 

pattern 3 : actual = 0.052908872 ; neural model = 0.04727163042814719 

pattern 4 : actual = 0.23068656 ; neural model = 0.22537438826730471 

pattern 5 : actual = 0.999999109 ; neural model = 0.9953861921120465 

pattern 6 : actual = 0.002739227 ; neural model = -0.003625268320922803 

pattern 7 : actual = 0.012066207 ; neural model = 0.006630704583631242 

pattern 8 : actual = 0.052909763 ; neural model = 0.04891603860573934 

pattern 9 : actual = 0.230687451 ; neural model = 0.22381034998543714 

pattern 10 : actual = 1.0 ; neural model = 0.9920456272772359 

pattern 11 : actual = 0.001385383 ; neural model = -0.007049288166228851 

pattern 12 : actual = 0.006088417 ; neural model = -0.00253606970100384 

pattern 13 : actual = 0.026658913 ; neural model = 0.019546974249205484 

pattern 14 : actual = 0.116122525 ; neural model = 0.10886907958674219 

pattern 15 : actual = 0.503035302 ; neural model = 0.500650614826216 

pattern 16 : actual = 0.001386274 ; neural model = -3.4944146817639243E-4 

pattern 17 : actual = 0.006089308 ; neural model = 0.0026308592085216853 

pattern 18 : actual = 0.026659804 ; neural model = 0.024252291571972617 

pattern 19 : actual = 0.116123416 ; neural model = 0.1129556786884518 

pattern 20 : actual = 0.503036193 ; neural model = 0.49891589367858247 
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pattern 21 : actual = 0.001708906 ; neural model = -0.003095717054718339 

pattern 22 : actual = 0.003099968 ; neural model = -0.0032525513932691874 

pattern 23 : actual = 0.013533934 ; neural model = 0.007401902799262228 

pattern 24 : actual = 0.058840507 ; neural model = 0.05391848991831849 

pattern 25 : actual = 0.254553398 ; neural model = 0.2498458145336213 

pattern 26 : actual = 0.001709797 ; neural model = 2.233351786848914E-4 

pattern 27 : actual = 0.003100859 ; neural model = 0.0017257495718985272 

pattern 28 : actual = 0.013534825 ; neural model = 0.012184559226357083 

pattern 29 : actual = 0.058841398 ; neural model = 0.05789946535181645 

pattern 30 : actual = 0.254554289 ; neural model = 0.25071618226675163 

pattern 31 : actual = 0.001270668 ; neural model = -0.0018866194958042648 

pattern 32 : actual = 0.001605744 ; neural model = -0.0010459459031996188 

pattern 33 : actual = 0.006971445 ; neural model = 0.0036407797796043084 

pattern 34 : actual = 0.030199498 ; neural model = 0.026546397551261203 

pattern 35 : actual = 0.130312446 ; neural model = 0.12671927539936112 

pattern 36 : actual = 0.001071559 ; neural model = 5.404329548671649E-4 

pattern 37 : actual = 0.003606635 ; neural model = 0.0025013921853435095 

pattern 38 : actual = 0.010972336 ; neural model = 0.0071879756488383295 

pattern 39 : actual = 0.030200389 ; neural model = 0.030438809615573326 

pattern 40 : actual = 0.130313337 ; neural model = 0.12885997985309516 

pattern 41 : actual = 7.01548E-4 ; neural model = -0.0017022057945786928 

pattern 42 : actual = 0.001058631 ; neural model = -0.0015893890100681096 

pattern 43 : actual = 0.0036902 ; neural model = 2.6612393318847793E-4 

pattern 44 : actual = 0.015878994 ; neural model = 0.01031811955921813 

pattern 45 : actual = 0.06819197 ; neural model = 0.06594951146040262 

pattern 46 : actual = 0.001002439 ; neural model = 8.067465141914365E-5 

pattern 47 : actual = 0.001259522 ; neural model = 0.0015029673761598472 

pattern 48 : actual = 0.003691091 ; neural model = 0.005154691489007823 

pattern 49 : actual = 0.015879885 ; neural model = 0.01667426042219866 

pattern 50 : actual = 0.068192862 ; neural model = 0.06869015233254216 

pattern 51 : actual = 8.16989E-4 ; neural model = -0.002108146389379617 

pattern 52 : actual = 0.001285075 ; neural model = -0.0019981516512153075 

pattern 53 : actual = 0.005049577 ; neural model = -0.002734897358704802 

pattern 54 : actual = 0.011718741 ; neural model = 0.00592478148170561 

pattern 55 : actual = 0.037131733 ; neural model = 0.03569537589490224 

pattern 56 : actual = 1.1788E-4 ; neural model = -9.891996710531537E-5 

pattern 57 : actual = 4.85966E-4 ; neural model = 0.0011875171760681313 

pattern 58 : actual = 0.002050468 ; neural model = 0.0014797550534442205 

pattern 59 : actual = 0.008719632 ; neural model = 0.00964618117668914 
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pattern 60 : actual = 0.037132624 ; neural model = 0.038650967833047556 

pattern 61 : actual = 1.37614E-4 ; neural model = -0.0024186611014964665 

pattern 62 : actual = 2.98297E-4 ; neural model = -0.0021309132585769497 

pattern 63 : actual = 0.001229266 ; neural model = -0.0036046605203404747 

pattern 64 : actual = 0.005138615 ; neural model = 0.002273626409057372 

pattern 65 : actual = 0.021601614 ; neural model = 0.02034348509528794 

pattern 66 : actual = 1.37614E-4 ; neural model = -3.9600974122688815E-4 

pattern 67 : actual = 2.99188E-4 ; neural model = 8.801303816978745E-4 

pattern 68 : actual = 0.001230157 ; neural model = 3.832967481787186E-4 

pattern 69 : actual = 0.005139506 ; neural model = 0.005810038837735898 

pattern 70 : actual = 0.021602505 ; neural model = 0.02327005219011624 

pattern 71 : actual = 1.07614E-4 ; neural model = -0.003194428027480156 

pattern 72 : actual = 2.04908E-4 ; neural model = -0.002715506195420603 

pattern 73 : actual = 8.19111E-4 ; neural model = -0.004415578322721214 

pattern 74 : actual = 0.005138615 ; neural model = 0.0017044244220998372 

pattern 75 : actual = 0.021601614 ; neural model = 0.019465128421863986 

pattern 76 : actual = 1.17614E-4 ; neural model = -0.001107557760069544 

pattern 77 : actual = 2.05799E-4 ; neural model = 1.419997139918694E-4 

pattern 78 : actual = 8.20002E-4 ; neural model = -8.437028850255546E-4 

pattern 79 : actual = 0.005139506 ; neural model = 0.004845960446469233 

pattern 80 : actual = 0.021602505 ; neural model = 0.022034432093345102 

============================================================== 

RMS error: 0.00374755048253437            % error: 0.022699615267758853 

--------------------------------------------------------------------------------------------------------- 

