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Abstract 
 

A sliding mode control scheme combined with a nonlinear 
observer is proposed for control of uncertain chaotic 
systems. The control design is based on Lyapunov direct 
method for dealing with uncertainties with known bounds. 
Second and third order chaotic systems whose states are 
estimated through a nonlinear observer are stabilized by the 
sliding mode control. The numerical results are presented to 
verify the validity of the proposed technique.  
 

1. Introduction 
 

Chaos is a periodic long-term behavior in a deterministic 
system that exhibits sensitive dependence on initial conditions 
[1]. The fundamental characteristics of chaotic behavior come 
from the internal structure of the systems, and chaotic behaviors 
are more complicated than limit cycle behaviors. Today, chaos 
has been seen to have many useful applications in many 
engineering systems such as in chemical reactors, genetic 
control systems, power converters, lasers, biological systems, 
and secure communication systems [1]. Chaos can be useful in 
propagation of mixing in processes, such as in convective heat 
transfer.  However, chaotic behavior may lead to undesirable 
effects as well (e.g. uncontrolled oscillations in a power grid) 
and may need to be regulated [2]. 

After chaos control was introduced in [3], it has turned out to 
be an important area of nonlinear science, and various control 
approaches have been proposed. The Ott-Grebogi-Yorke (OGY) 
method [3], variable structure control [4], nonlinear feedback 
control [5], and some other methods [6] have been successfully 
applied to chaotic systems. Sliding mode control (SMC) scheme 
is one of these methods [7-9], and recently there has been a great 
deal of attention on using SMC for controlling chaos. The SMC 
is an effective methodology for controlling systems with 
variable structures and provides a systematic approach to the 
problem of maintaining stability and consistent performance in 
the face of modeling imprecision and uncertainty [10-11]. 

Chaotic systems include nonlinearities and often some 
parameters which cannot be exactly defined [12].   Although 
some observer based control approaches have been proposed for 
controlling chaos [13-15], a robust control method such as SMC 
would have the advantage of the capability to handle such 
uncertainties. In the SMC, often the state trajectory of a dynamic 
system starting from a given set of initial conditions is desired to 
be controlled in such a way that it reaches a time-varying 
surface in a finite time, and then slides along the surface towards 
desired state exponentially. However, in practice, 
implementation of the related control switching is imperfect due 
to the impossibility of instantaneous switching and leads to 

chattering. Chattering involves high control activity and might 
excite high-frequency dynamics ignored during modeling.  
Hence, it is undesirable in practice. A common modification 
dealing with this problem is the boundary layer approach [10].  

This work investigates an observer based SMC configuration 
which uses for the boundary layer approach for controlling 
chaos in uncertain chaotic systems, under the assumption that 
the uncertainties can be described through a continuous function 
in time. Observer based SMC is designed to stabilize second 
order Duffing’s oscillator [16] and third order Genesio-Tesi 
chaotic system [17]. Section 2 overviews the use of the SMC 
with the boundary layer approach. Section 3 overviews observer 
construction procedures.  In Section 4, numerical results are 
presented to verify the proposed method. Finally, conclusions 
are given in Section 5. 

 
2. Sliding Mode Control Scheme 

 
Consider the following single input dynamic system 
                         

            ubfn )()()( xxx +=    (1) 
 

where Tn ][ )1( −= xxxx ��  is the state vector, and 1u R∈  is 

the control input. The function nn RRf →∈)(x  is a continuous 
nonlinear function, but not exactly known. The control gain 

)(xb  is not exactly known, but is bounded by known, 
continuous functions of x. 

The control problem is to get the state x to track a specific 
time varying state Tn

ddd d ][ )1( −= xxxx ��  in the presence of 

model imprecision on )(xf  and )(xb . Therefore, the tracking 
error is defined as          

 
                Tn

d ]~~~[~ )1( −=−= xxxxxx ��    (2) 
 

where x~  is the tracking error vector. A time varying surface 
),( ts x  in the state space nR  is defined by the scalar equation 

0),( =ts x  as 
 

                      xx ~),(
1−

�
�
�

�
�
� +=

n

dt
dts λ   (3) 

 
where � is a positive constant. The sliding surface is a line in the 
phase plane, of slope -� and containing the point xd. Figure 1 
illustrates this situation graphically.   
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Fig. 1: Sliding surface and chattering.  

