DUVARLARI KALINLIKLI VE EMPEDANS ÖZELLİĞİ GÖSTEREN DİELEKTRİK YÜKLÜ PARALEL LEVHALI DALGA KILAVUZUNDAN DÜZLEMSEL DALGALARIN KIRINIMI

Yakup HAMEŞ¹ İ. Hakkı TAYYAR²

¹Erciş Meslek Yüksek Okulu Elektrik Programı 100. Yıl Üniversitesi, 65400, Erciş, Van ²Elektronik Mühendisliği Bölümü Gebze Yüksek Teknoloji Enstitüsü, Çayırova, Gebze, Kocaeli

¹e-posta: yakuphames@hotmail.com

²e-posta: tayyar@gyte.edu.tr

Anahtar sözcükler: Paralel Levhalı Dalga Kılavuzu, Wiener-Hopf Tekniği, Kırınım

ABSTRACT

The high frequency diffraction of E-polarized plane waves by a dielectric loaded thick-walled parallelplate impedance wave-guide is investigated rigorously by using Fourier transform technique in conjunction with the mode-matching method. This mixed method of formulation gives rise to a scalar Wiener-Hopf equation of the second kind, the solution of which contains infinitely many constants satisfying an infinite system of linear algebraic equations. A numeric solution of this system is obtained for various values of the dielectric constant, plate impedances, plate thickness, and the distance between the plates through which the effect of these parameters on the diffraction phenomenon are studied.

1. GİRİŞ

Düzlemsel akustik veya elektromanyetik dalgaların paralel yarım düzlem sistemlerinden kırınımı kuramsal ve mühendislik uygulamaları bakımından büyük önem taşımaktadır. Bu çalışmada duvarları kalınlıklı ve empedans yüklü olan ve içi dielektrikle dolu yarı sonsuz dalga kılavuzu formunda düzlem için analiz yapılmıştır. Kalınlıksız üç paralel yarım düzlemden düzlemsel dalgaların kırınımını ilk defa üç boyutlu matris Wiener-Hopf denklemiyle D.S. Jones [1] incelemiştir. Bu eşitlikler iki boyutlu skaler Wiener-Hopf denklemine matris ve dönüştürülmüştür. Üç paralel yarım düzlem problemi Abrahams [2] tarafından da incelenmiş, çekirdek matrisin Wiener-Hopf faktorizasyonu için daha basit bir yaklaşım sunulmuştur. Daha sonra Büyükaksoy ve Polat [3] Wiener-Hopf ile mod uvdurma metodunu birlestirerek düzlemsel elektromanyetik dalgaların kalınlıklı ve empedans yüklü paralel levhalı dalga kılavuzundan kırınımını incelemişlerdir. Yine Alkumru [4] üç paralel yarım düzlemden düzlemsel elektromanyetik dalgaların kırınımını aynı yöntemi kullanarak incelemiştir.

Bu çalışmada ise içi dielektrikle dolu, duvarları kalınlıklı ve empedans yüklü yarı sonsuz bir paralel levhalı dalga kılavuzundan (Şekil-1) E_z polarizasyonlu düzlemsel elektromagnetik dalgaların kırınımı Wiener-Hopf tekniği ile mod uydurma metodu birleştirilerek incelenmiştir.

2. PROBLEMİN FORMÜLASYONU

Şekil-1 deki gibi E_z polarizasyonuna sahip düzlemsel dalganın, dalga kılavuzu formundaki $S_1 = \{x, y, z; x \in (-\infty, 0), y \in (a, b), z \in (-\infty, \infty)\},\$ $S_2 = \{x, y, z; x \in (-\infty, 0), y \in (-a, -b), z \in (-\infty, \infty)\}$ iki yarı sonsuz kalınlıklı paralel empedans düzleminden kırınımını ele alacağız. $y=\mp$ b, x<0 ve $y=\mp$ a, x<0'daki yatay duvarların yüzey empedansları sırasıyla $Z_1 = \eta_1 Z_0$ ve $Z_2 = \eta_2 Z_0$; x=0, y \in (a,b) ve y \in (-a,-b)'deki düşey duvarların yüzey empedansları $Z_3 = \eta_3 Z_0$ dır. $Z_0 = \sqrt{\mu_0 / \varepsilon_0}$ olup serbest uzayın karakteristik empedansıdır.