Test patterns: 10 

--------------------------------------------------------------------------------------------------------- 

pattern 1 : actual = 7.01548E-4 ; neural model = 3.4766939893793314E-4 

pattern 2 : actual = 0.001058631 ; neural model = 8.92269155465808E-4 

pattern 3 : actual = 0.0036902 ; neural model = 6.16221419962204E-4 

pattern 4 : actual = 0.015878994 ; neural model = 0.01058843016263733 

pattern 5 : actual = 0.06819197 ; neural model = 0.06586655687885778 

pattern 6 : actual = 0.001002439 ; neural model = 7.148958534264338E-5 

pattern 7 : actual = 0.001259522 ; neural model = 0.0015068539364411215 

pattern 8 : actual = 0.003691091 ; neural model = 0.005154526882981458 

pattern 9 : actual = 0.015879885 ; neural model = 0.01667429604820747 

pattern 10 : actual = 0.068192862 ; neural model = 0.06869012353877058 

============================================================== 

Test RMS: 0.002166741908345674          Test %: 0.012987304070386155 
--------------------------------------------------------------------------------------------------------- 
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From here we can see that the test error value can sometimes be smaller than train error, 

and this is because the test data happen to be more suited to the trained network and the 

Elman net doesn’t always produce the same results for the same data. 

When the simple backpropagation network of a same structure is trained with the same 

data by the same number of epochs, it is seen that the Elman network, as was in the 

XOR example, is again a little more successful than the simple backpropagation 

gradient-descent training network. 

 

Table 6.8 Parallel System Performance Prediction with Back-propagation network 
--------------------------------------------------------------------------------------------------------- 

Network structure: Backpropagation; Epochs: 2000; Training patterns: 80 

Function: sigm; Learning Rate IH: 0.5; Learning Rate HO: 0.5 

--------------------------------------------------------------------------------------------------------- 

pattern 1 : actual = 0.002738336 ; neural model = -0.005886584070009859 

pattern 2 : actual = 0.012065316 ; neural model = 0.0035061943593635014 

pattern 3 : actual = 0.052908872 ; neural model = 0.04366514309816416 

pattern 4 : actual = 0.23068656 ; neural model = 0.22126439155012367 

pattern 5 : actual = 0.999999109 ; neural model = 0.991946433734839 

pattern 6 : actual = 0.002739227 ; neural model = -0.001711425700886282 

pattern 7 : actual = 0.012066207 ; neural model = 0.007577554504398676 

pattern 8 : actual = 0.052909763 ; neural model = 0.04730392144787088 

pattern 9 : actual = 0.230687451 ; neural model = 0.22307716150788903 

pattern 10 : actual = 1.0 ; neural model = 0.9881663936212072 

pattern 11 : actual = 0.001385383 ; neural model = -0.00710268208407383 

pattern 12 : actual = 0.006088417 ; neural model = -0.00211744918181922 

pattern 13 : actual = 0.026658913 ; neural model = 0.018484354229064914 

pattern 14 : actual = 0.116122525 ; neural model = 0.10658422136917911 

pattern 15 : actual = 0.503035302 ; neural model = 0.49867181414818307 

pattern 16 : actual = 0.001386274 ; neural model = -0.002924121075612851 

pattern 17 : actual = 0.006089308 ; neural model = 0.0020038872562044285 

pattern 18 : actual = 0.026659804 ; neural model = 0.022378230217501738 

pattern 19 : actual = 0.116123416 ; neural model = 0.10953383467860334 

pattern 20 : actual = 0.503036193 ; neural model = 0.497839102476485 

pattern 21 : actual = 0.001708906 ; neural model = -0.007604390781393633 

pattern 22 : actual = 0.003099968 ; neural model = -0.004821555272663147 

pattern 23 : actual = 0.013533934 ; neural model = 0.006095079642868817 

pattern 24 : actual = 0.058840507 ; neural model = 0.051076958280250606 
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pattern 25 : actual = 0.254553398 ; neural model = 0.24381419106952373 

