
Estimation of Online Transmission Line Parameters and Fault Location by 

Using Different Differential Equation Algorithms 
 

Dogan Yildiz1, Serap Karagol1, and Okan Ozgonenel1 

 
1 Electrical and Electronics Engineering Department, Ondokuz Mayis University, Samsun, Turkey 

dogan.yildiz@omu.edu.tr, serap.karagol@omu.edu.tr, okanoz@omu.edu.tr 
 

 

Abstract 
 

Differential Equation Algorithm (DEA), which is used as an 

alternative method to Fourier and similar algorithms, is 

among the online parameter estimation algorithms used in 

transmission line protection. Pi or T equivalent circuit 

parameters (R, L and C) of the transmission line can be 

calculated efficiently by using the fundamental harmonic 

components of voltage and current. DEA is a general model-

based parameter estimation method and it does not depend 

on the form of the signal (voltage/current). Due to this feature 

DEA provides an efficient parameter estimation. In addition 

to traditional trapezoidal DEA algorithm, Simpson 1/3, 

Simpson 3/8, Simpson 7, Medium Point, Forward Euler, 

Backward Euler, Runge-Kutta and Boolean algorithms were 

first proposed in this study and the parameter estimations 

were performed on an exemplary transmission line. Thusly, it 

is proven that alternative methods can be used effectively on 

relays as an algorithm to find the location of a fault in the line. 

 

1. Introduction 
 

Distance protection is implemented in meshed distribution 

systems to maintain selectivity. Several algorithms have been 

developed to implement distance relaying, such as symmetrical 

component traveling wave’s algorithm, Fourier, adaptive scheme, 

artificial neural and differential equation algorithm (DEA). When 

conventional algorithms for distance relays are applied in parallel 

line systems, and these are adversely affected by the mutual 

coupling between lines. The effect of the mutual inductance may 

cause relays to see the fault as if it had taken place nearer or farer 

than the protection zone and will produce under-reach or over-

reach. Besides, the sensitivity of the signals which are obtained 

from current/voltage transformers increases the sensitivity of the 

protection relay [1].  

The research on power transmission lines requires 

transmission line parameters, including series resistance, series 

reactance and shunt susceptance as vital inputs to various power 

system analyses and applications, such as the power flow analysis 

and the protective relaying application.  Accurate estimate of line 

parameters may also be employed for transmission line thermal 

condition monitoring. So it will be desirable if line parameters 

can be accurately estimated using on-line voltage and current 

measurements.  

Due to the use of the global positioning services and phase 

measurement units in recent years, voltage and current samples 

can be sampled at high resolution and synchronization 

performance is improved. Thus, the line parameters can be 

calculated with high accuracy [2]. 

 In the protection of transmission lines; when it comes to 

speed, reliability and security; especially in short lines, DEA 

provides a fast and accurate solution. The use of the DEA 

technique with rapid circuit breakers means the failure to be 

cleaned as soon as possible and the improvement of system 

stability. The DEA technique can be rearranged for the faults 

which is likely to be on the lines phase-to-ground, three-phase and 

two-phase faults. For the DEA, let us assume the following 

assumptions: 

1. The line is short in the sense that it does not need to be 

modelled by surge impedance and wave propagation;  

2. The voltage and current transformer are ideal in the 

frequency range of the algorithm, 50-300 Hz;  

3. Load current is neglected;  

4. The fault resistance is small;  

5. The line is perfectly transposed and  

6. Shunt capacitance is neglected. [3]. 

The DEA technique can be applied the voltage and the current 

signals that include the DC component and harmonics with 

success. However, parameter estimation using the DEA 

technique, depends on the sampling frequency, the angle of the 

voltage at the time of the fault and the frequency dependence of 

parameters.  This is why the DEA is more successful at short lines 

than long lines. Shunt capacitance influences the DEA’s 

performance negatively at long lines [4]. 

The frequency response of the capacitive voltage transformer 

and unmodeled dynamics, such as shunt capacitance, put an upper 

limit on algorithm speed and cause erroneous parameter 

estimation. The system matrix is negative or zero in some cases 

and that is one of the negative aspects of the DEA. The 

theoretically fastest algorithm is the travelling wave algorithm for 

transmission lines but the algorithm’s implementation is rather 

complicated, its computation cost is very much and it puts high 

demands on the dynamics of current and voltage sensors. [5].  

DEA technique is generally used with low pass filter (LPF). 

But the use of LPF decreases the algorithm’s speed. In spite of 

this, the use of LPF in DEA is recommended for sensitive 

parameter estimation [6]. 

In this study, instead of the DEA technique based on 

conventional trapezoidal integration method; Forward Euler, 

Backward Euler, Mid-point, Runge-Kutta, Simpson 1/3, 

Simpson 3/8, Boole, Simpson 7 algorithms are proposed and the 

performances of the algorithms are discussed. 