 
The following example illustrates SMC under uncertainty in 

system dynamics. Consider a second order dynamic system as 
an example system  

 
                          uf += )(xx��    (4) 
 

where f(x) is not exactly known, but estimated as )(ˆ xf  and u is 
the control vector. The estimation error on f(x) is assumed to be 
bounded by some known function ),( xx �FF =  

 

                      Fff ≤− )()(ˆ xx    (5) 

 
To have the system track )()( tt dxx ≡ , a sliding surface is 

defined by 0),( =≡ tss x , that is, 

            
                   0~~ =+= xx λ�s               (6) 
 
  xxxxxxxx ������������ ~)(~~~ λλλ +−+=+−=+=� dd ufs  (7) 
 

The best approximation û  of a continuous control law that 
would achieve 0=s�  is thus 

 
                  xxx ��� ~)(ˆˆ λ−+−= dfu   (8) 
 

where û  is well-known as the equivalent control. To satisfy 
sliding condition in the presence of uncertainty on the dynamics, 
a discontinuous term is added to the equivalent control.  

 
                    )(ˆ sksignuu −=    (9) 
 

where ( )sign s  is the sign function defined as ( ) 1sign s =  if 
0s > , ( ) 1sign s = −  if 0s < . 

For stability analysis, a Lyapunov function is defined as 
 
                    25.0)( ssV =     (10) 
 

The derivative of (10) must be negative for stability.  Then 
 

sksffssksignffsss
dt
d −−=−−== )](ˆ)([)]()(ˆ)([

2
1 2 xxxx�  

 
and letting k F η= +  where 0>η , the following equation is 
obtained which indicates stability [11]: 

 

                      ss
dt
d η−≤2

2
1     (11) 

 
Controller design procedure consists of two steps. In the first 

step, a state feedback control u is selected to ensure sliding 
condition or stability. The second step is related to suitably 
smoothing the discontinuous control to eliminate chattering 
problem, and to achieve robustness against high frequency 
unmodeled dynamics. For this reason, the saturation function, 

( / )sat s β  where β  is the thickness of the boundary layer, is 
usually used instead of ( )sign s . 

 
1

( / ) /
1

if s
sat s s if s

if s

β
β β β β

β

− ≤ −	

= − < ≤�

 <�

 

 
Therefore, the control law has the following form  

 
                     )/(ˆ βsksatuu −= .  (12) 
 
 

3. Nonlinear Observer 
 
Consider the following single input, single output nonlinear 

system. 
 

                    
�
�
	

=
++=

x
xxx

Cy
BuA )(ϕ�

  (13) 

 
where nR∈x  is the state variable, u R∈  is the control vector, 

xn nA R∈  is the system matrix, x1nB R∈  is the control matrix, 
nn RR →:)(xϕ  is a nonlinear function, y R∈  is the output 

state, and 1xnC R∈  is the output matrix. 
A necessary and sufficient condition for observability in the 

system given in Eq.(13) is that the rank of the matrix 
 
               1[ ( ) ]T T T T n TN C A C A C−= �   (14) 
 

is n, namely ( )rank N n= . The most common observer scheme 
involves replicating the system dynamics together with an 
additive output error injection term. A Luenberger-like observer 
for nonlinear systems, the Thau observer [18], can be defined as 

 
             )ˆ()ˆ(ˆˆ xxxx CyLBuA −+++= ϕ�    (15) 
 

where nR∈x̂  is the observer state vectors, x1nL R∈  is the 
observer gain matrix, and RC ∈x̂  is the observer output.  

The observer gain matrix L can be computed by using pole 
placement method. For an appropriate choice of L, the 
eigenvalues of (A-LC) can be negative, and the observer error, 

xxe −= ˆ , can converge to zero asymptotically; that is, 
0lim =

∞→
e

t
. As a result of this, the observer state vectors may be 

replaced the state variables of the system. For details see [18] 
and  [19]. 