pattern 26 : actual = 0.001709797 ; neural model = -0.0034394167399854902 

pattern 27 : actual = 0.003100859 ; neural model = -6.905086099410207E-4 

pattern 28 : actual = 0.013534825 ; neural model = 0.010101219970645947 

pattern 29 : actual = 0.058841398 ; neural model = 0.05458630922280633 

pattern 30 : actual = 0.254554289 ; neural model = 0.2452923820991767 

pattern 31 : actual = 0.001270668 ; neural model = -0.007420923585031991 

pattern 32 : actual = 0.001605744 ; neural model = -0.004619346997690732 

pattern 33 : actual = 0.006971445 ; neural model = 0.0019062864582325423 

pattern 34 : actual = 0.030199498 ; neural model = 0.023963730960632756 

pattern 35 : actual = 0.130312446 ; neural model = 0.12172816796384839 

pattern 36 : actual = 0.001071559 ; neural model = -0.003206218396296423 

pattern 37 : actual = 0.003606635 ; neural model = -9.745655574004974E-4 

pattern 38 : actual = 0.010972336 ; neural model = 0.0050309502589370725 

pattern 39 : actual = 0.030200389 ; neural model = 0.02772278999415606 

pattern 40 : actual = 0.130313337 ; neural model = 0.12441105479864095 

pattern 41 : actual = 7.01548E-4 ; neural model = -0.006997882545439982 

pattern 42 : actual = 0.001058631 ; neural model = -0.005669258720993775 

pattern 43 : actual = 0.0036902 ; neural model = -0.0011843114988152603 

pattern 44 : actual = 0.015878994 ; neural model = 0.008614572994199543 

pattern 45 : actual = 0.06819197 ; neural model = 0.06284836442280328 

pattern 46 : actual = 0.001002439 ; neural model = -0.003219894880276686 

pattern 47 : actual = 0.001259522 ; neural model = -0.0019978203061564725 

pattern 48 : actual = 0.003691091 ; neural model = 0.0032261634674828343 

pattern 49 : actual = 0.015879885 ; neural model = 0.01464331789149903 

pattern 50 : actual = 0.068192862 ; neural model = 0.0660780572047438 

pattern 51 : actual = 8.16989E-4 ; neural model = -0.006313923529575272 

pattern 52 : actual = 0.001285075 ; neural model = -0.0055511245459658465 

pattern 53 : actual = 0.005049577 ; neural model = -0.0031945842171891004 

pattern 54 : actual = 0.011718741 ; neural model = 0.004788626995221645 

pattern 55 : actual = 0.037131733 ; neural model = 0.03420510831736839 

pattern 56 : actual = 1.1788E-4 ; neural model = -0.002427314057917296 

pattern 57 : actual = 4.85966E-4 ; neural model = -0.0016780798293482557 

pattern 58 : actual = 0.002050468 ; neural model = 6.440172420344448E-4 

pattern 59 : actual = 0.008719632 ; neural model = 0.008523849480923107 

pattern 60 : actual = 0.037132624 ; neural model = 0.037589693361994025 

pattern 61 : actual = 1.37614E-4 ; neural model = -0.00459721024069859 

pattern 62 : actual = 2.98297E-4 ; neural model = -0.004079948794948884 

pattern 63 : actual = 0.001229266 ; neural model = -0.0024946009235095046 
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pattern 64 : actual = 0.005138615 ; neural model = 0.0025522069998547003 

pattern 65 : actual = 0.021601614 ; neural model = 0.02024854135787907 

pattern 66 : actual = 1.37614E-4 ; neural model = -0.0010345676972670637 

pattern 67 : actual = 2.99188E-4 ; neural model = -5.273104960222819E-4 

pattern 68 : actual = 0.001230157 ; neural model = 0.001031333505737475 

pattern 69 : actual = 0.005139506 ; neural model = 0.006005696850666431 

pattern 70 : actual = 0.021602505 ; neural model = 0.023478434189884823 

pattern 71 : actual = 1.07614E-4 ; neural model = -0.0022212093179988512 

pattern 72 : actual = 2.04908E-4 ; neural model = -0.0019318013257609845 

pattern 73 : actual = 8.19111E-4 ; neural model = -0.0010248966300656637 

pattern 74 : actual = 0.005138615 ; neural model = 0.003574744580432887 

pattern 75 : actual = 0.021601614 ; neural model = 0.0193669668922265 

pattern 76 : actual = 1.17614E-4 ; neural model = 6.943878106832613E-4 

pattern 77 : actual = 2.05799E-4 ; neural model = 9.947324654110412E-4 

pattern 78 : actual = 8.20002E-4 ; neural model = 0.0018777033971885126 

pattern 79 : actual = 0.005139506 ; neural model = 0.006409559486855676 

pattern 80 : actual = 0.021602505 ; neural model = 0.022000072682766936 

============================================================== 

RMS error: 0.005674751727860728           % error: 0.036076055375548415 

--------------------------------------------------------------------------------------------------------- 

Test patterns: 10 

--------------------------------------------------------------------------------------------------------- 

pattern 1 : actual = 7.01548E-4 ; neural model = -0.006997882545439982 

pattern 2 : actual = 0.001058631 ; neural model = -0.005669258720993775 

pattern 3 : actual = 0.0036902 ; neural model = -0.0011843114988152603 

pattern 4 : actual = 0.015878994 ; neural model = 0.008614572994199543 

pattern 5 : actual = 0.06819197 ; neural model = 0.06284836442280328 

pattern 6 : actual = 0.001002439 ; neural model = -0.003219894880276686 

pattern 7 : actual = 0.001259522 ; neural model = -0.0019978203061564725 

pattern 8 : actual = 0.003691091 ; neural model = 0.0032261634674828343 

pattern 9 : actual = 0.015879885 ; neural model = 0.01464331789149903 

pattern 10 : actual = 0.068192862 ; neural model = 0.0660780572047438 

============================================================== 

Test RMS: 0.004942555651993406            Test %: 0.03862040736978732 
--------------------------------------------------------------------------------------------------------- 
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Now let us see how the Genetic Algorithm would optimize the not-well trained Elman 

network. The network is trained by 100 epochs and then the 100 generation Genetic 

Algorithm is applied. 

 

Table 6.9 Parallel System Performance Prediction with Elman + Genetic Alg. 
----------------------------------------------------------------------------------------------------------- 

Network structure: Elman; Epochs: 100; Training patterns: 80 

Function: sigm; Learning Rate IH: 0.5; Learning Rate HO: 0.5 

----------------------------------------------------------------------------------------------------------- 

pattern 1 : actual = 0.002738336 ; neural model = 0.01097427761244324 

pattern 2 : actual = 0.012065316 ; neural model = 0.016395331204614727 

pattern 3 : actual = 0.052908872 ; neural model = 0.04961595795687762 

pattern 4 : actual = 0.23068656 ; neural model = 0.21229566677552453 

pattern 5 : actual = 0.999999109 ; neural model = 0.9573131817951781 

pattern 6 : actual = 0.002739227 ; neural model = -0.027345329110038008 

pattern 7 : actual = 0.012066207 ; neural model = -0.007163698385088846 

pattern 8 : actual = 0.052909763 ; neural model = 0.05855479533091229 

pattern 9 : actual = 0.230687451 ; neural model = 0.2072626308912922 

pattern 10 : actual = 1.0 ; neural model = 0.9505230677851257 

pattern 11 : actual = 0.001385383 ; neural model = -0.021056765399887545 

pattern 12 : actual = 0.006088417 ; neural model = -0.007945218408852595 

pattern 13 : actual = 0.026658913 ; neural model = 0.040279771194711766 

pattern 14 : actual = 0.116122525 ; neural model = 0.10589507829697348 

pattern 15 : actual = 0.503035302 ; neural model = 0.5018418210666631 

pattern 16 : actual = 0.001386274 ; neural model = -0.012286314717175839 

pattern 17 : actual = 0.006089308 ; neural model = -0.0015645084725792735 

pattern 18 : actual = 0.026659804 ; neural model = 0.032041561214299574 

pattern 19 : actual = 0.116123416 ; neural model = 0.10304328761126463 

pattern 20 : actual = 0.503036193 ; neural model = 0.49756254057281485 

pattern 21 : actual = 0.001708906 ; neural model = -0.005656879053675956 

pattern 22 : actual = 0.003099968 ; neural model = -3.456146675473448E-4 

pattern 23 : actual = 0.013533934 ; neural model = 0.02428121169955011 

pattern 24 : actual = 0.058840507 ; neural model = 0.05790537890289177 

pattern 25 : actual = 0.254553398 ; neural model = 0.2445462810184515 

pattern 26 : actual = 0.001709797 ; neural model = -0.0046089388244122675 

pattern 27 : actual = 0.003100859 ; neural model = 0.0013906391766689286 

pattern 28 : actual = 0.013534825 ; neural model = 0.018643222011781868 

pattern 29 : actual = 0.058841398 ; neural model = 0.05497567009110388 
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pattern 30 : actual = 0.254554289 ; neural model = 0.2408537169446317 

