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ABSTRACT 

 
In this study, single matching problem is solved 
without optimization. With respect to the given load 
data and the desired transducer power gain (TPG) 
level, back-end impedance values of the matching 
network which will be designed are obtained. Then 
this impedance is modelled and after synthesizing the 
impedance or reflectance function of the model, 
matching network is obtained. An algorithm and an 
example are given to illustrate the proposed method. 
 

I. INTRODUCTION 
 
The analytic matching theory needs an explicit expression 
or, equivalently, a circuit realization for the load and 
generator impedances. In practice however, one usually 
meets with experimental real frequency data for the 
terminating impedances to be matched. In such cases, to 
be able to use analytic theory, these data should be 
approximated with a proper equivalent circuit or an 
analytic realizable function. There is also another 
problem: Starting with an analytic form of gain function 
which is the best choice for the given terminating 
impedances. The terminating impedances are then 
processed to establish the theoretic gain-bandwidth 
restrictions which should be satisfied by the assumed form 
of the transfer function. These restrictions take the form of 
a set of integral expressions or a set of equations which 
should be satisfied simultaneously. For problems 
involving simple terminations which include one or two 
reactive elements, the difficulties are almost 
unmanageable. Indeed, the most complicated case treated 
by the analytic theory in the literature is that of the simple 
LCR-load (two reactances and one resistor) which is 
matched over a low-pass band. Even in this case, the 
solution is not simple. If the number of reactive elements 
in the load network is greater than two, even when the 
procedure is applicable in principle, it may lead to 
unnecessarily complicated and suboptimal equalizer 
networks [1,2,3]. 

On the other hand, matching networks can be designed by 
employing commercially available computer aided 
microwave circuit design packages. These programs use 
purely numerical methods, and they are actually devised 
for the analysis and optimization of given networks based 
on the circuit elements. That is, the topology of the 
network and a good estimate of the element values should 
be supplied to the programs. Here, the major difficulty is 
the determination of optimum topology which is usually 
unclear. Moreover, the performance function is in general 
highly nonlinear in terms of the unknown element values 
to be optimized. Therefore, it is essential to start with 
element values which are close enough to the final 
solution to ensure the convergence to a global optimum. 
For problems involving narrow band designs with small 
number of elements, the choice of the circuit topology and 
the initialization of the elements may not be very critical. 
In such cases, by trial and error, reasonable solutions can 
be obtained. However, for complicated broadband 
problems, if the optimum topology is unknown, the use of 
these programs is difficult and would yield suboptimal 
results. Therefore, such computer aided design packages 
are essential for final trimming of the element values. 
 
In 1977, Carlin has proposed a new method named Real 
Frequency Technique (RFT) which removes the major 
difficulties from which the analytic theory suffers [2]. 
Later on Carlin, Yarman, Fettweis and Pandel have 
developed some alternative real frequency algorithms 
[4,5,6]. These are line-segment technique, direct 
computational technique, parametric representation of 
Brune functions and scattering approach. The methods use 
the experimental real frequency data for the generator and 
the load, and it is not necessary to assume neither the 
analytic form of the transfer function nor the equalizer 
topology. It has been also shown for various single 
matching problems that in compared to a design obtained 
with analytic theory, the real frequency technique results 
in better performance with simpler structures [1,2,7]. 
Because of these advantages, the real frequency technique 
has become the most feasible approaches to solve 



broadband matching problems. But, by the invention of 
efficient and accurate data modeling tools, matching 
network desing by analytic methods is an unanswered 
problem for the researchers. 
 

II. MATCHING via MODELLING 
 
 
 
 
 
 
 
 

Figure 1. Single matching arrangement 
 
Let us consider the single matching arrangement seen in 
Figure 1. To be able to synthesize the matching network 
( N ), the function ( 2Z or 2S ) that completely describes 
the network must be obtained. The methods mentioned 
above can be used to obtain the function 2Z . But all the 
methods have non-linear optimization part. So it is very 
important to start the optimization with suitable initial 
values to make the optimization-time shorter or to make 
the optimization process convergent. 
 