 

2. Conventional Differential Equation Algorithms 
 

The DEA technique is commonly used in transmission lines 

because it provides a simple and quick solution for finding fault 

location in transmission lines. This technique is first derived for 

the transmission line’s serial parameters at various sampling 

frequencies. 
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di t
v t Ri t L

dt
                          (1) 

 

In Eq. (1), R and L are the serial distributed parameters of 

transmission line, v(t) is the starting line voltage and i(t) is the 

current which flows along the serial branch. Considering the 

existence of the fault point resistance, Eq. (1) must be rearranged. 

The R and L parameters of the line can be readily calculated by 

the equality (1) written in different time intervals. 

Conventionally, Eq. (1) is rearranged by using trapezoidal 

integration rule for different intervals (3 samples and 6 samples 

used respectively) and used as fault location finding algorithm. 

Minimization of errors due to the approximate solution of integral 

and differential equations can also be included into the process. If 

the effect of the parallel capacity asked to be taken into account 

in the modelling line, the amount of error in the estimation of line 

parameters will increase.  Using this technique, the line’s serial R 

and L parameters can be estimated sensitively especially in the 

short lines which are not effected from parallel capacity [7]. 
While there are two unknown parameters in Eq. (1), there are two 

known magnitudes (v(t) and i(t)) are known.  Therefore, if Eq. (1) 

is rewritten in two different time intervals, Eq. (2) and Eq. (3) are 

obtained. 

 

1 1

1 0

0 0

( ) ( ) [ ( ) ( )]

t t

t t

v t dt R i t dt L i t i t                  (2) 

 

2 2

2 1
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( ) ( ) [ ( ) ( )]

t t

t t

v t dt R i t dt L i t i t                  (3) 

 

The integral terms in Eq. (2) and Eq. (3) are reorganized 

according to the trapezoidal rule, and Eq. (4) is obtained. 
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  Δt is the sampling step interval in Eq. (4). If Eq. (2) and Eq. 

(3) are reorganized in k, k+1, k+2 discrete moments, R and L 

parameters of the line can be calculated as shown in Eq. (5).  
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Eq. (5) also known as Short Window Algorithm and needs 3 

voltage and 3 current samples for the purpose of computing the 

parameters of the line. The revised format of Eq. (5) which uses 

6 voltage and 6 current samples is given in Eq. (6). Eq. (6) is also 

known as Long Window Algorithm. Compared with the Short 

Window Algorithm, although the Long Window Algorithm 

makes more sensitive parameter estimation, it requires longer 

calculation time. 
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Especially Eq. (6) is concerned, singular value decomposition 

method must be used to solve the line parameters system matrices 

because there are few known parameters despite the unknown 

parameters. Eq. (5) and Eq. (6) are still used as a conventional 

DEA techniques and a numerical distance protection relay 

algorithm in transmission lines. 

 

3. Proposed Differential Equation Algorithms  
 

To see proposed algorithms’ and conventional DEA 

techniques’ parameter estimation performances, the line shown in 

Fig. 1 and its electrical equivalent are used. 

 

 
 

Fig. 1. Single-phase line model 

 

3.1. Forward Euler Method 
 

  Forward Euler method is generally expressed as shown in Eq. 

(7) [8] and this method uses 2 voltage and 3 current samples for 

the parameter estimation. Eq. (8) illustrates the format of the 

equation adapted to Fig. 1. 
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3.2. Backward Euler Method 
 

       Backward Euler method is generally expressed as shown in 

Eq. (9) [8] and this method uses 2 voltage and 3 current samples 

for the parameter estimation. Eq. (10) illustrates the format of the 

equation adapted to Fig. 1. 

 

             
1

0

1)

x

x

f(x)dx Δt f( x                         (9) 
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3.3. Mid-Point Method 
 

      Mid-point method is generally expressed as shown in Eq. (11) 

[8] and this method uses 3 voltage and 3 current samples for the 

parameter estimation. Eq. (12) illustrates the format of the 

equation adapted to Fig. 1.  
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R and L are parameters to be calculated as follows. 
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3.4. Runge-Kutta Method 
 

Runge-Kutta Method is generally expressed as shown in 

Eq. (13) [10] and this method uses 3 voltage and 3 current 

samples for the parameter estimation. Eq. (14) illustrates the 

format of the equation adapted to Fig. 1. 
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3.5. Simpson 1/3 Method 
 

        Simpson 1/3 method is generally expressed as shown in Eq. 

(15) [9]. In here, 1/3 represents the division Δt into three. This 

method uses 5 voltage and 5 current samples for the parameter 

estimation. Eq. (16) illustrates the format of the equation adapted 

to Fig. 1.  
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3.6. Simpson 3/8 Method 

 
Simpson 3/8 method is generally expressed as shown in Eq. 