pattern 31 : actual = 0.001270668 ; neural model = 0.0025248831317562503 

pattern 32 : actual = 0.001605744 ; neural model = 0.004568785075211856 

pattern 33 : actual = 0.006971445 ; neural model = 0.017219956050109286 

pattern 34 : actual = 0.030199498 ; neural model = 0.034685623216787365 

pattern 35 : actual = 0.130312446 ; neural model = 0.12709201466283 

pattern 36 : actual = 0.001071559 ; neural model = -0.001180716456751385 

pattern 37 : actual = 0.003606635 ; neural model = 0.003099761612857743 

pattern 38 : actual = 0.010972336 ; neural model = 0.012591083982283868 

pattern 39 : actual = 0.030200389 ; neural model = 0.0317334756505222 

pattern 40 : actual = 0.130313337 ; neural model = 0.12372410642275605 

pattern 41 : actual = 7.01548E-4 ; neural model = 0.005637607151884494 

pattern 42 : actual = 0.001058631 ; neural model = 0.0049919684940429865 

pattern 43 : actual = 0.0036902 ; neural model = 0.012182133609899837 

pattern 44 : actual = 0.015878994 ; neural model = 0.02094606345391642 

pattern 45 : actual = 0.06819197 ; neural model = 0.07260966294408516 

pattern 46 : actual = 0.001002439 ; neural model = -5.19191530762797E-4 

pattern 47 : actual = 0.001259522 ; neural model = 0.0023021105574005385 

pattern 48 : actual = 0.003691091 ; neural model = 0.009493565234419854 

pattern 49 : actual = 0.015879885 ; neural model = 0.019841234559771437 

pattern 50 : actual = 0.068192862 ; neural model = 0.0693124616286947 

pattern 51 : actual = 8.16989E-4 ; neural model = 0.005778920542147237 

pattern 52 : actual = 0.001285075 ; neural model = 0.003992244205565265 

pattern 53 : actual = 0.005049577 ; neural model = 0.007713831577918495 

pattern 54 : actual = 0.011718741 ; neural model = 0.015925990524362332 

pattern 55 : actual = 0.037131733 ; neural model = 0.045452109660255646 

pattern 56 : actual = 1.1788E-4 ; neural model = -0.0012413337811281733 

pattern 57 : actual = 4.85966E-4 ; neural model = 0.00102719541414531 

pattern 58 : actual = 0.002050468 ; neural model = 0.004984260473663904 

pattern 59 : actual = 0.008719632 ; neural model = 0.0128975341917405 

pattern 60 : actual = 0.037132624 ; neural model = 0.04231478350419765 

pattern 61 : actual = 1.37614E-4 ; neural model = 0.003880625742267385 

pattern 62 : actual = 2.98297E-4 ; neural model = 0.0015674110135979191 

pattern 63 : actual = 0.001229266 ; neural model = 0.003937162545476214 

pattern 64 : actual = 0.005138615 ; neural model = 0.010278293328625898 

pattern 65 : actual = 0.021601614 ; neural model = 0.029946246440317237 

pattern 66 : actual = 1.37614E-4 ; neural model = -0.00367364252898017 

pattern 67 : actual = 2.99188E-4 ; neural model = -0.001700388533394992 

pattern 68 : actual = 0.001230157 ; neural model = 0.0013333828725689556 
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pattern 69 : actual = 0.005139506 ; neural model = 0.007222754618641303 

pattern 70 : actual = 0.021602505 ; neural model = 0.026830573357460752 

pattern 71 : actual = 1.07614E-4 ; neural model = -8.861133220348649E-4 

pattern 72 : actual = 2.04908E-4 ; neural model = -0.0036291031509280702 

pattern 73 : actual = 8.19111E-4 ; neural model = -0.0019798079075599717 

pattern 74 : actual = 0.005138615 ; neural model = 0.004642933250214976 

pattern 75 : actual = 0.021601614 ; neural model = 0.023848501783967024 

pattern 76 : actual = 1.17614E-4 ; neural model = -0.009083994891525116 

pattern 77 : actual = 2.05799E-4 ; neural model = -0.007214553093994713 

pattern 78 : actual = 8.20002E-4 ; neural model = -0.004515957141234039 

pattern 79 : actual = 0.005139506 ; neural model = 0.0015198776056115082 

pattern 80 : actual = 0.021602505 ; neural model = 0.020670861634148163 

============================================================== 

RMS error: 0.010928789681105819            % error: 0.04665629811528724 

--------------------------------------------------------------------------------------------------------- 

Training with Genetic Algorithm; Patterns: 80; Generations: 100; Chromosomes: 20 

Genes: 66; Mutation rate: 0.1 (Genes to mutate: 6); Tolerated error: 0.0010 

--------------------------------------------------------------------------------------------------------- 
Global fitness after generation 1: 0.010929074657596634 

Global fitness after generation 2: 0.010929074657596634 

Global fitness after generation 3: 0.010929074657596634 

... 

Global fitness after generation 40: 0.009571359018784992 

Global fitness after generation 41: 0.00958200633569838 

Global fitness after generation 42: 0.009572628945528298 

... 