Saçılan alanı belirleyebilmek için gelen alanı çift ve tek uyarma şeklinde iki parçaya ayırabiliriz. Bu çift yönlü görüntü prensibine dayanır. Şekil-2'de çift ve tek uyarımlar ve bunların eşdeğerleri gösterilmiştir. Şekil-2a çift (simetrik) uyarmayı, Şekil-2b tek (asimetrik) uyarmayı, sırasıyla Şekil-2c ve Şekil-2d ise bunların eşdeğerlerini göstermektedir.

Şekil-2. a) Çift uyarma b)Tek uyarma c)Çift uyarmanın eşdeğeri d)Tek uyarmanın eşdeğeri

Şimdi çift uyarmanın eşdeğerini gösteren Şekil-2c'deki yapıyı ele alalım. Bu durumda alan y=0 düzlemine simetrik olduğundan Toplam elektrik alanın y' ye göre türevi $x \in (-\infty, +\infty)$, y=0 için sıfır olmalıdır. Toplam alan (e), (o) sırasıyla çift ve tek uyarımları göstermek üzere şöyle ifade edilebilir:

$$u_{T}^{(e,o)} = \begin{cases} u^{i} + u^{r} + u_{1}^{(e,o)}, y > b \\ u_{2}^{(e,o)}, 0 < y < a, x < 0 \\ u_{3}^{(e,o)}, 0 < y < b, x > 0 \end{cases}$$
(1a)

ve gelen dalga E_z -polarizeli olmak üzere,

$$u^{i}(x, y) = \exp\{-ik_{0}(x\cos\phi_{0} + y\sin\phi_{0})\}$$
(1b)
$$k_{0,1,2} = \omega\sqrt{\varepsilon_{0,1,2}\mu_{0}}$$
(1c)

olup μ_0 boşluğun manyetik geçirgenlik katsayısını, ϵ_0 boşluğun elektriksel iletkenlik katsayısını $\epsilon_{1,2}$ ise sırasıyla birinci ve ikinci dielektriğin elektriksel iletkenlik katsayılarını, k_0 , k_1 , k_2 sırasıyla boşluğun, birinci ve ikinci dielektriğin dalga sayılarını göstermektedir. y=b'den yansıyan dalga aşağıdaki gibidir.

$$u^{r}(x, y) = \frac{\eta_{1} \sin \phi_{0} - 1}{\eta_{1} \sin \phi_{0} + 1}$$
(1d)

$$\times \exp\{-ik_{0} [x \cos \phi_{0} - (y - 2)b \sin \phi_{0}]\}$$

Problem $u_{1,2,3}$ 'ün belirlenmesi ve analizinden ibarettir. $u_{1,2,3}^{(e,o)}$ Helmholtz denklemi, radyasyon koşulu ile aşağıdaki sınır ve süreklilik koşullarını sağlar:

$$\left(1 + \frac{\eta_1}{ik_0}\frac{\partial}{\partial y}\right) u_1^{(e,o)}(x,b) = 0, \quad x < 0, \qquad (2a)$$

$$\left(1 - \frac{\eta_2}{ik_1}\frac{\partial}{\partial y}\right) u_2^{(e,o)}(x,a) = 0, \quad x < 0, \qquad (2b)$$

$$\left(1 + \frac{\eta_3}{ik_2}\frac{\partial}{\partial x}\right) u_3^{(e,o)}(0,y) = 0, \ y \in (a,b), \ (2c)$$

$$\frac{\partial}{\partial y}u_2^{(e)}(x,0) = 0, \quad x < 0, \tag{2d}$$

$$\frac{\partial}{\partial y}u_3^{(e)}(x,0) = 0, \quad x > 0, \qquad (2e)$$

$$u_{2}^{(o)}(x,0) = 0, x < 0, \ u_{3}^{(o)}(x,0) = 0, x > 0, \ (2f)$$
$$u_{2}^{(e,o)}(0,y) = u_{3}^{(e,o)}(o,y), \quad 0 < y < a, \ (2g)$$
$$\frac{\partial}{\partial} u_{2}^{(e,o)}(0,y) = \frac{\partial}{\partial} u_{3}^{(e,o)}(x,y) = 0, \ (x < 0, y < 0)$$