 

-� 

xd(�) 

Chattering 

x 

dx/dt 

s(x,t)=0 
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4. Control of the Chaotic Systems Using  

Observer Based SMC 
 
Control of the chaotic systems using observer based SMC is 

illustrated with the Duffing’s Oscillator and the Genesio-Tesi 
system. 

 
4.1. The Duffing’s Oscillator 

 
The fundamental Duffing’s Oscillator is defined by 
 
                3 cos( )x cx dx wt uθ+ + = +�� �   (16) 
 

Assume the forcing function )cos()( wttq θ=  has uncertainty in 
θ  with 21 θθθ ≤≤ .  Introducing the state vectors 1x x= , 

2x x= � , and rewriting Eq.(16) in the state space form yields the 
controlled Duffing’s oscillator 

 

               1 2
3

2 1 2 ( )

x x
x dx cx q t u

=	

�

= − − + +
�

�
�

  (17) 

 
where u is the control input. The system output is defined by 

 

                        1

2

[1 0]
x

y
x

 �
= � �

� �
   (18) 

 
where y is the output state. Generally, it is desired that error 
states converge to zero, that is 0=dx . Hence, by using 
observer state vectors given in (15), the tracking error given in 
(2) has the following form.  

 
                   1 2ˆ ˆ ˆ[ ]T

d x x= − =x x x� .   (19) 
 

Sliding surface is defined by 
 
                    2 1ˆ ˆs x xλ= +    (20) 
 

and 
 
           3

2 1 2ˆ ˆ ˆ ( )s x dx cx q t uλ= − − + +� . 
 

The equivalent control û  which is the solution of 0=s�  is 
found as 

 
           3

1 2 2ˆ ˆ ˆ ˆ ˆ( ( ))u dx cx q t xλ= − − − + −  
 

where ˆ( )q t  is the estimated value of the forcing term ( )q t . The 
control law can be selected as given in (12): 

 
                 )/(ˆ βsksatuu −=    (21) 

 
The parameters in (16) are chosen as 0.05c = , 1d =  and 

5.95.2 ≤≤ θ , and the forcing function is selected as 
)2cos()( ttq πθ=  in order to obtain a chaotic behavior. The 

initial conditions are chosen as T]4,3[)0( =x . The other 

parameters and functions are selected as 1λ = , 9η = , 0.05β =  
and ˆ( ) 9.5cos(2 )q t tπ= . 

To design the observer, when desired observer eigenvalues 
are selected as Tp ]55[ −−= , by using pole placement method, 
the observer gain matrix can be obtained as 

 
[9.9510 24.5074]TL =  

 
The initial conditions of the observer are taken as 

T]2,1[)0(ˆ −=x , and the uncertainty in the parameter ¤ is 

described through 5.2sin7 += tθ . 
The simulation results are provided in Figures 2 - 5 to verify 

the proposed method. The time responses of the state variables 
of the Duffing’s oscillator are given in Figure 2. The time 
responses of the observer error vectors xxe −= ˆ  are displayed 
in Figure 3. It is seen that the observer state vectors converge to 
the state vectors of the Duffing’s oscillator quickly.  
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Fig. 2: The time responses of the state variables of the Duffing’s 

oscillator for u=0. 
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Fig. 3: The time responses of the observer error vectors for u=0. 

 
In Figures 4 – 5, the controller and observer are activated at 

the time 30t = . In Figure 4, the time responses of the state 
variables of the Duffing’s oscillator are given. It is seen that the 
state variables of the system converge to zero immediately after 
the controller is activated. Figure 5 depicts the control signal. It 
is obvious that the chattering in the control signal is eliminated 
by using boundary layer approach. 

 

0 10 20 30 40 50 60
-10

-5

0

5

10

 

 
x1

x
2

 
Fig. 4: The time responses of the state variables of the Duffing’s 

oscillator with control activated at 30t = . 
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Fig. 5: The time response of the control signal u. 