Global fitness after generation 98: 0.009486907684329074 

Global fitness after generation 99: 0.009486907684329074 

Global fitness after generation 100: 0.009486907684329074 

Maximum number of generations reached. 
--------------------------------------------------------------------------------------------------------- 

pattern 1 : actual = 0.002738336 ; neural model = 0.0021058653562872065 

pattern 2 : actual = 0.012065316 ; neural model = 0.008806576457819404 

pattern 3 : actual = 0.052908872 ; neural model = 0.058491225157803195 

pattern 4 : actual = 0.23068656 ; neural model = 0.22540361359817457 

pattern 5 : actual = 0.999999109 ; neural model = 1.0136136966123404 

pattern 6 : actual = 0.002739227 ; neural model = -0.006913378324405028 

pattern 7 : actual = 0.012066207 ; neural model = -0.019153826278710318 

pattern 8 : actual = 0.052909763 ; neural model = 0.05528404836982442 
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pattern 9 : actual = 0.230687451 ; neural model = 0.22361188149403394 

pattern 10 : actual = 1.0 ; neural model = 1.0064635093993597 

pattern 11 : actual = 0.001385383 ; neural model = -3.99343687953857E-4 

pattern 12 : actual = 0.006088417 ; neural model = -0.019060206721791983 

pattern 13 : actual = 0.026658913 ; neural model = 0.0359005308016615 

pattern 14 : actual = 0.116122525 ; neural model = 0.11785262205259245 

pattern 15 : actual = 0.503035302 ; neural model = 0.529022232280234 

pattern 16 : actual = 0.001386274 ; neural model = -9.360372465117006E-5 

pattern 17 : actual = 0.006089308 ; neural model = -0.0060281120169857205 

pattern 18 : actual = 0.026659804 ; neural model = 0.031968718968370224 

pattern 19 : actual = 0.116123416 ; neural model = 0.11315033886859488 

pattern 20 : actual = 0.503036193 ; neural model = 0.5239472780727328 

pattern 21 : actual = 0.001708906 ; neural model = 0.0065468315018667456 

pattern 22 : actual = 0.003099968 ; neural model = -0.0037463716833928684 

pattern 23 : actual = 0.013533934 ; neural model = 0.02345583377510929 

pattern 24 : actual = 0.058840507 ; neural model = 0.06574639827653078 

pattern 25 : actual = 0.254553398 ; neural model = 0.2592341181411501 

pattern 26 : actual = 0.001709797 ; neural model = 0.0028323027418151736 

pattern 27 : actual = 0.003100859 ; neural model = 3.4570165489838933E-4 

pattern 28 : actual = 0.013534825 ; neural model = 0.020264728471114213 

pattern 29 : actual = 0.058841398 ; neural model = 0.06178769264948697 

pattern 30 : actual = 0.254554289 ; neural model = 0.255135421774711 

pattern 31 : actual = 0.001270668 ; neural model = 0.009482120671071126 

pattern 32 : actual = 0.001605744 ; neural model = 0.004445016431127546 

pattern 33 : actual = 0.006971445 ; neural model = 0.018117153895544746 

pattern 34 : actual = 0.030199498 ; neural model = 0.0399639070484174 

pattern 35 : actual = 0.130312446 ; neural model = 0.13590883871381826 

pattern 36 : actual = 0.001071559 ; neural model = 0.003716279467905703 

pattern 37 : actual = 0.003606635 ; neural model = 0.0033105153231247075 

pattern 38 : actual = 0.010972336 ; neural model = 0.014563618602681072 

pattern 39 : actual = 0.030200389 ; neural model = 0.036578372151069016 

pattern 40 : actual = 0.130313337 ; neural model = 0.1323705995545858 

pattern 41 : actual = 7.01548E-4 ; neural model = 0.009357985646381128 

pattern 42 : actual = 0.001058631 ; neural model = 0.005524735991318586 

pattern 43 : actual = 0.0036902 ; neural model = 0.012978113112859513 

pattern 44 : actual = 0.015878994 ; neural model = 0.024161321852318396 

pattern 45 : actual = 0.06819197 ; neural model = 0.0778274172555013 

pattern 46 : actual = 0.001002439 ; neural model = 0.0024455920081549176 

pattern 47 : actual = 0.001259522 ; neural model = 0.0023491774349014283 
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pattern 48 : actual = 0.003691091 ; neural model = 0.010788140594743367 

pattern 49 : actual = 0.015879885 ; neural model = 0.022950420129865257 

pattern 50 : actual = 0.068192862 ; neural model = 0.0745058385779766 

pattern 51 : actual = 8.16989E-4 ; neural model = 0.006323616296718182 

pattern 52 : actual = 0.001285075 ; neural model = 0.003084348461348363 

pattern 53 : actual = 0.005049577 ; neural model = 0.0068039523649297 

pattern 54 : actual = 0.011718741 ; neural model = 0.016529312596411327 

pattern 55 : actual = 0.037131733 ; neural model = 0.04734554751380199 

pattern 56 : actual = 1.1788E-4 ; neural model = -7.435476199098012E-4 

pattern 57 : actual = 4.85966E-4 ; neural model = -5.228600051473409E-4 

pattern 58 : actual = 0.002050468 ; neural model = 0.004419708996078131 

pattern 59 : actual = 0.008719632 ; neural model = 0.013562590223169302 

pattern 60 : actual = 0.037132624 ; neural model = 0.0442458927444635 

pattern 61 : actual = 1.37614E-4 ; neural model = -2.0439885017492498E-4 

pattern 62 : actual = 2.98297E-4 ; neural model = -0.0033055201357683472 

pattern 63 : actual = 0.001229266 ; neural model = -8.329650378468556E-4 

pattern 64 : actual = 0.005138615 ; neural model = 0.006612885222672671 

pattern 65 : actual = 0.021601614 ; neural model = 0.02710413201407086 

pattern 66 : actual = 1.37614E-4 ; neural model = -0.007198075843318219 

pattern 67 : actual = 2.99188E-4 ; neural model = -0.006794198787681394 

pattern 68 : actual = 0.001230157 ; neural model = -0.002987425583986736 

pattern 69 : actual = 0.005139506 ; neural model = 0.0038006907909196586 

pattern 70 : actual = 0.021602505 ; neural model = 0.024158058338172084 

pattern 71 : actual = 1.07614E-4 ; neural model = -0.012599550743243426 

pattern 72 : actual = 2.04908E-4 ; neural model = -0.01600407285404276 

pattern 73 : actual = 8.19111E-4 ; neural model = -0.013811897541195217 

pattern 74 : actual = 0.005138615 ; neural model = -0.006221983797955244 

pattern 75 : actual = 0.021601614 ; neural model = 0.013582178899218478 

pattern 76 : actual = 1.17614E-4 ; neural model = -0.019289408395464225 

pattern 77 : actual = 2.05799E-4 ; neural model = -0.01885173615637248 

pattern 78 : actual = 8.20002E-4 ; neural model = -0.015586422002336564 

pattern 79 : actual = 0.005139506 ; neural model = -0.008818553255016903 

pattern 80 : actual = 0.021602505 ; neural model = 0.010795906466367633 

------------------------------------------------------------------------------------------------------ 

fitnessThisChrom[16] = 0.009486907684329074 

============================================================ 
After the Genetic Algorithm is applied, the error is decreased by a small ratio, in 

comparison with that in the beginning, the new error is 0.009486907684329074. 
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In the same way we also apply the Simulated Annealing Algorithm. Before this, the 

weights are initialized and the network is trained by 50 epochs. Then the Simulated 

Annealing with 100 cycles is applied. 

