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Abstract

The purpose of this paper is to present the possibility of obltaz'ning the equations of maotion for the
mechanical systems in the form of state equations by using the methods well established in electrical
engineering. After giving a brief summary about this approach, three examples are discussed in detail.
To keep the discussion rather simple, the mechanical systems used in these examples are assumed to be
wn planar motion. However, the same technique is also applicable if a mechanical system is in three
dimensional motion.

1. Introduction

One of the well known techniques used widely in engineering to formulate the equations of motion of a given
mechanical system is the Lagrangian formulation. This formulation which yields the Lagrangian equations
of motion for the system relies heavily on the energy functions defined for that system which are expressed in
terms of the generalized coordinates [1]. However, the analogy that exists between the mechanical systems
and the electrical networks permits one to obtain an equivalent set of equations of motion for the mechanical
systems by some of the techniques well established and used in electrical network theory. The analogy is
perfect if the mechanical system is in one dimensional motion. In the general case, however, the distinction
occurs in the nature of the terminal variables : In electrical networks they are scalars while in mechanical
systems they must be treated as vectorial quantities.

The purpose of this article is to furnish a network approach to the formulation of the equations of
motion of a class of mechanical systems in planar motion. Here, focusing the attentions to the planar motion
of mechanical systems does not bring any major restriction to the generality of the method. Indeed, in an
earlier publication [2], a general mathematical model for a rigid body in three dimensional motion, as a
multiport component, is obtained by the application of this approach. The same network approach is used
to derive the equations of motion of a system of rigid bodies connected in some special way to form an open
kinematical chain, a configuration used in a large variety of manipulators [3]. In the present paper, after
introducing a short summary of the network approach used in [2] and [3], application of this technique is
extended to the systems in which mechanical components other than the rigid bodies are also contained.

95




ELEKTRIK, VOL.1, NO.2, June 1993

However, for the sake of simplicity it is assumed that components such as two-terminal springs and dampers
are in one dimensional motion. This restriction actually is met in the case of vibrating systems oscillating
about positions of an equilibrium with a small magnitude. Examples to clarify the use of this procedure are

given.

2. The Method

Analysis of a physical system with lumped components, whether the system contains pure electrical or pure
mechanical components only, necessitates a knowledge for the characterization of each component included
in the system and also a knowledge for the interconnection pattern (configuration) of these components as to
how the system is formed [4],[6]. Component characterization is actually a postulated terminal representation
which constitutes the mathematical model of the component. This model possesses two important features:
(1) an oriented terminal graph which is a tree or a collection of trees, indicating the ports of the component
and the orientations of the instruments, real or conceptual, connected at these ports to measure a pair
of complementary variables ( one across and one through ) to describe the physical properties of the
component, and (2) the terminal equations or the constitutive equations, yielding the relationships between
all the measured across and through variables at the ports [6],|8]. However, without violating these essential
features of a component, some redundant terminal representation may also be defined and conveniently be
used [9].

On the other hand, interconnection pattern of the components is best represented by an oriented
graph (a system graph) which allows one to write in a systematical manner the relationships ( Kirchoff’s
equations ) that must be satisfied by the terminal variables associated with the components forming the
system. These relations being linear and algebraic in nature are referred to, in network and system theory,
as the circuit and cut-set equations. For the given system, once a mathematical model for each component
and the interconnection pattern of the components are known, then the system equations can be obtained
systematically in variety of different forms. Amongst these forms, the state equations are preférable because
of their suitability for computer solutions. The state variables for a mechanical system are the velocities of
two-terminal mass or inertia components and also the forces or torques (moments) of two-terminal springs.
Generally not all mass or inertia velocities and not all spring force and torque variables are available as the
state variables. The state variables are determined by selecting a proper tree, T, in the system graph which
should include as many edges as possible corresponding to the two-terminal mass or inertia components and
, if possible, all the edges corresponding to the two-terminal springs.(translational or rotational) should be
included in the complementary graph (co-tree) , T', of T. The edges of T are called branches while the
edges of T are called chords [10].

Although a mechanical system in three-dimensional motion can be studied by the linear graph
approach which gives equations of motion in the form other than the state equations [11], in establishing the
state equations of a given system directly, it is found more convenient to represent multiport components,
at least conceptually, as the interconnected two-terminal (one-port) components together with an ideal or
nonenergetic multiport component N; ( a perfect coupler [4]) which has algebraic terminal equations, and
possessing (identically) zero instantaneous power. With this representation the whole system becomes as a
collection of several one-port components and a number of ideal multiport components. However, it is always
possible to lump all of the multiport ideal components into a single equivalent multiport ideal component,
N [12],[13].

In passive networks, a perfect coupler is either a multiport ideal transformer or a gyrator [14],[15]. In
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mechanical systems ideal rigid bodies behave like a multiport ideal transformer. However, the components
corresponding to a multiport gyrator can also be observed if the operator matrix W(%) =P 4 4 Q ap-
pearing in the terminal equations of the rigid body is further represented (synthesized) in terms of simpler
components [17]. Indeed, consider the terminal equations of an (n + 1)-port rigid body with terminals
(0,40,41,45,---, A,) corresponding to the terminal graph in Figure la, as given in equation (42) of [2]
where the terminal Ay is selected as the center of mass, G, of the rigid body :

(6n) x(t) _ 0 KZ y(t) ) 0 1)
(6) ya(t) -Ke¢ Wea(E) xa¢(t) | " | ue(®)

bl

with

x _ va _ | fe )

G = wa y Yg = MG’

I 0 —mg
Ko = [Ka - Kan), Ka = | ug =
G [G1 G] le] Rg; I ug [ 0 } r (2)
We = Pgi+Qe
mI O 0 0