Here by means of modelling, how suitable initial 
component values and network topology for final 
optimization can be obtained is discussed. 
 
Transducer power gain for the arrangement seen in Figure 
1 can be written as 
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where { }22 Re ZR = , { }22 Im ZX = , { }LL ZR Re=  and 

{ }LL ZX Im= . 
 
Let us divide the network N  into two parts, a minimum 
reactive and a Foster part as seen in Figure 2. 
 
 
 
 
 
 
 
 
 

Figure 2. Minimum reactive and Foster parts 
 

2Z  impedance can be written as 
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where MRZ  is the impedance of the minimum reactive 
part and FZ  is the impedance of the Foster part. 
 
So we can conclude that 
 

FMRMR XXXRR +== 22    (3) 
 
If (3) is substituted in (1), 
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If it is assumed that the matching is perfect, 
 

LMR RRR ==2 and LFMR XXXX −=+=2   (5) 
 
Now let’s define a new condition, only imaginary part is 
perfectly matched and call this situation as semi-perfect 
match condition. Under this condition transducer power 
gain will be 
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By using this equation, an expression for the ratio of 

MRRR =2  to LR  can be found as 
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Note that α  is a function of transducer power gain. So if 
a suitable gain form can be selected, resistive part data of 
the minimum reactive network can be obtained from (7) 
as 
 

LMR RRR α==2     (8) 
 
Then by means of Hilbert Transformation, imaginary part 
data of the minimum reactive network can be found 
 

{ }MRMR RHX =      (9) 
 
After determining minimum reactive impedance data, 
Foster data of the matching network can be calculated 
from (5) as 
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So the question here is how to select a suitable gain form. 
Will it have a flat form, Butterworth form or Chebyshev 
form? Also another question is how the sign in (7) will be 
selected, should the plus sign or minus sign be used? 
 
If TPG curves obtained from the matching networks 
designed by means of the methods mentioned in the 
previous section are examined, it can be seen that these 
curves have small fluctuations in the pass-band. So it will 
be reasonable to select the gain form in (7) as a 
Chebyshev form. The degree of the selected Chebyshev 
polynomial will be equal to the degree of the minimum 
reactive part of the matching network. Also it has been 
observed that firstly the sign in (7) must be plus sign and 
then must be changed after each roots of the selected 
Chebyshev polynomial. 
 
As discussed above, TPG  values that will be used in (7) 
will be obtained from a Chebyshev polynomial which is 
given in equation (11), 
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where ε  is the ripple factor and nT  is the thn  order 
Chebyshev polynomial. 
 
As pointed out above, Chebyshev polynomial will 
fluctuate around a flat gain level. This flat gain level can 
be determined for some simple loads. For example if load 
is a parallel combination of a capacitance and a resistor, 
this gain level can be calculated as [8,9,10] 
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where R  is the resistance and C  is the capacitance in the 
load combination and cw  is the maximum frequency in 
the pass-band. If the load is much more complex than this 
simple parallel RC load, it is very difficult to obtain this 
flat gain level. So a suitable gain level must be supplied 
by the designer. After selecting/calculating flatTPG  level, 
square of ripple factor ε  is found as 
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The degree of the Chebyshev polynomial must be 
determined by the designer. This degree will give the 
number of elements in the minimum reactive part of the 
matching network. 
 
 
 
 

III. PROPOSED ALGORITHM 
 

• Select/calculate flatTPG  level. 

• Calculate square of ripple factor, 

flat

flat

TPG
TPG−

=
12ε . 

• Select the degree of the Chebyshev polynomial. 
• Calculate transducer power gain level, 
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• Obtain α  values, 
TPG

TPGTPG −±−
=

122α  

• Find the data for resistive part of the minimum 
reactive part of the matching network, 

LMR RR ⋅= α . 
• By means of Hilbert transformation obtain 

imaginary part data of the minimum reactive 
network, { }MRMR RHX = . 

• Calculate Foster data, )( MRLF XXX +−= . 
• Model the data obtained for minimum reactive 

part and Foster part. 
• After synthesizing the functions obtained from 

modelling process, initial component values and 
the topology of the matching network for final 
optimization routine are found. 