 

Table 6.10 Parallel System Performance Prediction with Elman + Sim. Annealing 
--------------------------------------------------------------------------------------------------------- 

Network structure: Elman; Epochs: 50; Training patterns: 80 

Function: sigm; Learning Rate IH: 0.5; Learning Rate HO: 0.5 

--------------------------------------------------------------------------------------------------------- 

pattern 1 : actual = 0.002738336 ; neural model = -0.0142259632566209 

pattern 2 : actual = 0.012065316 ; neural model = -0.009996462835396347 

pattern 3 : actual = 0.052908872 ; neural model = 0.031508545743523464 

pattern 4 : actual = 0.23068656 ; neural model = 0.19042259987182286 

pattern 5 : actual = 0.999999109 ; neural model = 0.9566241824725319 

pattern 6 : actual = 0.002739227 ; neural model = -0.03237570711129231 

pattern 7 : actual = 0.012066207 ; neural model = 0.03490887330590589 

pattern 8 : actual = 0.052909763 ; neural model = 0.03959519439772363 

pattern 9 : actual = 0.230687451 ; neural model = 0.18747326287530686 

pattern 10 : actual = 1.0 ; neural model = 0.9522148038824543 

pattern 11 : actual = 0.001385383 ; neural model = -0.04292529159976727 

pattern 12 : actual = 0.006088417 ; neural model = 0.02027591014031324 

pattern 13 : actual = 0.026658913 ; neural model = 0.013765040347405277 

pattern 14 : actual = 0.116122525 ; neural model = 0.08356945056659193 

pattern 15 : actual = 0.503035302 ; neural model = 0.475197788376 

pattern 16 : actual = 0.001386274 ; neural model = -0.018562335126605684 

pattern 17 : actual = 0.006089308 ; neural model = 0.012425812906613487 

pattern 18 : actual = 0.026659804 ; neural model = 0.017310328198845537 

pattern 19 : actual = 0.116123416 ; neural model = 0.09042443099067476 

pattern 20 : actual = 0.503036193 ; neural model = 0.47174628795324164 

pattern 21 : actual = 0.001708906 ; neural model = -0.027824144080112218 

pattern 22 : actual = 0.003099968 ; neural model = -0.0010577937913152091 

pattern 23 : actual = 0.013533934 ; neural model = 0.0016739902031819298 

pattern 24 : actual = 0.058840507 ; neural model = 0.03791470631133931 

pattern 25 : actual = 0.254553398 ; neural model = 0.227106655405022 

pattern 26 : actual = 0.001709797 ; neural model = -0.011943627302961668 

pattern 27 : actual = 0.003100859 ; neural model = 0.0021984554820788094 

pattern 28 : actual = 0.013534825 ; neural model = 0.006016895607025757 

pattern 29 : actual = 0.058841398 ; neural model = 0.044586851944251826 



 

 

44

pattern 30 : actual = 0.254554289 ; neural model = 0.22799379900913064 

pattern 31 : actual = 0.001270668 ; neural model = -0.02047471154228947 

pattern 32 : actual = 0.001605744 ; neural model = -0.009453710877048854 

pattern 33 : actual = 0.006971445 ; neural model = -0.0031611025404640336 

pattern 34 : actual = 0.030199498 ; neural model = 0.01563370803310027 

pattern 35 : actual = 0.130312446 ; neural model = 0.11263554795021546 

pattern 36 : actual = 0.001071559 ; neural model = -0.00912634676551774 

pattern 37 : actual = 0.003606635 ; neural model = -0.0012499731430593575 

pattern 38 : actual = 0.010972336 ; neural model = 0.0010038445230961257 

pattern 39 : actual = 0.030200389 ; neural model = 0.022160969602024072 

pattern 40 : actual = 0.130313337 ; neural model = 0.11619518937720874 

pattern 41 : actual = 7.01548E-4 ; neural model = -0.017737892907932706 

pattern 42 : actual = 0.001058631 ; neural model = -0.014022355235449036 

pattern 43 : actual = 0.0036902 ; neural model = -0.007039272504585664 

pattern 44 : actual = 0.015878994 ; neural model = 0.002350567053314767 

pattern 45 : actual = 0.06819197 ; neural model = 0.058284157481305665 

pattern 46 : actual = 0.001002439 ; neural model = -0.008544813263486023 

pattern 47 : actual = 0.001259522 ; neural model = -0.0039041602562067956 

pattern 48 : actual = 0.003691091 ; neural model = -0.0013100036167943419 

pattern 49 : actual = 0.015879885 ; neural model = 0.010844312289911617 

pattern 50 : actual = 0.068192862 ; neural model = 0.06319541029591491 

pattern 51 : actual = 8.16989E-4 ; neural model = -0.017157504704765597 

pattern 52 : actual = 0.001285075 ; neural model = -0.01629203309197333 

pattern 53 : actual = 0.005049577 ; neural model = -0.01041579685700067 

pattern 54 : actual = 0.011718741 ; neural model = -0.0017032131065706224 

pattern 55 : actual = 0.037131733 ; neural model = 0.03131981243801768 

pattern 56 : actual = 1.1788E-4 ; neural model = -0.00848634702170542 

pattern 57 : actual = 4.85966E-4 ; neural model = -0.005323731015413363 

pattern 58 : actual = 0.002050468 ; neural model = -0.0047912821950190365 

pattern 59 : actual = 0.008719632 ; neural model = 0.004832172450128097 

pattern 60 : actual = 0.037132624 ; neural model = 0.036959542133577106 

pattern 61 : actual = 1.37614E-4 ; neural model = -0.01745996055526211 

pattern 62 : actual = 2.98297E-4 ; neural model = -0.017600909780540658 

pattern 63 : actual = 0.001229266 ; neural model = -0.012359196044302218 

pattern 64 : actual = 0.005138615 ; neural model = -0.005594920910549389 

pattern 65 : actual = 0.021601614 ; neural model = 0.01705223098082065 

pattern 66 : actual = 1.37614E-4 ; neural model = -0.00917267901291477 

pattern 67 : actual = 2.99188E-4 ; neural model = -0.006734815197294658 

pattern 68 : actual = 0.001230157 ; neural model = -0.006509573794062695 
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pattern 69 : actual = 0.005139506 ; neural model = 9.894527775063389E-4 