P = , =

¢ [ 0 Jg J Qe [ 0 Qglg J J

where I is the third order identity matrix, Rq; is the 3 x 3 skew symmetric matrix corresponding to
the position vector of A; with respect to the mass center, G, and Q¢ is also the skew symmetric matrix
representation of the angular velocity vector, wg. In general, the inertia matrix Jg is nondiagonal. The
schematic diagram of the rigid body is also shown in Figure 1b. Equation (1) will not have submatrices
We(Z) and ug if a (scalar) 6-port component Wea with the terminal equations

is (conceptually) extracted form the port (O, G) of the rigid body leaving it as an ideal component. This
process is shown in Figure lc. One may also perform a similar operation, this time extracting a different
6-port component Wy, from the port (O, 4;) to have an equivalent representation for the rigid body [3]. At
this stage, however, considering the expressions of Wg(%) in equation (2), we may represent the component
We as two disjoint 3-port components, (M) and (J,S) with the respective terminal equations of the form

M) : £() = mI%v(t)+uG (a)
(7,8) : M) = [ch%—l—ﬂ.]g] w (5)

as shown in Figure 1d. Furthermore, 3-port component (J,8) (representing the Euler’s equation) can be
considered as the parallel interconnection of two simpler 3-port components () and (S) with the respective
terminal equations '

d
() + M) = Jesult) ©)
(S) : M) = Qg w(t) (7N
For further simplification of these representations, we may apply a coordinate transformation to equations
(6) and (7), diagonalizing the symmetric and positive definite inertia matrix Jg. This transformation can

be interpreted as an ideal (transformer) 6-port component terminated in two 3-ports having similar terminal
equations as in (6) and (7) except now the matrix Jg = J = diag [I11, Iz, I33] is diagonal, and their
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representations are given in Figure le. The 3-port (S) is an ideal (non energic) component ( a circulator

[21]), since its instantaneous power vanishes identically :
o(t) = WT(HOM(t) = W (QN)w =0 (8)

Hence, (S) can be represented by the interconnected three 2-port gyrators as given in Figure 1f (see
appendix).

It is clear from the above discussion that, a rigid body, as a multiport component, can be represented
as an interconnected three 1-port (2-terminal) masses, three 1-port inertias, two ideal (transformers) compo-
nents, one corresponding to the ideal rigid body, the other corresponding to the coordinate transformation
and three 2-port gyrators. However, since we will be considering those mechanical systems in which the
rigid bodies are in planar motion, the submatrix Q¢ in equation (2) vanishes and the representations of
rigid bodies will not contain the gyrators. In what follows, we shall state only those properties of ideal

components corresponding to ideal transformers [13][16]. Other properties concerning the gyrators can be
found elsewhere [18],[19].

(a) (b) (c)

(M) (m)
St Gt e (D)
(J,5) Gtx0—|:]—:|_ 0

(d) (e)
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Figure 1. (a) A rigid body as an (n + 1)—port with terminals (0,A0,A1,A45,---,A,) and its {vector)
terminal graph (a star-like or Lagrangian tree). (b) Schematic diagram of the rigid body. (¢) A rigid body as a
multiport component is represented (synthesized) as an ideal rigid body loaded by the one-port (scalar six-port) mass
component We at the port (0,G). (d) Representing 6-port component Wg as two disjoint 3-port components
(M) (translational) and (7,S) (rotational). (e) Realization of 3-port components (J) and (S). Where T is an
orthogonal transformation matrix corresponding to the turns ratio matrix of the ideal 6-port transformer (77). (f)
Realization of 3-port component (S) by three 2-port gyrators.

¢ Theorem - 1: Let A be an n—port ideal component (transformer) whose k; —ports are connected
rigidly (short circuited) to the reference and whose ks— ports arc loft free (open circuited). Then the
resulting (n — k;y — ky)— port component is also ideal (transformer).

e Theorem - 2 : Let M; and A3 be two ni—port and ny—port ideal components (transformers),
respectively. A multiport component A obtained from an arbitrary interconnection scheme of A and
N is also ideal.

Theorem-2 can be extended into the interconnection of more than two multiport ideal components by noticing
that, after connecting any two ideal components to obtain a new multiport ideal component, Aj,, a third
one may be connected to Ny to yield a new such one, Nig3. Therefore, the process of interconnecting one
multiport ideal component at a time, finally results in a single ideal component.

Consideration of interconnected ideal components as a single ideal component, generally, allows one
to eliminate automatically some of the terminal variables associated with the ideal components A;, and also
permits one to consider only those terminal variables at the ports of A where the two-terminal components
are to be connected. It is known that [9], since some of the internal variables of N may not be solvable, if
the ideal components A; are not lumped into a single ideal component A, one may have the difficulties in
eliminating unwanted variables during the process of deriving the state equations for that system. However,
even if all ideal multiport components are lumped into a single equivalent ideal multiport A/ , the terminal
equations for N will exist in several possible forms each corresponding to the choice of different set of
state variables, nevertheless some difficulties still persist in the formulation process : Part of the possible
candidate set of state variables may not all appear in the final set of state equations and their nonexistence
bring the final set of state equations into a more complicated form. At this stage, topological methods give
the information as to which state variables will disappear from a candidate set [20]. Elimination of least
number of state variables in a candidate set is preferable and it can be accomplished by the consideration
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of carefully chosen mathematical model amongst the available models of N . With this choice, although the
number of state equations are now increased, however the expression of each equation becomes less complex.