$$\frac{\partial}{\partial x}u_2^{(e,o)}(0,y) = \frac{\partial}{\partial x}u_3^{(e,o)}(o,y), 0 < y < a , (2h)$$

$$u_{1}^{(e,o)}(x,b) - u_{3}^{(e,o)}(x,b) = \frac{2i\eta_{1}\sin\psi_{0}}{1 + \eta_{1}\sin\phi_{0}}$$

$$\times \exp\{-ik_{0}b\sin\phi_{0}\} \times \exp\{-ik_{0}x\cos\phi_{0}\}, x > 0$$
(2i)
$$\frac{\partial}{\partial y}u_{1}^{(e,o)}(x,b) - \frac{\partial}{\partial y}u_{3}^{(e,o)}(x,b) = \frac{2ik_{0}\sin\phi_{0}}{1 + \eta_{1}\sin\phi_{0}}$$

$$\times \exp\{-ik_0b\sin\phi_0\} \times \exp\{-ik_0x\cos\phi_0\}, x > 0$$
(2j)

Sınır ve süreklilik koşullarının Fourier dönüşümü alınmış alan bileşenlerine uygulanması ile ikinci türden modifiye Wiener-Hopf problemi tek ve çift uyarımlar için elde edilmiştir. Bunlar:

$$ik_{0} \frac{\chi(\alpha)}{M^{(e)}(\alpha)N^{(e)}(\alpha)} R^{(e)}_{+}(\alpha) - F^{(e)}_{-}(\alpha,b) = \frac{2k_{0}\sin\phi_{0}}{1+\eta_{1}\sin\phi_{0}} \frac{\exp\{-ik_{0}b\sin\phi_{0}\}}{\alpha-k_{0}\cos\phi_{0}} + \sum_{m=1}^{\infty} \frac{K_{2m}^{e}\sin[K_{2m}^{e}b]}{\left[\alpha^{2}-\left(\alpha_{m}^{e}\right)^{2}\right]} \left(f_{m}^{e}-\alpha g_{m}^{e}\right)$$
(3)

Burada:

$$R_{+}^{(e)}(\alpha) = \frac{K_{0}(\alpha)}{k_{0}\chi(\alpha)} A^{(e)}(\alpha), \qquad (4a)$$

$$N^{(e)}(\alpha) = \frac{K_0(\alpha)}{K_0(\alpha)\cos(K_2b) - iK_2(\alpha)\sin(K_2b)}$$
(4b)

$$M^{(e)}(\alpha) = \cos(K_2 b) - \frac{\eta_1}{ik_0} K_2(\alpha) \sin(K_2 b)$$
(4c)

$$\chi(\alpha) = \left[\eta_1 + \frac{k_0}{K_0(\alpha)}\right]^{-1}, \qquad (4d)$$

dir. (3) denkleminde (+) alt indisi ile kompleks α düzleminin $\Im(\alpha) > \Im(k_0 \cos \phi_0)$ üst yarısında regüler, (-) alt indisi ile de $\Im(\alpha) < \Im(k_0)$ alt yarısında regüler fonksiyonlar, f_m^e ve g_m^e ile

sırasıyla
$$\frac{\partial}{\partial x} u_3^{(e)}(0, y) \ ve \ -iu_3^{(e)}(0, y),$$

 $y \in (0, b)$ fonksiyonlarının Fourier kosinüs serilerindeki katsayıları ifade edilmiştir. $A^{(e)}(\alpha)$ ise u_1 'in Helmholtz denkleminin çift uyarma için çözümündeki bilinmeyen katsayıdır. Klasik Wiener-Hopf tekniğinin uygulanması sonucu (3) denklemi çözülür. Çözüm şöyledir:

$$ik_{0} \frac{\chi_{+}(\alpha)}{M_{+}^{(e)}(\alpha)N_{+}^{(e)}(\alpha)} R_{+}^{(e)}(\alpha) = \frac{-2k_{0}\sin\phi_{0}}{1+\eta_{1}\sin\phi_{0}}$$

$$\times \frac{M_{-}^{(e)}(k_{0}\cos\phi_{0})N_{-}^{(e)}(k_{0}\cos\phi_{0})}{\chi_{-}(k_{0}\cos\phi_{0})} \frac{\exp\{-ik_{0}b\sin\phi_{0}\}}{\alpha-k_{0}\cos\phi_{0}}$$

$$-\sum_{m=1}^{\infty} \frac{K_{2m}^{e}\sin[K_{2m}^{e}b]}{2\alpha_{m}^{e}} \frac{M_{+}^{(e)}(\alpha_{m}^{e})N_{+}^{(e)}(\alpha_{m}^{e})}{\chi_{+}(\alpha_{m}^{e})} \frac{(f_{m}^{e}-\alpha_{m}^{e}g_{m}^{e})}{\alpha+\alpha_{m}^{e}}$$
(5)