pattern 70 : actual = 0.021602505 ; neural model = 0.023041330165767593 

pattern 71 : actual = 1.07614E-4 ; neural model = -0.01873103084947675 

pattern 72 : actual = 2.04908E-4 ; neural model = -0.019036234678956265 

pattern 73 : actual = 8.19111E-4 ; neural model = -0.014832784874481753 

pattern 74 : actual = 0.005138615 ; neural model = -0.007741747312820624 

pattern 75 : actual = 0.021601614 ; neural model = 0.014115898331663379 

pattern 76 : actual = 1.17614E-4 ; neural model = -0.010881328370428878 

pattern 77 : actual = 2.05799E-4 ; neural model = -0.008675969618081925 

pattern 78 : actual = 8.20002E-4 ; neural model = -0.008666428609181875 

pattern 79 : actual = 0.005139506 ; neural model = -0.0011413646885685969 

pattern 80 : actual = 0.021602505 ; neural model = 0.020132183109953433 

============================================================== 

RMS error: 0.018485494723617355             % error: 0.10770828939013169 
--------------------------------------------------------------------------------------------------------- 
Training with Simulated Annealing Algorithm; Patterns: 80; Cycles: 100 

Iterations: 50; Beginning temperature: 20.0; Ending temperature: 1.0 

--------------------------------------------------------------------------------------------------------- 

Cycle 1; Best error: 0.018485765842688046 on cycle 1, Iteration 1 

... 

Cycle 27; Best error: 0.018485765842688046 on cycle 1, Iteration 1 

... 

Cycle 53; Best error: 0.018485765842688046 on cycle 1, Iteration 1 

... 

Cycle 72; Best error: 0.018485765842688046 on cycle 1, Iteration 1 

Cycle 73; Best error: 0.017049643022346014 on cycle 73, Iteration 1 

... 

Cycle 90; Best error: 0.017049643022346014 on cycle 73, Iteration 1 

Cycle 91; Best error: 0.013566278463712026 on cycle 91, Iteration 2 

... 

Cycle 100; Best error: 0.013566278463712026 on cycle 91, Iteration 2 

----------------------------------------------------------------------------------------- 

pattern 1 : actual = 0.002738336 ; neural model = -0.013180673481784505 

pattern 2 : actual = 0.012065316 ; neural model = -0.007556054371764015 

pattern 3 : actual = 0.052908872 ; neural model = 0.031779017408392424 

pattern 4 : actual = 0.23068656 ; neural model = 0.1937964825621179 

pattern 5 : actual = 0.999999109 ; neural model = 0.9804529350204017 

pattern 6 : actual = 0.002739227 ; neural model = -0.016453944799817988 

pattern 7 : actual = 0.012066207 ; neural model = 0.035183945366280917 
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pattern 8 : actual = 0.052909763 ; neural model = 0.04631779348128959 

pattern 9 : actual = 0.230687451 ; neural model = 0.19547171239325167 

pattern 10 : actual = 1.0 ; neural model = 0.977874519097676 

pattern 11 : actual = 0.001385383 ; neural model = -0.02771911985878464 

pattern 12 : actual = 0.006088417 ; neural model = 0.018783176193003542 

pattern 13 : actual = 0.026658913 ; neural model = 0.017588397952310098 

pattern 14 : actual = 0.116122525 ; neural model = 0.09016801136398211 

pattern 15 : actual = 0.503035302 ; neural model = 0.49981192944877906 

pattern 16 : actual = 0.001386274 ; neural model = -0.009434997808097922 

pattern 17 : actual = 0.006089308 ; neural model = 0.015971093578441564 

pattern 18 : actual = 0.026659804 ; neural model = 0.023820213999764445 

pattern 19 : actual = 0.116123416 ; neural model = 0.09915128397864709 

pattern 20 : actual = 0.503036193 ; neural model = 0.49790931890013346 

pattern 21 : actual = 0.001708906 ; neural model = -0.019325188223636353 

pattern 22 : actual = 0.003099968 ; neural model = 9.211106395284885E-5 

pattern 23 : actual = 0.013533934 ; neural model = 0.004717632265496041 

pattern 24 : actual = 0.058840507 ; neural model = 0.04492022771319609 

pattern 25 : actual = 0.254553398 ; neural model = 0.24568646313307585 

pattern 26 : actual = 0.001709797 ; neural model = -0.005896241767840843 

pattern 27 : actual = 0.003100859 ; neural model = 0.006561658283196631 

pattern 28 : actual = 0.013534825 ; neural model = 0.012639603144900535 

pattern 29 : actual = 0.058841398 ; neural model = 0.054497176966045446 

pattern 30 : actual = 0.254554289 ; neural model = 0.24861556686620612 

pattern 31 : actual = 0.001270668 ; neural model = -0.014926718872179834 

pattern 32 : actual = 0.001605744 ; neural model = -0.007874172328502349 

pattern 33 : actual = 0.006971445 ; neural model = -3.74841307162338E-4 

pattern 34 : actual = 0.030199498 ; neural model = 0.02323181161405763 

pattern 35 : actual = 0.130312446 ; neural model = 0.130658043407328 

pattern 36 : actual = 0.001071559 ; neural model = -0.004324300994241026 

pattern 37 : actual = 0.003606635 ; neural model = 0.00339190976907755 

pattern 38 : actual = 0.010972336 ; neural model = 0.007884990048707935 

pattern 39 : actual = 0.030200389 ; neural model = 0.03304425561426269 

pattern 40 : actual = 0.130313337 ; neural model = 0.13667150648191645 

pattern 41 : actual = 7.01548E-4 ; neural model = -0.01316567680344613 

pattern 42 : actual = 0.001058631 ; neural model = -0.012102673696194888 

pattern 43 : actual = 0.0036902 ; neural model = -0.00389095991449781 

pattern 44 : actual = 0.015878994 ; neural model = 0.01076206570654703 

pattern 45 : actual = 0.06819197 ; neural model = 0.07717196821840189 

pattern 46 : actual = 0.001002439 ; neural model = -0.0039777474436698546 
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pattern 47 : actual = 0.001259522 ; neural model = 0.0012428615281005473 