The selection of a proper tree, T, in the system graph requires the following hierarchy [6],[22],[23]:

e (a) Edges corresponding to the across (velocity) drivers are included in T'. (Otherwise the system is

inconsistent i.e., these edges do not form a circuit in the system graph).

e (b) If the terminal equations of a multi-port ideal component are of the form

HEEIH

then the edges corresponding to the across variables in x; are included in 7' while those edges
corresponding to the through variables in y3 are included in the co-tree T of T.

e (c) Edges corresponding to the two-terminal mass and inertia components must be in T. However
some of such edges may not be included in T' if they form a circuit among themselves or also including
the edges corresponding to the across drivers.

e (d) At this stage, if a proper tree T has not been obtained yet, then some edges corresponding to
the damper and perhaps to the spring components are added to complete it.

With this hierarchical process all the edges corresponding to the through (force or torque) drivers remain
in the co-tree T . (Otherwise the system becomes inconsistent i.e., these edges do not form a cut-set in the
system graph).

Note that the terminal equations of an ideal component given in (9), depending upon the rank of K,
can be written in different forms. This implies that selection of the proper tree is not unique, hence there is
no unique form for the state equations. Note also that to simplify the formulation procedure, we may as well
use only the relation x; = KTx; in equation (9) since the modification of this relation as x; = (K)Tx,
will automatically yield a modified relation among the through variables as y, = —K'y;. All of these
properties are illustrated in section 4. .

The state equations of the mechanical system will have the following general form :

d

P f(z,u) (10)
where the vector u corresponds to the known driving functions while the state vector z contains the across
variables (translational or angular velocities or both) associated with the rigid bodies and also the through
variable (forces or torques or both) of the spring components. If these across and through variables are

indicated separately by the vectors x and y, respectively, then equation (10) can be written as

f;

i X — 1 (X, Y, 11) (1 1)
dt y f2 (X, Yy, 11)

In mechanical systems, however, the functions f; and f, may also contain the variables corresponding to the

integrals of the across and through variables. i.e., the displacements ( translational or rotational or both )

d and the momenta ( linear or angular or both ) p. In particular, these variables necessarily appear in the
terminal equations of multiport ideal components. Therefore, the state equations in (11) must be augmented
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to include these integral variables as well, yielding

X fi(x,y,d,p,u)
d Y f2(xay’d: D, ll)
o - 12
dt | d x (12)
p y

which is also in the form of equation (10). Note that the construction procedure of equation (12) from that
in (11) may not be staightforward. Indeed, any one of the variables in d or p may be the integral of an
across or a through variable which has already been eliminated during the process and it does not appear
in x or y of equation (11). If this is the case, further augmentation of the state equations is needed to have
its complete form. However, this second augmentation step may be avoided by carefully selecting the form
of the terminal equations of the ideal component N at the begin with.

3. Topological Conditions on Ideal Rigid Bodies

In mechanical systems ideal components result from the idealization of rigid bodies. The schematic repre-
sentation of such an ideal component as (n + 1)-port with terminals (O, Ao, A1, As, -+, Ay) corresponding
to the vector terminal graph is given in Figure la. It has the terminal equations [2]

[ xa(t) ] ®DT [ vt
x2(t) (K2)T y(t)
: _ 0 : : (13)
x’n(t) (K'n)T y'n,(t)
| yo(t) | | Ky Ky - K, 1 L =o(t) |

which is of the form of equation (9) and where the 6 x 6 submatrices K; are nonsingular. Therefore, any one
of the variables y;(t) can be transferred to the other side of equation (13). i.e., in all possible forms of these
equivalent terminal equations, the across variables associated with only one port of the ideal component
can be specified arbitrarily. According to the topological conditions stated for equation (9), in the terminal
graph of the ideal component all the ports except an arbitrarily selected one must be included into a tree.
However, not all six variables in y; but a subset of it may also be transferred to the other side. This situation
becomes important when the port variables are considered in the component (scalar) level. In planar motion
this may be exactly the case. Hence, in general, the topological conditions must be tested based on the
scalar terminal graph.
Note that, in planar motion the across and through port variables simplify into [3]

Viz fiz _
X; = Uiy and y; = fiy (1=0,1,--- )7) (14)
Wiz Mz

and the expression of the submatrices X; takes the following form

1
K, = 1 (15)

—T0iy T0iz 1
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where To; = [T0iz Toiy O]T represents the position vector of the point A; with respect to the point Ag
on the rigid body. In application, Ao is taken as the center of mass G of the rigid body since under only
this choice the terminal equations take their simplest form.

4. Examples

Example - 1 A Rocking Pendulum [24] shown in Figure 2a is considered as a two-port rigid body
with terminals (G, P,0). Here the terminal P does not correspond to a fixed point of the rigid body, its
position changes during the motion. It is assumed that there is no slipping at P i.e., the motion of pendulum
is pure rolling. It may be of some interest to determine the reaction force fp at this point. The position

vector rgp of P with respect to the mass center G is

Ty —£sin 6
= = 16
fer [ Ty ] [ fLcos@ — r } (16)

e (i) Direct Formulation - The terminal equations of the two-port rigid body in planar motion are

[3]
xp | _ K7 vp |
[.,y,o ] - [ -K We(Z) ] [ Xa } + [ s ] (17)

where Wg(Z) = Pod' + Qg with

m 0
Pg = m , Qg =0 and ug = -mg = | myg (18)
Ja 0

Let k be the radius of gyration i.e., Jg = mk?. The terminal conditions observed from Figure 2a are:
fee = fey = Mg, =0 (no connection is made at port OG), vpy = vpy =0 ( P is the instantaneous
rotation center of the pendulum) and Mp, = 0. With these terminal conditions equation (17) takes

the following explicit form

F 0 W [ 1 —ry [ fre | [ 0
0 0 1 Ty fpy 0
wp 1 0 0
= + (19)
0 -1 ma e 0
-1 m% vay mg
3 _ | ry T —1 Jog | L wg | 0 ]

In equation (19), the third row gives wp = wg = w. From the first two rows and equation (16), we
Lcosf —