Tek uyarma için Wiener-Hopf denklemi benzer şekilde elde edilir,

$$\frac{k_{0}\chi(\alpha)}{K_{0}(\alpha)M^{(o)}(\alpha)N^{(o)}(\alpha)}R_{+}^{(o)}(\alpha) - F_{-}^{(o)}(\alpha,b)
= \frac{2k_{0}\sin\phi_{0}}{1+\eta_{1}\sin\phi_{0}}\frac{\exp\{-ik_{0}b\sin\phi_{0}\}}{\alpha-k_{0}\cos\phi_{0}}
+ \sum_{m=1}^{\infty}\frac{K_{2m}^{0}\cos[K_{2m}^{0}b]}{\left[\alpha^{2}-(\alpha_{m}^{0})^{2}\right]}(f_{m}^{0}-\alpha g_{m}^{0})$$
(6)

Burada:

$$R_{+}^{(o)}(\alpha) = \frac{K_{0}(\alpha)}{k_{0}\chi(\alpha)} A^{(o)}(\alpha), \qquad (7a)$$

$$N^{(o)}(\alpha) = \frac{K_2(\alpha)}{K_2(\alpha)\cos(K_2b) - iK_0(\alpha)\sin(K_2b)}, \quad (7b)$$

$$M^{(o)}(\alpha) = \frac{\sin(K_2b)}{K_2(\alpha)} + \frac{\eta_1}{ik_0}\cos(K_2b), \qquad (7c)$$

ve çözümü için de çift uyarmadakine benzer bir yol izlenir. Sonuç şöyle çıkar:

$$k_{0} \frac{\chi_{+}(\alpha)}{\sqrt{k_{0} + \alpha}M_{+}^{(o)}(\alpha)N_{+}^{(o)}(\alpha)}R_{+}^{(o)}(\alpha) = \frac{2k_{0}\sin\phi_{0}}{1+\eta_{1}\sin\phi_{0}} \frac{\exp\{-ik_{0}b\sin\phi_{0}\}}{\alpha-k_{0}\cos\phi_{0}} \times \frac{\sqrt{k_{0}(1-\cos\phi_{0})}M_{-}^{(o)}(k_{0}\cos\phi_{0})N_{-}^{(o)}(k_{0}\cos\phi_{0})}{\chi_{-}(k_{0}\cos\phi_{0})} \times \frac{\sqrt{k_{0}(1-\cos\phi_{0})}M_{-}^{(o)}(k_{0}\cos\phi_{0})}{\chi_{-}(k_{0}\cos\phi_{0})} \times \frac{(f_{m}^{o} - \alpha_{m}^{o}g_{m}^{o})}{\alpha+\alpha_{m}^{o}} \times \frac{\sqrt{k_{0} + \alpha_{m}^{o}}M_{+}^{(o)}(\alpha_{m}^{o})N_{+}^{(e)}(\alpha_{m}^{o})}{\chi_{+}(\alpha_{m}^{o})}$$
(8)

(6) ve (7) denklemlerinde f_m^o ve g_m^o ile sırasıyla $\frac{\partial}{\partial x}u_3^{(o)}(0, y)$ ve $-iu_3^{(o)}(0, y)$, $y \in (0, b)$ fonksiyonlarının Fourier kosinüs serilerindeki

katsayıları ifade edilmiştir. $A^{(o)}(\alpha)$ ise u_1 'in Helmholtz denkleminin tek uyarma için çözümündeki bilinmeyen katsayıdır. Yukarıda görülen $N_{\pm}^{(e,o)}(\alpha)$, $M_{\pm}^{(e,o)}(\alpha)$ ve $\chi_{\pm}(\alpha)$ fonksiyonları (4b-d) ve (7b,c) fonksiyonlarının Wiener-Hopf anlamında faktorizasyonlarıdır ve aşağıdaki eşitlikleri sağlarlar:

$$M_{-}^{(e,o)}(\alpha) = M_{+}^{(e,o)}(-\alpha), \ N_{-}^{(e,o)}(\alpha) = N_{+}^{(e,o)}(-\alpha)$$
(9a)

$$\chi_{-}^{(e,o)}(\alpha) = \chi_{+}^{(e,o)}(-\alpha), \qquad (9b)$$

$$M^{(e,o)}(\alpha) = M^{(e,o)}_{-}(\alpha) M^{(e,o)}_{+}(\alpha), \qquad (9c)$$

$$N^{(e,o)}(\boldsymbol{\alpha}) = N^{(e,o)}_{-}(\boldsymbol{\alpha})N^{(e,o)}_{+}(\boldsymbol{\alpha}), \qquad (9d)$$

$$\chi(\alpha) = \chi_{-}(\alpha)\chi_{+}(\alpha). \tag{9e}$$

 $\alpha_m^{(e,o)}$ değerleri ise aşağıdaki gibi tanımlanmıştır : $M^{(e,o)}(\alpha) = 0$, $\Im m(\alpha_m^{e,o}) > \Im m(k_2)$, (10)

Burada $M_{+}^{(e,o)}(\alpha)$, $N_{+}^{(e,o)}(\alpha)$ ve $\chi_{+}(\alpha)$ ve $M_{-}^{(e,o)}(\alpha)$, $N_{-}^{(e,o)}(\alpha)$ ve $\chi_{-}(\alpha)$ fonksiyonları kompleks α -düzleminin sırasıyla üst ve alt

yarısında regüler ve sıfırları olmayan fonksiyonlardır.

3. SAÇILAN ALANIN ANALİZİ

Saçılan alan $u_1(x, y)$ 'yi çift ve tek uyarımlar için şu şekilde elde ederiz:

$$u_{1}^{(e)}(x,y) = \frac{1}{2\pi} \int_{L}^{A} A^{(e)}(\alpha) e^{iK_{0}(\alpha)(y-b)} e^{-i\alpha x} d\alpha$$
(11a)
$$u_{1}^{(o)}(x,y) = \frac{1}{2\pi} \int_{L}^{A} A^{(o)}(\alpha) e^{iK_{0}(\alpha)(y-b)} e^{-i\alpha x} d\alpha$$
(11b)

Burada $L \quad \Imm(k_0 \cos\phi_0) < \Imm(\alpha) < \Imm(k_0)$ aralığında reel α -ekseni boyunca eksene paralel uzanan integrasyon çizgisidir. (11a) ve (11b)'deki integrallerin semer noktası yöntemiyle asimptotik olarak hesaplanmasıyla kırınan alanı yazabiliriz.

$$u_{1}(\rho,\phi) = \frac{u_{1}^{e}(\rho,\phi) + u_{1}^{o}(\rho,\phi)}{2}, \qquad (12a)$$

$$u_{1}^{e}(\rho,\phi) \approx \left\{ u_{0}D^{(e)}(\phi,\phi_{0}) + \frac{e^{i\pi/4}}{\sqrt{2\pi}} \frac{\sin\phi}{1+\eta_{1}\sin\phi} \right.$$

$$\times \frac{M_{-}^{(e)}(k_{0}\cos\phi)N_{-}^{(e)}(k_{0}\cos\phi)}{\chi_{-}(k_{0}\cos\phi)}$$

$$\times \sum_{m=1}^{\infty} \frac{K_{2m}^{e}\sin\left[K_{2m}^{e}b\right]}{2\alpha_{m}^{e}} \frac{M_{+}^{(e)}(\alpha_{m}^{e})N_{+}^{(e)}(\alpha_{m}^{e})}{\chi_{+}(\alpha_{m}^{e})}$$

$$\times \frac{\left(f_{m}^{e}-\alpha_{m}^{e}g_{m}^{e}\right)}{\alpha_{m}^{e}-k_{0}\cos\phi} \right\} \times \frac{e^{ik_{0}\rho}}{\sqrt{k_{0}\rho}}$$

$$(12b)$$

$$u_{1}^{o}(\rho,\phi) \approx \left\{ u_{0}D^{(o)}(\phi,\phi_{0}) + \frac{e^{i3\pi/4}}{\sqrt{2\pi}} \frac{\sin\phi}{1+\eta_{1}\sin\phi} \right.$$