 
4.2. The Genesio-Tesi System 

 
Genesio-Tesi system with a control input is defined through 

the following equations: 
 

         
1 2

2 3
2

3 1 2 3 1

x x
x x

x cx bx ax dx u

	 =

 =�

 = − − − + +�

�
�
�

  (22) 

 
where 1 2 3[ ]Tx x x=x  is the state variables, u is the control 
input, and the parameters a, b, c, d are not exactly known, but 
are bounded. The system output is defined as 

 

                    
1

2

3

[1 0 0]
x

y x
x

 �
� �= � �
� �� �

   (23) 

 
where y is the output state. For 0=dx , by using observer state 
vectors given in Eq.(15), the tracking error is  

 
               1 2 3ˆ ˆ ˆ ˆ[ ]T

d x x x= − =x x x�   (24) 
 

and the sliding surface from Eq.(3) is  
 
             2

3 2 1ˆ ˆ ˆ2s x x xλ λ= + +     (25) 
 
   2 2

1 2 3 1 3 2ˆ ˆ ˆ ˆ ˆ ˆ2s cx bx ax dx u x xλ λ� = − − − + + + +�  
 

The equivalent control û  is found as 
 
             2

3 2
ˆˆ ˆ ˆ ˆ( ) 2u f x x xλ λ= − − −  

 
where cba ˆ,ˆ,ˆ  and d̂  are the estimated values of the parameters 

cba ,, , and d . The control law is 
 
                 )/(ˆ βsksatuu −=    (26) 
 

Suppose that the parameters of the system can vary as 
0.2 0.4a≤ ≤ , 1 1.8b≤ ≤ , and 0.5 1.1c d≤ = ≤  (while still 
maintaining chaotic behavior). The initial conditions and the 
other values are selected as follows: T]0,0,5.0[)0( =x , 1λ = , 

0.1η = , 0.1β = , 2
1 2 3 1

ˆ ˆ ˆ ˆ ˆ ˆ( ) 1.5 0.3 0.9f x x x x x= − − − +  and 
2

1 2 3 1ˆ ˆ ˆ ˆ0.5 0.5 0.1 0.4F x x x x= + + + . 
 

By assuming the nominal parameter values 0.25, 1.4a b= = ,  
1== dc , and choosing the desired observer eigenvalues as 

Tp ]333[ −−−= , the observer gain matrix by using pole 
placement method can be obtained as  

 
[8.75 23.4125 7.8969]TL =  

 
In numerical simulations, the observer initial conditions are 

taken as T]0,0,1.0[)0(ˆ =x , and the parameters a, b, c, d are 

defined as a function of sine, that is, 2.0sin2.0 += ta , 

1sin8.0 += tb , and 5.0sin6.0 +== tdc . The simulation 
results are presented in Figures 6 – 9.  

 
In Figure 6, the time responses of the state variables of the 

Genesio-Tesi system is given with the control signal u=0. The 
time responses of the observer error vectors xxe −= ˆ  are 
illustrated in Figure 7.  
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Fig. 6: The time responses of the state variables of the Genesio-

Tesi system with u=0. 
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Fig. 7: The time responses of the observer error vectors e with 

u=0. 
 
In Figures 8 – 9, the controller and observer are activated at 

the time 40t = . In Figure 8, the time responses of the state 
variables of the Genesio-Tesi system is given. In Figure 9, the 
control signal is given. It is clear that the chattering in the 
control signal is eliminated via boundary layer approach. 
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Fig. 8: The time responses of the state variables of the Genesio-

Tesi system with control activated at 40t = . 
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Fig. 9: The time response of the control signal u. 

 
5. Conclusions 

 
This study investigates observer based control of uncertain 

chaotic systems by using the sliding mode control method. A 
nonlinear observer and the SMC scheme are designed in the 
presence of the unknown but bounded parameter values. The 
uncertainties are assumed to be describable through a 
continuous function in time. The chattering problem of the SMC 
is eliminated with the boundary layer approach. 
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