VG _ cos. T v (20)
Vay £sin @

d | ves fcos@—r d —sin8
il = — £ 21
dt [ vay :| [ £sin jl dtw + { cos ] v (21)

have

therefore,
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In equation (19), fourth and fifth rows determine the reaction force at P

fP:c _ ﬁ (e + 0
fry | T @ | v, mg

or considering equation (21), we obtain

Irs —sin@ 2 lcos@ —r d 0
= V/ — 22
[ fpy cosg |7 + £sin@ " + mg 22)
Equation of motion for the rocking pendulum is obtained from the last row of equation (19) :

[£cos® —r £sinf] [ fps J + Jgiw =0 (23)
oy dt

Since Jg = mk?, substituting equation (22) into equation (23) gives

[(¢cos@ — ) + £sin0 + £?] %w + £[—(£cosf —7)sin @ + £sinfcosf] w? + glsinf =0

or finally

d _ Lsinb(g + rw?)
a’ = 024+ 72 L k2 — 20rcosf

= F(w, 6) (24)

Since w = %0 , we obtain the equations of motion in the state model form :
d |w | | Fw,9)

(i) State Model Formulation - the schematic diagram of the pendulum is represented as in Figure
2b together with the terminal conditions. This system contains only one ideal component. The system
graph is also given in Figure 2d. Due to the terminal conditions (vpz =0,vp, =0 and Mp, =0 ), the
edges (pz,0) and (p,,0) in the terminal graph of the ideal component must be chords while the edge
(P2,0) must be a branch. This in turn implies that the terminal equations of the ideal pendulum as a
two-port (or scalar six-port) component cannot be taken in the form
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(a) . (b)

9y

bz

(m) (J)

(c) (d)

Figure - 2 (a) A rocking pendulum. P’ is the instantaneous rotation center, G is the mass center of the
pendulum. (b) Schematic diagram of the pendulum endowed with the terminal conditions. (c) The terminal
graph of the ideal pendulum. (d) A proper formulation tree in the system graph. The edges (branches) of
the tree are indicated by heavy lines.

[ vpz | [ 1 —Ty 11 fre W
Vpy 0 1 Tz ny
wpz 1 Mp,
= (26)
fGa: -1 UGz
fGy -1 UGy
L MGm R L Ty —Tz -1 l L wez |
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These terminal equations must be modified to meet the topological condition as

[ frz | i -1 1T vee ]
fry -1 Upy
wpz 0 1 Mp,
= (27)
e 1 Ty fes
Vay 1 —Tz fGy
| Mg, | B -1 —Ty Tz 4 L wGz

On the other hand, considering the terminal conditions (vp, = vpy = 0, Mp, = 0) and omitting
the variables associated with the port (PO), the ideal pendulum can be represented as a tree-port
component with terminals (O, G, Gy, G,) having the following terminal equations corresponding to
the terminal graph in Figure 2c :

vag 0 0 Ty fex
Vay = 0 0 -7, fey (28)
Mg, Ty Tg 0 waz

This form of the terminal equations implies that the edges (gz,0) and (gy,0) must be branches while
the edge (g,,0) must be a chord. These observations determines a tree in the system graph as shown
by heavy lines in Figure 2d. From the system graph we see that only the edge corresponding to the
inertia component (J) is included into the formulation tree. i.e., the system has only one state variable

wy. The terminal equations of the inertia and the mags components are in the form:

d
Ja(UJ = MJ (29)
d
m&”mm = .fma: (30)
d
My Vmy = Jmy (31)

With the terminal equations in (28)-(31) and also the circuit and cut-set equations implied by the
system graph in Figure 2d, the state equation can be obtained through a systematic substitution
process: The rough form of the state equation is as in (29). Therefore the variable M; must be
expressed in terms of the state variable w; and the driving function w = —mg. From the system
graph My = —Mg,. But the last equation in (28) gives

My = —Mg, = — [“Ty 7':7:] l fea ] (32)
fGy
(Mp, = —M, = 0). On the other hand, again from the system graph and equations (30) and (31) we
have
fez —fma d Uma 0
[ fG'y "fmy +w dt VUmy —mg ( )

Further, from the system graph and equation (28)
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Substituting equation (34) into equation (33) and that into (32) yields

T 0
il ([ 2 ])-[ 0]}
r r (35)
= —-mry —7z] 4 %UJJ—mCUJ[T'y —rz]% Y ]+'rmmg
—Ty —Ty

= —-m(r2+ rg)-;i—twj - %me%(ri +r2) 4+ rymg

Explicit expression of 7, and 7, are given in equation (16). Therefore, 72 + 'r'f, =02+ 72 —2rfcosb,
4 (r24r2) = 2résin fw; . Substituting equation (35) into (29) and considering the fact that J = mk?,
we arrive at equation (24) and finally at the augmented state equations in (25) where w; is replaced
by w.

Example - 2 : In a vertical plane two rigid homogeneous discs Ry and Ry of respective radii b and
a (R is rolling inside R; without slipping) are joined by a bearing part R. Disc R; also rolls without
skidding on a horizontal plane as shown in Figure 3a. With a given arbitrary initial positions and velocities
for Ri, Re and R, due to the gravity forces, the mechanical system will oscillate. Assume viscous frictions
(B,) and (Bp) at the bearings (A4, G1) and (B, G2), respectively. The masses and the inertias with respect
to the mass centers G, Ga, G, of R1, Rz and R are also given as mi,mg,m,J1,J2 and J, respectively.
The state equations of the system will be obtained.

