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ABSTRACT

The cable is formed by two tubular conductors and

is connected to a sinusoidal voltage source whose

frequency is less than 10 MHz. A method for cal-

culating the inductance of this cable is proposed.

The method is applied on examples and the results

obtained are compared with published data.

I. INTRODUCTION

Consider a coaxial cable formed by two infinitely long
straight concentric tubular conductors. The inner or
the outer conductor is determined by resistivity and
cross-section radii %i, ri1 and ri2 or %o, ro1 and ro2.
The permeability of conductors and the insulation be-
tween them is assumed to be equal to µ0. In addition
to the Cartesian system the system of cylindrical co-
ordinates r, φ, z is also used. But because of the sym-
metry with respect to axis z the φ coordinate will be
to no avail. The two conductors have the direction of
axis z and are connected to an ideal voltage source
[1]. An electrical appliance is connected to their other
end. The source voltage and current I in the con-
ductors depend only on time t ∈ [0,∞). The ratio of
conductor cross-section magnitudes is denoted

q =
r2
o2 − r2

o1

r2
i2 − r2

i1

. (1)

The complicated motion of electric charges forming a
current in the conductor is described by the vector of
current density J . In view of the symmetry of the
arrangement of conductors it is assumed that J has
the direction of axis z and depends only on r and t;

J =
(0, 0, J(r, t)) for r ∈ [ri1, ri2],

(0, 0,−J(r, t)) for r ∈ [ro1, ro2],

where function J = J(r, t) is defined for r ∈ [0, ro2]
and

J(r, t) = 0 for r ∈ [0, ri1) ∪ (ri2, ro1).

The magnitude B of field vector B also depend on
only r and t. The fact that current I and vectors
J, B do not depend on z actually means that an in-
finitely high propagation velocity of electromagnetic
field is assumed. The section of each of the conduc-
tors through the plane z = const is an equipotential
area. In the whole of this paper the part of the two
conductors between the planes z = z1 and z = z2,
where z1 < z2, z21 = z2 − z1 = 1 m, will be consid-
ered. Across the cross-sections of the two conductors
in the plane z = z1 or z = z2 is a voltage U1 = U(z1, t)
or U2 = U(z2, t).

II. CURRENT DENSITY IN
CONDUCTORS

If the cable is connected to a source whose voltage
varies with time, then the current density in the cable
cross-section is affected by induced currents. In this
Section an equation is derived in brief the solution of
which is the current density in the cable for a given
time dependence of the voltage source. A detailed
derivation and the solution method are given in [2].

Coaxial conductors are formed by elementary con-
ductors, which form elementary loops. The cross-
section of elementary conductors is dAc = 2π rc drc,
where subscript c denotes either i or o. While ri is an
arbitrary number from the interval [ri1, ri2], ro must
be chosen such that the same current dI flows through
cross-sections dAi and dAo, and the mapping, which
to each ri ∈ [ri1, ri2] assigns ro ∈ [ro1, ro2], must be
a one-to-one mapping of the intervals [ri1, ri2] and
[ro1, ro2]. A mapping fulfilling these conditions will
be denoted by the letter m, i.e. ro = m(ri). To de-
termine m means to determine the lines of vector J
in the conductors. By analogy with relation (1) it is
assumed that it holds

dAo = q dAi. (2)
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The current flowing through an elementary loop is dI
so that

J(ri, t) dAi = J(ro, t) dAo.

From this relation and from (2) it follows that

J(ro, t) =
J(ri, t)

q
. (3)

Each elementary loop will be replaced by a lumped-
elements circuit for which it holds by Kirchhoff’s volt-
age law

Ui(r, t) + Uo(r, t) + UL(r, t) = U12. (4)

The voltage drop U12 = U1 − U2 is the same along
each segment (1 m long) of both conductors. We will
in the following assume that

U12 = Ûu(t), (5)

where the function u(t) is dimensionless while Û is a
constant expressed in volts. Ui and Uo are voltages
across the resistances that substitute the elementary
conductors. Using (3) we obtain

Ui + Uo =
(

%i +
%o

q

)
z21 J(ri, t). (6)

The voltage UL in equatiom (4) is a voltage induced
around the elementary loop. Faraday’s law of induc-
tion is expressed by Maxwell’s equation in integral
form ∮

C

E · dC = −dΦ

dt
.

The integral of electric field intensity vector around a
closed curve C is the electromotive force (emf) around
C while Φ is the flux of the magnetic field vector
B through a continuous surface AC bounded by the
curve C. Φ does not depend on the shape of the sur-
face AC [3]. For the calculation of UL the surface AC

may be a rectangle [ri, ro] × [z1, z2] in a plane y = 0,
and the curve C is then the boundary of this rectangle.
Taking into consideration the fact that the magnetic
field B, excited by the current in the pair of conduc-
tors under consideration, has on the circle r = const
the direction of tangent to this circle, it follows from
the above that

UL =
dΦ

dt
, (7)

where

Φ =
∫

AC

B · dAC = z21
d
dt

∫ ro

ri

B(x, J(x, t)) dx.