(17) [9]. 
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Unlike the previous method, 7 voltage samples and 7 current 

samples are needed in this method. Eq. (18) illustrates the format 

of the equation adapted to Fig. 1. 
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(18) 

3.7. Boole Method 

 
Boole method is generally expressed as shown in Eq. (19) 

[9] and this method uses 9 voltage and 9 current samples for the 

parameter estimation. Eq. (20) illustrates the format of the 

equation adapted to Fig. 1. 
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3.8. Simpson 7 Method 

 
Simpson 7 method is generally expressed as shown in Eq. 

(21) [9] and this method uses 13 voltage and 13 current samples 

for the parameter estimation. Eq. (22) illustrates the format of  the 

equation adapted to Fig. 1. 
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4. Performances of the Proposed Algorithms 
 

For the purpose of testing the proposed methods’ 

performances, the single-phase line shown in Fig. 1 is used. To 

see how the proposed algorithms react in temporary situations,  

Rfault= 0.01Ω  serial fault resistance is constructed in the midpoint 
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of the transmission line at the range 0.015 s and 0.018 s. As shown 

in Fig. 1, the total resistance before and after the fault is 4Ω  and 

the total inductance is 16.9 mH.  But at the time of fault, the total 

fault resistance is seen at the beginning of line is 3.01Ω and the 

line inductance is 8.466 mH. 

Including conventional Differential Equation algorithms, 

performances of all the proposed estimation algorithms, as stated 

in the literature is dependent on the switching moments and the 

sampling frequency. Thus filtering of the calculated line 

parameters and error analysis is required. A 10th order and  one-

dimensional median filtering tecnique is implemented on the 

parameters found by using the proposed algorithms. Fig. 2 and  

Fig. 3 show not filtered values of R and L parameters before and 

after the fault respectively. Similarly, Fig. 4 and Fig. 5 show  

filtered values of R and L parameters before and after the fault 

respectively. 

 

 
 

Fig. 2. Not filtered R values calculated before and after the fault 

 

 
 

Fig. 3. Not filtered L values calculated before and after the fault 

 

 
 

Fig. 4. Filtered R values calculated before and after the fault 

 

 
 

Fig. 5. Filtered L values calculated before and after the fault 

 

Table 1 shows the RMS error analysis for the estimation 

methods both filtered and not-filtered ones. We can see from 

Table 1 that the best result in not filtered situation is obtained by 

using Simpson 7 algorithm and the best result in filtered algorithm 

is obtained by using Simpson 1/3 algorithm. 

 

Table 1. RMS error analysis of the proposed algorithms 
 

Methods  Not Filtered 

R and L 

Filtered 

R and L 

Conventional3 4.4922, 16.3969 0.3601, 16.3968 

Conventional 6 0.9641, 16.3412 0.5886, 16.3412 

Boole 1.203, 16.3562 0.5139, 16.3562 

Simpson1/3 3.7514, 16.3837 0.3468, 16.3839 

Simpson3/8 1.6948, 16.3704 0.3498, 16.3704 

Simpson7 0.8286, 16.3252 0.6034, 16.3252 

Mid-point 4.9222, 16.3968 0.3601, 16.3968 

Forward Euler 8.8224, 16.3973 0.5712, 16.3974 

Backward Euler 5.1207,16.3936 1.1782, 163937 

Runge-Kutta  4.4922,16.3969 0.3601,16.3968 
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Table 2. The number of voltage and current samples used by the 

proposed methods 

 
 

Methods 

the number 

of voltage 

samples used 

the number 

of current 

samples used 

Forward Euler 2 3 

Backward Euler 2 3 

Mid-point 3 3 

Conventional3 3 3 

Runge-Kutta  3 3 

Simpson1/3 5 5 

Conventional 6 6 6 

Simpson3/8 7 7 

Boole 9 9 

Simpson7 13 13 

 

Table 2 shows the number of current and voltage samples 

used in the proposed algorithms. Table 2 can also be regarded as 

the ranking of the algorithms from the fastest to the slowest. 

 

5. Conclusions 
 

DEA technique is one of the numerical protection techniques 

which is used for distance protection and finding fault location 

algorithm. It is a discrete method and this feature provides DEA 

convenience that it can be implemented on digital circuits and 

superior to the Fourier-based algorithms. Conventionally, for the 

estimation of line parameters and finding the fault location, 

generally trapezoidal-based integration method is used (Short 

Window and Long Algorithms). In this paper, 6 digital line 

parameters and fault location estimation techniques have been 

proposed distinct from conventional techniques and 

achievements (RMSE analysis) is compared on a single-phase 

line. Since the obtained data are analyzed, it can be said that the 

most successful algorithm in the case of not-filtered is Simpson 7 

algorithm and in the case of filtered is Simpson 1/3 algorithm. 

Also, obtaining very similar performances from Conventional3, 

Mid-point and Runge-Kutta algorithms as seen Table 1 is an issue 

that needs to be highlighted.  
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