The mechanical system in Figure 3a contains three multiterminal rigid bodies R1, Rz, R and two two-
terminal dampers (B,), (By). The interconnection pattern and the terminal conditions of the components
are shown in the schematic diagram of Figure 3b. The terminal equations of the rigid bodies are given in
the following forms corresponding to a star-like (Lagrangian) tree terminal graphs [6],[8], :

Xp1 KT YP1 0
0 KT 0
('R1) . Xp2 _ 2 Yp2 +
Yau -K; -K» W, X@1 u;
( [ 1
K] = 1 Pl uy = —'mlg
with | S (36)
Ky = 1
‘ BC bS 1
KT 0
(Ra) : Xp3 — 3 YP3 "
Yaz2 -Kz3 W, XG2 1 Y
1
K =
with s ! (37)
aC aS 1
Uz = —M2g
XA Ki Ya 0
(R) : XB _ 0 Kg YB i ]
Ya -Ka -Ks W Xa u
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Ky = 1 , U= —mg
—-dC —-dS 1
B 38
J - (39
K = 1
| (c—=d)C (c—d)S 1

with

\

where the symbols C and § stand for cos ¢ and sin ¢, respectively. The diagonal operator matrices Wl(%),
W,(2) and W(4) can be represented separately as two-terminal mass and inertia components, hence the
rigid bodies become ideal components. Their terminal equations are exactly as in equations (36), (37) and
(38) with the missing operator matrices. On the other hand the terminal equations of the dampers are

M, = B,uw, } (39)

Mb = Bb Wy

From Figure 3a, at ¢t > 0, the angles ¢, 6 and ¢ are all positive. Their derivatives gives the angular

velocities : d d d
A A A
7P =ve:=w, d_ta =wgl: =wi , "Eiﬁ = wge, = wa (40)

The equality of the arc lengths of the circles yields a(h — ¢) = b(6 — ¢). Since ¢ = (b — a), then we have

o= (2)o- () @

and the time derivative of both sides yields

o (- @) @

As the first step, we shall lump all of these ideal components into the form of one multiport ideal compo-
nent having only those terminals at which two-terminal mass, inertia and damping components are to be
connected. To simplify the formulation procedure, first the ideal components R; and R2 in Figure 3b will
be lumped into a single ideal component, R;,, having only the terminals (0, G, Gy, G124, oz, Gay, Gaz)
where the two-terminal components and the terminals of R will be connected. Considering only the across
variables in equations (36) and (37), from the terminal and interconnection conditions of the ideal compo-
nents R; and R,, we have

F Vpiz T [- 1 b ]
’Uply 1
wp1, 1 V@1 Up3z 1 aC VG2
= vG1y . vpsy | = 1 aS Ya2y (43)
VP2e 1 bC WG1z WP3, 1 WGz,
vpgy 1 bS
| wp2, | | 1]

where vpy, = vpiy = 0 (P is the instantaneous rotation center of Ry) and vpgy = UP3z, UP2y = Upzy
(circuit equations). Note also that other terminal conditions, i.e., Mp;, = Mpy, = M P3; = 0 imply the
fact that we may omit in writing the obvious equations wp;, = Wp2; = WGz = w1 and wpz, = wags, = wy.
Hence from equations (43) the terminal equations of the ideal component Rip corresponding to the terminal
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graph in Figure 3c, is obtained as

VGix —b 0
VGly 0 0 w
1
= 44
vG2z b(C —1) —aC
vG2y bS —aS

Next consider the interconnected ideal components Ri2 and R in Figure 3d.

The equivalent ideal component Ri23 will contain the terminals (0, G1z, Gy, G1z, G2z, Gay, G2z, Az
B,,Ggs, Gy,G;). Since the two-terminal masses, inertias and force drivers (wy = —myg, wg = —Mag, W =
—mg) are connected between the terminals Giz, Gy, G1z, G2zs Gay) Gozs G.,Gy,G, and the reference fer-
minal O, while the damping components (B,), (By) are connected between the pairs of terminals (Az, G1z)
and (B,,Gs2,), respectively, the terminal graph of Rigs is selected as shown in Figure 3e. Initially, it is
sufficient to consider only the velocity variables in the terminal equations of Ri23. In order to obtain these
terminal equations from those of Rie in (44) and those of R in (38) which has the explicit form

[ VAzx 1 [ 1 —dC W
VAy 1 -8
WAz T 1 UGz
[ ):; ] = = [ IIE?" :l = vay , (wg, = w) (45)
UBz B 1 (C - d)C wWaz
UBy 1 (c - d)S
[ wpx I 1]

we observe the interconnection conditions in Figure 3d, which yield vaz = vGiz, YAy = VGly, VBz = VG2
and vpy = ve2y (circuit equations). Hence, from the first two rows in both equations (44) and (45)

EDIERRERE “

and from the remaining rows in equations (44) and (45)
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Qy
az 5
9z g
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(e) (f)

Figure - 3 (a) A mechanical system containing three rigid bodies (R1), (R2), (R) and two rotational 2-port
viscous friction components (Bg) and (Bs). (b} Schematic diagram of the system indicating the interconnection
pattern of the components and the terminal conditions. (c) Schematic diagram and the terminal graph of the ideal
component (Riz) resulting from the interconnected idealized (R1) and (R2). (d) Schematic diagram of the ideal
component (Rizs) obtained by interconnecting the ideal component (Ri2) and the idealized component (R). (e)
The terminal graph of the ideal component (Ra2s). (f) The system graph and the selected proper tree.