$$\times \frac{\sqrt{k_{0}(1-\cos\phi)}M_{-}^{(o)}(k_{0}\cos\phi)N_{-}^{(o)}(k_{0}\cos\phi)}{\chi_{-}(k_{0}\cos\phi)}$$

$$\times \sum_{m=1}^{\infty} \frac{K_{2m}^{o}\cos[K_{2m}^{o}b]}{2\alpha_{m}^{e}} \frac{M_{+}^{(o)}(\alpha_{m}^{o})N_{+}^{(o)}(\alpha_{m}^{o})}{\chi_{+}(\alpha_{m}^{o})}$$

$$\times \frac{\sqrt{k_{0}+\alpha_{m}^{o}}(f_{m}^{o}-\alpha_{m}^{o}g_{m}^{o})}{\alpha_{m}^{o}+k_{0}\cos\phi} \right\} \times \frac{e^{ik_{0}\rho}}{\sqrt{k_{0}\rho}} (12c)$$

$$D^{(e)}(\phi,\phi_{0}) = e^{i3\pi/4} \sqrt{\frac{2}{\pi}} \frac{\sin\phi_{0}}{1+\eta_{1}\sin\phi_{0}} \frac{\sin\phi}{1+\eta_{1}\sin\phi}$$

$$\times \frac{M^{(e)}_{-}(k_{0}\cos\phi_{0})N^{(e)}_{-}(k_{0}\cos\phi_{0})}{\chi_{-}(k_{0}\cos\phi_{0})}$$

$$\times \frac{M^{(e)}_{-}(k_{0}\cos\phi)N^{(e)}_{-}(k_{0}\cos\phi)}{\chi_{-}(k_{0}\cos\phi)} \frac{1}{\cos\phi_{0} + \cos\phi}$$
(12d)
$$D^{(o)}(\phi,\phi_{0}) = e^{i3\pi/4} \sqrt{\frac{2}{\pi}} \frac{\sin\phi_{0}}{1+\eta_{1}\sin\phi_{0}} \frac{\sin\phi}{1+\eta_{1}\sin\phi}$$

$$\frac{\sqrt{k_0(1-\cos\phi_0)}M_{-}^{(o)}(k_0\cos\phi_0)N_{-}^{(o)}(k_0\cos\phi_0)}{\chi_{-}(k_0\cos\phi_0)} \times \frac{\sqrt{k_0(1-\cos\phi_0)}M_{-}^{(o)}(k_0\cos\phi_0)N_{-}^{(o)}(k_0\cos\phi_0)}{\chi_{-}(k_0\cos\phi)N_{-}^{(o)}(k_0\cos\phi)}}{\chi_{-}(k_0\cos\phi)(\cos\phi_0+\cos\phi)}$$
(12e)

$$u_0 = \exp\{-ik_0 b \sin \phi_0\},\tag{12f}$$

Burada (ρ, ϕ) silindirik koordinatlar sisteminde $x = \rho \cos \phi$ ve $y - b = \rho \sin \phi$ ile tanımlanmıştır. u_0 ise y=b, x=0 için gelen dalga ifadesinin değeridir.

SONUÇ

Bu çalışmada dalga kılavuzunun duvar kalınlığının ve yüzey empedansının kırınım olayına etkileri ortaya çıkarılmıştır. Bulunan sonuçlar dielektrik tabakanın söz konusu olmadığı limit durumdaki Büyükaksoy ve Polat [3]'ın sonuçları ile çakışmaktadır. Böylece yapılan analizin doğruluğu test edilmiştir.

KAYNAKLAR

- [1] Jones, D.S., Diffraction by Three Semi-Infinite Planes, Proc. Roy. Soc. Lond., Vol. A404, pp. 299-321, 1986.
- [2] Abrahams, I.D., Scattering of Sound by Three Semi Infinite Planes, J. Sound Vibr., Vol. 112, pp. 396-398, 1987.
- [3] Büyükaksoy A., Polat B., Plane Wave Diffraction by a Thick-Walled Parallel-Plate Impedance Waveguide, IEEE Trans. Antennas and Propagation, vol. 46, pp. 1692-1699, 1998.
- [4] Alkumru A., Plane Wave Diffraction by Three Parallel Thick Impedance Half Plane, Vol. 12, pp. 801-819, 1998.