Using x instead of r only says that in the calculation
of Φ it is only the values of B on axis x that come
to be applied. B is easy to calculate using Ampere’s
circuital law.

Using (5), (6) and (7), equation (4) can be rewritten
in the form(

%i +
%o

q

)
J(ri, t)+

d
dt

∫ ro

ri

B(x, J(x, t)) dx =
Ûu(t)
z21

.

This equation must be satisfied for any ri ∈ [ri1, ri2]
and t ∈ [0,∞). Its solution determines the current
density J(r, t) in the above pair of coaxial conductors
for a given Ûu(t). The solution J(r, t) is directly pro-
portional to Û .

III. INDUCTANCE OF COAXIAL CABLE

The inductance of 1 metre of cable can be determined
on the assumption that the cable is connected to a
source of sinusoidal voltage, i.e. u(t) = sin ωt, is as-
sumed. In that case it is of advantage to solve exam-
ples for the complex voltage

U12 exp(jωt)

and for the current density

J(r) exp(jωt). (8)

The underlined symbols denote phasors

U12 = Û ,

J(r) = Ĵ(r) exp(jα(r))

and thus

J(r, t) = Ĵ(r) sin[ωt + α(r)]. (9)

The equivalent circuit of 1 metre of cable is the series
connection of a resistor of resistance

R =
z21

π(r2
i2 − r2

i1)

(
%i +

%o

q

)
,

which is the sum of the resistance of 1 metre of inner
conductor and the resistance of 1 metre of outer con-
ductor, and an inductor characterized by inductance
L. In addition to the magnetic field excited by the
current in the cable the effect of other magnetic fields
is not taken into consideration. The displacement cur-
rent in the insulation between the conductors is also
neglected, which leads, as shown in [2], to the source
frequency being limited by the condition f < 10 MHz.

The current density (8) calculated for a given
voltage Û exp(jωt) uniquely determines the current
through the cable

I exp(jωt).

By Kirchhoff’s voltage law it holds

I (R + jωL) = Û . (10)
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As mentioned above, the current density in the ca-
ble is directly proportional to the source voltage and
therefore the current through the cable is also directly
proportional to the source voltage and we can assume
that Û = 1 V. Therefore it follows from (10) that

L = − sin[arg(I)]
ω |I|

. (11)

IV. EXAMPLE

The inner copper conductor (%i = 1.712× 10−8 Ω·m)
has the dimensions ri1 = 5 mm, ri2 = 10 mm;
the outer conductor is of aluminium (% = 2.709 ×
10−8 Ω·m) with ro1 = 11 mm, the ratio of conduc-
tor cross-section magnitudes q = 1.5; ω = 2πf , where
f = 60 Hz and 1 kHz. Values of %c are taken from
[4]. Figure 1 shows the normalized amplitude of the
current density

Ĵ(r)
Jmax

, where Jmax = Ĵ(ri2),

in the inner and the outer conductors, Jmax =
2.82032 × 107 A/m2 for f = 60 Hz and Jmax =
2.28936 × 107 A/m2 for f = 1 kHz. Figure 2 shows
the value α(r) (see (9)). The current (in amperes) in
the inner and the outer conductor is

I(t) =
6546.86 sin(ωt− 10.89 deg) for f = 60 Hz
2098.01 sin(ωt− 55.56 deg) for f = 1 kHz
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Figure 1. Normalized amplitude of the current density
in conductors.
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Figure 2. Initial phase angle α(r) of the current den-
sity in conductors.
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Figure 3. Dependence of inductance L on f and ro1,
calculated using formula (11).

V. COMPARISON OF RESULTS

The results of calculating L using the relation (11), in
which phasor I is determined by a method described
in Section II, will be compared with the values LH and
LS. The formula for calculating LH is given in [5] for
ri1 = 0. For the high frequencies f = 1 to 100 MHz

LH =
µ0

2π
ln

ro2

ri2
(12)

for the low frequencies it is necessary to add
5×10−8 H/m on the right-hand side of the relation
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(12). In [6] the formula for the calculation of in-
ductance is derived on the assumption that ri1 = 0,
ro2 = ∞

LS =
µ0

2π

[
ln

ro1

ri2
+

√
%i

2ω µ0

(
1

ri2
+

1
ro1

)]
. (13)

Inductance will be compared for a cable of copper
conductors (% = 1.712 × 10−8 Ω·m), the size of
the cross-section of outer conductor is equal to
the size of the cross-section of inner conductor;
ri1 = 0, ri2 = 5 mm, ro1 = 5, 6, 7, 8, 9, 10 mm,
f = 50 Hz and 1 MHz. The values of inductance
expressed in H/m and the percent deviations of LH

and LS from L are given in Table 1.