_ _ . C
b(C 1) aC wn _ (el + (C— d) w (47)
bS —aS wa vay S
Elimination of variables vgy and vgy from the equations (46) and (47) yields

bwy — awy = CwW (48)

which is the relation already established in equation (42) from the geometrical considerations. Therefore,

e.g., equations (46) and (48) give

VG _ b(dC —c¢) —adC w1
{ vy ] "(1/0){ bdS adS } [ w2 ] (49)

On the other hand, the circuit equations for the angular velocities wq and wp at the ports (A4,,G1.) and
(B,,Ga,) together with equation (48), yield

we = war—we. = w-wi = (a/c)(wr—w2)
wp = WBy—WG2: = W—wW2 = (b/c)(w1 — wa) } 0)

where the relations in equation (40) were used. Equation (44), (48), (49) and (50) give the velocity portion
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of the terminal equations of the ideal component R;s3 corresponding to the terminal graph in Figure 3e :

VG@1z —b 0
VG1y 0 0
V@2 b(C -1) —aC
v@ay bS —aS
UGy (b/e)(dC —¢) —(ad/c)C wq | wr T
* vy —(bd/c)S —(ad/c)S Wy wa x2 (1)
w b/c —(a/c)
Wg afc ~(afc)
| W | | b/c —(b/e)
Therefore, the remaining portion of the terminal equations involving the terminal forces and torques are
[ fGlm ]
fGly
fGZz
fG’2y
Ml fGa:
y2 = =-T =T 52
2 l M2 ] e .fGy ¥ ( )
M
M,
e Mb -l

On the other hand, the terminal equations of R123 given in equations (51) and (52) i.e.,

HEE-

when used in their present form, according to the procedure in selecting the proper tree discussed in section
2, the edges (a,,0) and (b,,0) be chords and all other nine edges be branches. With this form of the terminal
equations for Ry23, the system graph can be drawn as in Figure 3f where the branches of the formulation
tree are indicated by heavy lines. Although there are nine two-terminal mass and inertia components, and
hence nine possible state variables, since only the edges corresponding to inertia components (J;) and (Js)
can be taken as branches, there will be only two state variables wj, and wy, in the system graph.
Actually, as equation (51) states, one cannot increase the number of state variables beyond two. Of
course, other than the variables w;, and wy,, a different pair of state variables can be selected by the

rearrangement of equation (51).

The state equations of the system will be obtained by considering the terminal equations of two-
terminal components (J;) and (J3) :

J1 d Wi, _ ]\4-.]1 _ _
l Jz]dt[sz ] - [ ]WJ2 ’ (w«h—‘wlanz—wZ) (54)

From the system graph in Figure 3f, the cut-set equations defined by the branches (J1) and (J;) together
with the equation in (52) ( where the variable fg1, is omitted due to the corresponding zero column ), we
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have

fGlz
fGZa:
fazy
[—b BC—1) bS (b/a)dC—c)  (bd/c)S b/c alc  bjc for | (55)

0 —aC —aS —(ad/c)C —(ad/c)S —(a/c) —(a/c) —(b/c) fey ‘
M
Ma
M,

By using the terminal equations of two-terminal mass and inertia components and the terminal equations
in (39), all the variables in the last column matrix of equation (55) can be expressed in terms of the velocity
variables appearing in the left hand side of equation-(51). Then, using the circuit equations, all these variables
are expressed in terms of only the state variables w1 and ws and the driving functions ( gravitational forces

Wy = —Mnig, Wa = —Mag, W = —Mg ) a8 :
feiz = —fmisz = —m1Lvmie = —M1EVCI1z = —my L (—bw) = bmy Fw1 )
feoz = —fmoz = —Movme, = —myLuge, = —ma 4p(C — 1w — aCuwy|
= —meb(C —1)Lw; + maactw, + (ma/c)S(bwy — aws)?
faoy = —fmaytwe = -—-m2 L Umay + w2 = —my3(bSwy — aSwy) — mag
= —mng‘%wl + mzaS%wg — (ma/c)C(bwy — awz)?) — mag
faz = —fm = —M&Ums = —-m4ves = ~m&(b/c)(dC — c)w1 — (ad/c)Cuws|
= —m(b/c)(dC — ¢)Lw; + m(ad/c)C Ews + m(d/c?)S(bwr — aws)?
foay = —fmytw = —mivmy+w= —mvg, —mg = —m(d/c)L(bSw; — aSws)
= —m(bd/c)SL + m(ad/c)SLwy — m(d/c?)C(bwy — aws)?
M = -M; = —Jiwy=-Jiw=—(J/c)&(bws — aws)
M, = -Msp, = —Bawp, = —Baws = —B,(a/c)(w1 — w2)
Mb = _MB;, = -—Bwab = —Bbwb = —Bb(b/c)(wl - (.Uz) )

(56)

Substituting equations (56) into equation (55) and then into (54), after collecting terms corresponding

to the variables w;, wa, %wl and %wg, we obtain

Mi(¢)  Mi(9) d | w — -1 1 w1 Ni(¢) Na(9) w1
A 3T R YL EL )

Li(4)
[ La(4) ] (57
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where Mi(¢) = Ji+mb® +2meb*(1 — C) + m(b/c)?(d? + & — 2¢dC) + (b/c)2J )
Miz(¢) = —maab(l — C) — m(abd/c?)(d — cC) — (ab/c?)J
Mz(¢) = Ja+maa® +m(ad/c)? + (a/c)?T
B = (1/¢)*(a®B, + v*B,
M) = et oS - ®
N:(¢p) = ma+(d/c)m|abS
Ly(¢) = —my + (d/c)m|bgS
La(¢) = mg+(d/c)m|agS J

In equation (57) most of the entries are the functions of only one variable, ¢. Since w = %q& does not appear
as a state variable in this equation, either by using the relation in (48) all the entries are expressed in terms
of the variables 6 and 1, both of which related to the state variables wy = (%0 and wy = %1/:; or keeping
¢ as is, one of the present state variables, say ws, is changed to w = %q&. In the first case, the number
of augmented state variables will be four (ws,ws, 6, ), while in the second case this number will be three
(wi,w, ). To achieve this change of variables consider the relation in equation (48) which is expressed as

w1 _ 1 0 w1 B wy

where P is a constant transformation matrix. Substituting equation (59) into equation (57), and to keep
the form of the system inertia matrix on the left hand side of equation (57) as symmetric, we premultiply
both sides of this equation by PT, and obtain the desired state equations in which the angular velocities wq
and w are now the state variahles :