pattern 48 : actual = 0.003691091 ; neural model = 0.005981517982007439 

pattern 49 : actual = 0.015879885 ; neural model = 0.02260523943565043 

pattern 50 : actual = 0.068192862 ; neural model = 0.08483519358740016 

pattern 51 : actual = 8.16989E-4 ; neural model = -0.01239042898487494 

pattern 52 : actual = 0.001285075 ; neural model = -0.013906431989665874 

pattern 53 : actual = 0.005049577 ; neural model = -0.006393634949515031 

pattern 54 : actual = 0.011718741 ; neural model = 0.007450261365611888 

pattern 55 : actual = 0.037131733 ; neural model = 0.05159850729356097 

pattern 56 : actual = 1.1788E-4 ; neural model = -0.003479523503853277 

pattern 57 : actual = 4.85966E-4 ; neural model = 6.361266738759142E-4 

pattern 58 : actual = 0.002050468 ; neural model = 0.0035059656843797193 

pattern 59 : actual = 0.008719632 ; neural model = 0.017640451396413653 

pattern 60 : actual = 0.037132624 ; neural model = 0.060142127069110096 

pattern 61 : actual = 1.37614E-4 ; neural model = -0.011480484961256865 

pattern 62 : actual = 2.98297E-4 ; neural model = -0.014434140064593898 

pattern 63 : actual = 0.001229266 ; neural model = -0.006904644202805982 

pattern 64 : actual = 0.005138615 ; neural model = 0.005088170340731696 

pattern 65 : actual = 0.021601614 ; neural model = 0.03928721616273595 

pattern 66 : actual = 1.37614E-4 ; neural model = -0.002927754883369299 

pattern 67 : actual = 2.99188E-4 ; neural model = 7.070721078592801E-4 

pattern 68 : actual = 0.001230157 ; neural model = 0.0032906559634083288 

pattern 69 : actual = 0.005139506 ; neural model = 0.015506160047530415 

pattern 70 : actual = 0.021602505 ; neural model = 0.048416974004861335 

pattern 71 : actual = 1.07614E-4 ; neural model = -0.010358725219779374 

pattern 72 : actual = 2.04908E-4 ; neural model = -0.014710343857362224 

pattern 73 : actual = 8.19111E-4 ; neural model = -0.0070193132137268965 

pattern 74 : actual = 0.005138615 ; neural model = 0.005380962082508517 

pattern 75 : actual = 0.021601614 ; neural model = 0.03946605989309554 

pattern 76 : actual = 1.17614E-4 ; neural model = -0.0023315651999789855 

pattern 77 : actual = 2.05799E-4 ; neural model = 0.0012657880757630247 

pattern 78 : actual = 8.20002E-4 ; neural model = 0.003623992946017701 

pattern 79 : actual = 0.005139506 ; neural model = 0.016125862334720104 

pattern 80 : actual = 0.021602505 ; neural model = 0.04899228170086184 

 

This is how the Elman network is optimized using the Simulated Annealing Algorithm. 

While the error after 50 epochs of training the Elman net was 0.018485494723617355, 

after implementing the Simulated Annealing it is decreased to 0.013566278463712026. 
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CONCLUSION 

 

This project is an implementation of Elman recurrent neural network model with 

backpropagation which is trained to recognize solutions to problems of different nature.  

 

While backpropagation algorithm uses gradient-descent training method to train the 

neural network model, the Elman recurrent neural network model has a special 

architecture which allows taking feedback from previous step of training. This is a copy 

of hidden layer neurons acting as input neurons. This characteristic makes possible to 

better learn and recognize patterns. Because of this characteristic the Elman net is 

known as “neural network with memory”. It is clear that Elman nets are more successful 

than simple backpropagation neural network models. 

 

Another important point of this project was optimizing the Elman network with two 

popular heuristic search algorithms, Genetic Algorithm and Simulated Annealing 

Algorithm. These two algorithms are used to find the adequate combinations of weights 

and biases of the network which constitute complete solutions to the problem. 

 

In genetic algorithm, the weights and biases are taken as a single chromosome. Then the 

genetic algorithm proceeds to splice the genes of this chromosome with other suitable 

chromosomes. Through subsequent generations the suitability of the neural network is 

increased as less fit chromosomes are replaced with better suited ones. This process 

continues until no improvements have occurred for a specified number of generations. 

The genetic algorithm generally takes up a great deal of memory and executes much 

slower than simulated annealing algorithm. Because of this, simulated annealing has 

become a popular method of neural network training. 

 

Simulated annealing algorithm begins by “randomizing” the weight values taking into 

consideration the current “temperature” and the suitability of the current weight matrix. 

The temperature is decreased and the weight matrix ideally converges on an ideal 

solution. This process continues until the temperature reaches zero or no improvements 
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have occurred for a specified number of cycles. The simulated annealing algorithm 

executes relatively quickly. 

 

These two algorithms can also be used independently to completely train the neural 

network to solve problems, but it may not be very successful. Another way to use these 

two algorithms in neural networks is to help neural networks escaping local minima by 

training them with genetic or simulated annealing algorithm at the beginning, like it is 

done on the XOR problem. This makes the network able to correct its’ weight matrix 

faster and achieve better results with few training epochs. 

 

Of course the process of simulated annealing and genetic algorithms may produce a less 

suitable weight matrix than what was started with. This can happen when a simulated 

annealing or a genetic algorithm is used against an already well trained network. This 

lack of improvement is not always a bad thing, as the weight matrix may have moved 

beyond the local minimum. Further back-propagation training may allow the neural 

network to converge on a better solution. However, it is still always best to remember 

the previous local minimum incase a better solution simply cannot be found. 

 

Finally, although using genetic and simulated algorithms sometimes may produce better 

solutions, Elman network model remains to be the appropriate neural network structure 

to recognize both temporal and spatial patterns of different nature problems. 
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