Table 1. Comparison of inductances.

f (Hz) ro1 (mm) L (H/m) LH (H/m) ∆ (%) LS (H/m) ∆ (%)
50 5 7.723×10−8 1.193×10−7 54.5 3.725×10−7 382.3

6 1.064×10−7 1.392×10−7 30.8 3.779×10−7 255.2
7 1.325×10−7 1.585×10−7 19.6 3.866×10−7 191.8
8 1.559×10−7 1.770×10−7 13.5 3.967×10−7 154.5
9 1.771×10−7 1.945×10−7 9.8 4.073×10−7 130.0
10 1.965×10−7 2.109×10−7 7.3 4.180×10−7 112.7

106 5 2.682×10−9 6.931×10−8 2484.0 2.634×10−9 -1.8
6 3.893×10−8 8.920×10−8 129.1 3.888×10−8 -0.1
7 6.961×10−8 1.085×10−7 55.9 6.955×10−8 0.0
8 9.622×10−8 1.270×10−7 32.0 9.614×10−8 0.0
9 1.197×10−7 1.445×10−7 20.7 1.196×10−7 0.0
10 1.407×10−7 1.609×10−7 14.4 1.406×10−7 0.0

As can be seen from the Table, the formula (12) only
gives orientational values of the cable inductance
because when it was being derived a constant cur-
rent density in the cross-section of conductors was
assumed and part of the magnetic flux was neglected
so that also the dependence on f is vague. The
formula (12) is acceptable for the low frequencies in
the case that the size of conductor cross-section is
small with repect to the size of the cross-section of
insulation between the conductors. For example, if
for f = 50 Hz, ro1 = 10 mm we choose ri2 = 1 mm,
then LH = 5.115× 10−7 H/m, L = 5.108× 10−7 H/m
and for ri2 = 0.3 mm we have LH identical to L in
the first four valid figures.

A comparison of the inductance values in the Table
reveals that the formula (13) is more accurate for the
higher frequencies. The inductance LS, calculated us-
ing the (13) formula, does not depend on ri1 and ro2,
which is not hindrance exactly at the higher frequen-
cies. At the higher frequencies the distribution of cur-
rent density over the conductor cross-section markedly
depends on the distance of r from the conductor
axis. With increasing frequency the layer which is
close to the conductor surface (r = ri2, r = ro1)
and though which most of the current flows becomes

thinner. For example, in the case of ro1 = 7 mm,
f = 1 MHz is the maximum value of current density
Jmax = 1.154×106 A/m2 for r = ri2 and r = ro1 while
over most of the cross-section its value is with respect
to Jmax negligible. If we choose ri1 = 4 mm, the mass
of cable conductor drops to 36 % of the initial mass,
the current magnitude does not change (for U = 1 V),
Jmax slightly increases to 1.282×106 A/m2, and there
is a slight change in inductance L to 6.959×10−8 H/m
while LH and LS remain the same as in the Table for
ri1 = 0. The unsuitability of formula (13) for the low
frequencies follows from the fact that

lim
ω→0+

LS = +∞

but, for example, for ro1 = 7 mm

lim
ω→0+

L = 1.325× 10−7 H/m

and LH = 1.585 × 10−7 H/m (see the Table). The
reason is that inductance is defined independently of
f and must thus make sense also for f = 0.

In the calculation of inductance using the relation
(11) the method for calculating current density is of
fundamental importance. One of the advantages of
the latter method is that the current density can also
be determined for ri1 > 0. This advantage shows
in particular in the calculation of inductance at the
lower frequencies, when the magnitude of current den-
sity is non-negligible over the whole cross-section of
conductors. For example, if for f = 50 Hz and
ro1 = 7 mm we change ri1 from zero to 4 mm, L
changes from the value 1.325×10−7 H/m (see the Ta-
ble) to 8.643×10−8 H/m while the values LH and LS

remain unchanged.
Both in the proposed method and when deriving

formulae for the calculation of LH and LS, the conduc-
tors were assumed to be solid. A number of works have
been published, e.g. [7–10], where inductance is com-
puted by the so-called wire model, in which the cross-
section is subdivided into smaller segments that are
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individually replaced with wire elements. In all these
works, however, conductor resistance is assumed to be
dependent on the source frequency, as derived in [11]
for solitary cylindrical conductor. In [2] the frequency
dependence of resistance was called into question and
so was the appropriatness of the solitary conductor
conception in the computation of inductance. In view
of the above, the wire model has not received much
attention in the present paper.

VI. CONCLUSION

A brief description was given of a method for calcu-
lating the current density in a coaxial cable connected
to the source of time-dependent voltage. The cable
is formed by two tubular conductors, which can be
of different resistivity. The method for calculating
the current density could be used, without any ma-
jor changes, also in the case that each conductor is
formed by several layers of different resistivity. Us-
ing the current density and relation (11) the induc-
tance of 1 meter of cable connected to a source of
sinusoidal voltage can be calculated if the voltage fre-
quency is below 10 MHz. The method proposed is
used in the solution of two examples. In the second
example the inductance determined by the proposed
method is compared with inductances calculated us-
ing the (12) and (13) formulae given in the literature.
This comparison yields certain applicability limits for
the (12) and (13) formulae.
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