M'y(¢) Maa(d) |d| wr | -1 1 w1 N'i(¢) N'3(¢) w1
[ wa Ja [z e[ ][ o[ e ] (2]

L'y (¢)
[ 12(9) J (©0)
where
M'u(¢) = T4 ®/a)2Ty+b2(my+ma+m) )
Mo() = ~(b/cyms +(d/c)mlC — (be/a)Jy
M'ya(@) = J+(c/a)?*Js+ mac® + md?
N'i(¢) = 0 . (61)
N'2(¢) = —bemg+ (d/c)m|S
Ihy(¢) = o
L's(¢) = —cma+(d/c)m|gS J

In order to obtain the final form of the state equations, the relation ditqﬁ = w must be added to ehuation
(60).
A Special Case [25]: Assume that the component R in the mechanical system of Figure 3a does not exist
(m=0,J=0,B, =B, =0 ) and also R; and R, are cylindrical shells where R4 rolls inside of Ry
without slipping ( J; = m1b%, J, = mga? ) while R4 rolls on a horizontal plane with no skid. In this special
case equation (60) takes of the form :

20%(m1 +mg) ~bema(1+ C) J d [ wy :l _ [ —bemg Sw? }

62
—bC’l’ng(l + C) 2c2m2 dt w —cgmg.S' ( )
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On the other hand, in this special case, the mechanical system in Figure 3a becomes conservative and
the state variables can be decomposed. Indeed, the first row in equation (62) is integrable twice yielding

2b2(m1 + mz) w1 — bcm2(1 + C)UJ =k (63)

and

26%(my + ma) 0 — bema (¢ +sing) = kit + k2 (64)
where k; and ko are integration constants to be determined from the initial conditions on 8(0), ¢(0), w1(0)
and w(0). If wi(0) = w(0) =0, or if w1(0) = 0, ¢ = 180°, then ki vanishes and from equations (63) and
(64), the variables 6 and w; = 0 are expressible in terms of the variables ¢ and w = dtgb and the constant

ko. Therefore, from the second row of equation (62), with Pars’ notation, we have

d
U—mu+cﬂ3¢~=4um#s—wa+Csz (65)
where
p = 4(m71n+m2) , nt=1

Hence, equation (65) together with the relation %gb = w gives the decomposed equation of motion in the

at | ¢ w
___r
1-82(1+C)?
Example - 3 Two fixed points, A and B, of a vertical thin lamina shown in Figure 4a, are constraint
to slide along the fixed perpendicular (Oy) and (Oz) axes, respectively. Two linear spring components are

also attached to the lamina at these points. The viscous frictions (B;) and (B;) along the axes will also be

considered. Obtain the state equations of this system.

following form :

with

F(w, ¢) = [(1/2)n28 — B2 (1 + C)Sw?] (67)

Considering the lamina as an ideal multiport component, the schematic diagram of the system can be
drawn as in Figure 4b. The terminal equations of the ideal lamina is of the form :

XA K% ya 1

0 K%
*B = B yB where K; = 1 (:= A, B)
ya -K, —-Kp XG Taqiy TGiz

(68)
From the terminal conditions shown in Figure 4b, a simplified five-port scalar model for the ideal lamina
with terminals (O, Ay, Bz, Gz, Gy, G;) corresponding to the terminal graph in Figure 4c can be drived as

VAy TABz fay
UBzx TABy Bz
X = = was 5 Mg, =[-TaABz TABy —TGAy TGBz ] (69)
VG —TGgAy fea
vay TGBz fey

where 4Bz = TGBz — TGAz and TABy = TGBy — TGAy- The relations between the terminal velocities
appearing in equation (69) imply that only one edge of the terminal graph of the simplified model will be
a chord, all other four edges will be branches. In order to obtain a maximum number of state variables,
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the form of the terminal equations in (69) is proper. We may also bring any one of the variables vgz, vay
from the left to the right hand side in equation (69), still the maximum of three state variables are obtained.
However, if one of the variables v4, or vp, is moved to the right hand side of the first equation in (69), two
state variables will be lost and only one state equation having much complicated expression will be obtained.
Therefore, we shall obtain the state equations by considering the terminal equations of the inertia and two
spring components :

J d wy MJ
1/K1 (—iz le = UKl (70)
1/K, Tk, VK,

where the variables M, vk, and vk, must be expressed in terms of the state variables w 7, frys fr, and
the driving function w = —mg. Note that, from the system graph in Figure 4d and the first equation in
(69)

VK, = UVgAy =

(71)

(reBz — rcaz)ws
,UKz = 'UGBa: =

(reBy — reay)ws

On the other hand, for M; in equation (70), again from the system graph and equation (69) we have

Mj; = —Mg, where the variables f Ay fBz, faz and fg, are expressed as
faz = —frx, = fB, = fix, — Bivay = —fx, — Bi(TGBz — TGaz)Ws
fBy = —fr,— B, =—fk, — Bavs, = ~fx, — Bovpy = —fx, — Ba(raBy — TGay )Wy (72)
fez = —fme= _m%'vma: = "m%'UGa: = m%(rGAwa)
fGy = _fmy +w= —'m%Umy +w= _m%va —mg = _ma%(rGBa:wJ) —mg

therefore for the expression of My, we have

My = _TAB$fK1 - TABnyz - (Bl'rxzﬁlBa: + BzrxzélBy) - m(riy + rzB:c)%wJ - (1/2)mw<]%(r.24y + T%m) —TBgMg