 
IV. EXAMPLE 

 
 
 
 
 
 

Figure 3. Selected load arrangement 
 
Let us use the load arrangement seen in Figure 3. Real and 
imaginary values of the load impedance are given in 
Table 1. 
 
Table 1. Real and imaginary values of the load impedance 
w  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

{ }LZRe
 

1 0.86
21 

0.60
98 

0.40
98 

0.28
09 

0.20
00 

0.14
79 

0.11
31 

0.08
90 

0.07
16 

0.05
88 

{ }LZIm
 

0 
-

0.34
48 

-
0.48
78 

-
0.49
18 

-
0.44
94 

-
0.40
00 

-
0.35
50 

-
0.31
67 

-
0.28
47 

-
0.25
79 

-
0.23
53 

 
flatTPG  level for the selected load is 
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So square of ripple factor can be calculated as 
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Let us select th4  degree Chebyshev polynomial, so 
minimum reactive network will have four components, 
 

2
4

2 )(1
1

wT
TPG

ε+
=  where 188)( 24

4 +−= wwwT . 

 
TPG , α , real and imaginary values of minimum reactive 
network and Foster data are given in Table 2. 
 
Table 2. Calculated TPG , α , MRR , MRX  and FX  
values 
w  0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

TPG
 

0.79
21 

0.86
90 

0.94
96 

0.99
53 

0.99
30 

0.95
32 

0.89
78 

0.84
57 

0.80
87 

0.79
25 

0.80
03 

α  
0.37
37 

0.46
85 

0.63
34 

0.87
12 

1.18
30 

1.55
20 

1.94
01 

2.29
37 

2.55
48 

2.67
30 

2.61
61 

MRR
 

0.37
37 

0.40
39 

0.38
62 

0.35
70 

0.33
23 

0.31
04 

0.28
70 

0.25
95 

0.22
73 

0.19
15 

0.15
39 

MRX
 

0 
-

0.03
61 

-
0.09
43 

-
0.13
38 

-
0.16
19 

-
0.18
81 

-
0.21
47 

-
0.24
10 

-
0.26
56 

-
0.28
92 

-
0.33
41 

FX
 

0 0.38
09 

0.58
21 

0.62
56 

0.61
14 

0.58
81 

0.56
98 

0.55
78 

0.55
03 

0.54
70 

0.56
94 

 
Obtained minimum reactive and Foster data can be 
modelled by means of any modelling method. Here to 
form model with only lumped components, conjugate 
gradient method is used and the following model is 
obtained. 
 

4469.07143.16571.38266.28635.2 234 −−−−−= pppphMR

 
11250.30477.59942.38635.2 234 ++++= ppppg MR  

 
After synthesizing minimum reactive network and 
modelling Foster data (a simple series inductor, 

HL 6078.0= ), the following matching network is 
obtained, 
 

 
Figure 4. Obtained lumped matching network for parallel 

RC load 
 

 
Figure 5. Transducer power gain vs frequency 

 
This network is used as an initial network for final 
optimization and the following network and transducer 
power gain curve is obtained. 
 

 
Figure 6. Matching network after optimization 

 
 

 
Figure 7. Transducer power gain of optimized matching 
network 
 

V. CONCLUSION 
 
As mentioned above, matching networks can be designed 
by employing commercially available computer aided 
microwave circuit design packages. But these programs 
use purely numerical methods, and the topology of the 



network and a good estimate of the element values should 
be supplied to the programs. Here, the major difficulty is 
the determination of optimum topology which is usually 
unclear. Moreover, the performance function is in general 
highly nonlinear in terms of the unknown element values 
to be optimized. Therefore, it is essential to start with 
element values which are close enough to the final 
solution to ensure the convergence to a global optimum. 
Here an algorithm to obtain suitable initial element values 
for the commercially available computer aided microwave 
circuit design tools is given. After obtaining the topology 
and initial element values, such computer aided design 
packages are essential for final trimming of the element 
values. 
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