(73)
Substituting equations (71) and (73) into equation (70), the state equations of the system will be obtained
in the following form :

M(0) g | @ [ B(0) —raps —rTapy wy N(0)w?
1 / K, P fx, = TABz 0 0 fx, + 0 +
1/K, fx, | TaBy 0 0 Ix, 0
[ L(6)
0 (74)
| 0
Since from Figure 4a we have
rgay = asin(d - a)
s = b 0
TGB COS( + 13) (75)
TABzx = fcos@
TABy = —£sin @
then the various coefficients in equation (74) have the following explicit expressions : N
M@®) = J4+m(rga, +rEp) = J +m [a?sin*(0 — ) + b2cos? (6 — a)]
N@®) = ma?sin(0@ — a)cos(d — a) — b?sin(f + ) cos(d + B)] (76)
B(#) = —f%(B;cos® + Bysin6)
L(#) = —mbgcos(6+ B)
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Equation (74) must be augmented to include the relation %0 = wp, = wgs = wy yielding the final
set of fourth order state equations in the variables 8,w;, fx, and fx,.

(c) | (d)

Figure - 4 (a) A mechanical system in two-dimensional motion containing a lamina, two springs and two viscous

dampers. (b) Schematic diagram of the mechanical system in (a) where the lamina is idealized and the terminal
conditions are indicated. (c) The terminal graph of the simplified ideal component (lamina). (d) The system
graph with a proper tree (indicated by heavy lines).

5. Conclusions and Discussion

The method used in deriving the state equations for the mechanical systems in planar motion, which
is applied here to three different systems in detail, utilizes the system graph and a proper formulation
tree selected in it as an important tool. It furnishes a complete set of information about the interconnection
pattern of the components forming the system. In order to ease the selection of the state variables, based on a
proper tree, each multiport component is represented by the interconnected components; one multiport ideal
component and a number of two-terminal components. In planar motion, the ideal components correspond
to ideal transformers in electrical networks. On the other hand, interconnection pattern of the system can
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also be interpreted as an ideal transformer. Indeed, e. 8., an electronic circuit is usually built by soldering the
terminals of various electrical components within the holes of a PC (printed circuit) board and the PC board
itself is viewed as a multiport connection boz containing nothing but several short-circuits and open-circuits
in it [14]. The terminal equation of a connection box is exactly in the form of equation (9) where K7 is
the submatrix of a circuit matrix while —K is the submatrix of the corresponding cut-set matrix. This
representation goes back early to Kron’s time [26]. For mechanical systems in three-dimensional motion, a
formulation procedure, not leading to state equations, is given in [3] where the systems contain interconnected
rigid bodies only. Publications utilizing essentially the same approach for the mechanical systems containing
also the components other than the rigid bodies have already appeared in [11],[27],[28],[29]. The present
technique have been used since the early sixties [5], (6],[7],[8] for the electrical networks and other type
of lumped physical systems including the mechanical systems in one dimensional motion. However, the
extension of this approach to three-dimensional mechanical systems evolved rather slowly. By this time,
in the seventies, development of an equivalent technique, called the Bond Graphs, which is well known
more to mechanical engineers, took place [30]. Bond graphs carries the same information as the system
graph of a mechanical system and utilizes essentially modulated transformers and gyrators: MTF, MGY
which correspond to ideal components (perfect couplers) in linear graph technique. Further, an important
concept, namely the causality in bond graph approach correspond to the selection of a formulation tree in
the system graph. This selection actually determines as to which variables are retained and which variables
are eliminated in the final set of equations for that system.
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Appendix
Realization of 3-port Component (S) with the Terminal FEquations in (7):

Consider the expression of the moment of momentum (angular momentum) h = Jw, where the
inertia matrix J is diagonal. Therefore, equation (7) can be written as

M= QJw = 0Qh = H w (77
where

hy Ijwn
h = h2 = Jw = 1220.)2
hs I3zws

0 hs —hs 0 Iszws  —Ipw,

HT =-H = —h3 0 hl = —I33w3 0 I11w1

hy —hy 0 Ippwy —Iywiy 0

II7 can be decomposed as the sum of three simpler skew symmetric matrices

0 0 0 0 0 -—hy 0 h3 O
H' =10 0 nm |+l 0 0o o +| —h3 0 0 (78)
0 —h O ha 0 O 0 0 0

in which each (admittance) matrix corresponds to a 2-port gyrator, i.e., realization of 3-port component
with the terminal equation in (7) is as shown in Figure 1f. Note that the gyrator parameters (gyration
constants) ki, hg, hs are actually not constant but proportional to the components of the angular velocity
w . For example, the terminal equation of the gyrator corresponding to the first term in equation (78) is

M1 0 0 0 (%} 0 0
M2 = 0 0 h1 wo = h1w3 = 111 Wiws
M3 0 —hl 0 w3 —h1w2 —WiWwa

which represents a nonlinear, nonenergic (ideal) 3-port component.
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Mekanik Sistemlerin Yiizeysel Hareket
Denklemlerinin Gosterimi
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Ozet

Bu makalede mekanik sistemlerin hareket denklemlerinin elektrik miihendislifinde kullamalan yerlegik
yontemler kullanidarak durum denklemleri olarak ifade edilme olanaklar: sunulmaktadar.

Kullamlan yaklasuman kisa bir Ozeti verildikten sonra ¢ ayri érnek ayrintil olarak irdelenmekte-
dir. Konuyu karmasiklagtirmamak amacy ile Srneklerde kullanilan mekanik sistemlerin yatay yizey
dizerindeki hareketleri ele ahmmagtir. Ancak ayns teknikler i¢ boyutta hareket eden mekanik sistemler

icin de gegerlidir.




