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Abstract

This study proposes an improved particle swarm
optimization method to find optimal power flow by using the
power transmission loss as an objective function. In the
literature, PSO is a well — known intelligent search method
to handle the solution of optimal power flow problem. A
novel scheme which is called Improved PSO (IPSO) is
defined by modifying the initialization step of PSO
algorithm and choosing the load bus voltages, generator
active and reactive powers, line flow capacities as penalty
functions in the objective function. PSO and IPSO-based
optimal power flow solutions are compared with each other
on IEEE 118 and 300 bus systems. According to the test
results, the power loss obtained by IPSO-based solution has
less power loss than PSO-based solution. This proposed
method can be used to obtain faster desirable solutions and
better power loss results for the optimal power flow problem
in case of power loss minimization.

1. Introduction

Optimal reactive power flow (ORPF) is one of the major
subjects of economic process of power system [1]. The goal of
ORPF is to minimize objective function which is the active
power loss in transmission lines via trying to find best
adjustment of the power system variables while ensuring the
security of the system and satisfying various equality and
inequality constraints [2]. Power flow equations are used as
equality constraints while limits on control variables, which are
generator bus voltages, load bus voltages, reactive power output
of generator, transformer tap settings, reactive power output of
shunt compensators and line power flows of each branch, are
handled as inequality constraints. Problems considering with
ORPF has been argued for decades and various intelligence
heuristic algorithms can be found in the literature such as
Genetic Algorithm (GA), Evolutionary Programming (EP), and
Particle Swarm Optimization (PSO) [3 - 6]. PSO algorithm is
widely used one in the field of engineering. The most
conspicuous advantage of PSO is its fast convergence speed [7].
Also difficulties related with limitations of mathematical
programming increase the importance of PSO [8].

In this study, a new approach to compute ORPF by applying
IPSO method is proposed. The main difference between PSO
and IPSO algorithms is the determination of one of the particles
of the initial swarm. The control variables used in the initial
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swarm are determined by load flow analysis in IPSO algorithm.
Thus, the initial value of transmission loss can be decreased with
these reasonable control variables.

IEEE 118 and 300 bus systems have been utilized for the
analysis and the results indicate that IPSO is a more effective
way to solve ORPF problems, by indicating fast feasible
solution time and smaller value of transmission loss when
compared with PSO.

2. Optimal Reactive Power Flow

2.1. Problem Formulation

The general optimal reactive power flow problem can be
expressed as a constrained optimization problem as follows in

(1:
Minimize
Subject to

flx), objective function
g(x) = 0, equality constraints
h(x) <0, inequality constraints (1)

In the ORPF problem, both equality and inequality
constraints are converted into penalty terms and then they are
added to form the penalty function as shown in (2) below.

F(x)=flx) + Q 2)
Q = p{g®(x) + [max (0, h(x))]*} 3)
x=[P; Q;[V[;8; S; T, Qeompl 4)

where; F(x) is objective function with penalty, f{x) is objective
function without penalty, Q is the penalty function, p is the
penalty factor, x is the vector of optimization variables, that
consists of state and control variables, g(x) are equality
constraints, h(x) are inequality constraints. The optimization
variables consist of P, Q, [V], 0, S, T, Qcomp- P 1s active power, Q
is reactive power, |V| is bus voltage magnitude, S is line power
flow capacity, T is transformer tap ratio, 0 is bus voltage angle
and Q,mp 1S reactive power source.

2.2. Objective Function

In this paper, the objective function is defined as power
transmission loss function and it can be expressed as indicated
in (5).



Fioss = Sy 9 {IV2|[+|V?| = 2|Vl 1Vl cos(8; — &)} (5)

where; the subscripts i, j show bus numbers, |V;|, |V;| are the
voltage magnitude at bus i and j respectively, g;; is the
conductance of line i-j, §;, §; are the voltage angle at bus i and j
respectively, and N is the total number of transmission lines.

2.3. System Constraints

The objective is to minimize the transmission loss by
chancing control variables within their limits. Hence, the system
constraints, which are to be formed as equality (6) and (7), and
inequality constraints from (8) to (12) as shown below, are
needed.
2.3.1. Equality Constraint
This consists of power flow equations:

P, = Poi = X)5 [Vil|Vi||Y; | cos(6;; — 8+ 8) =0 (6)

Q¢ — Qp, + 2751|Vi||Vj||Yi,j| sin(6;; —6;+68;)=0 (7

where;

Pg; is the real power generation at bus i

Pp; is the real power demand at bus i

Qg is the reactive power generation at bus i

Qp,i is the reactive power demand at bus i

Np is the total number of buses in the system

[Vil, |Vj| are the voltage magnitude at bus i and j respectively
0;; is the angle of bus admittance element i, j

[Y; ;1 is the magnitude of bus admittance element i, j.

i, O are the voltage angle at bus i and j respectively

2.3.2. Inequality Constraints

These are composed of the limitations on variables.

VM <V < v (®)

TN < Ty < T ©)

Qlompi < Qeomp,i < Qo (10)

PIM < P < PIOX 11

S < Smax (12)
where;

I W ] are upper and lower limits of voltage
magnitude at bus i

are upper and lower limits of tap position of
transformer i

are upper and lower limits of reactive power

source 1

Timm , Timax

Qmin . Qmax .
comp,i’ ¥comp,i

P, P are upper and lower limits of active power
generated by generator i
S is apparent power flow limit of i line

2.3.3. The Penalty Functions

These are added to the objective function. In this paper, only
some of the inequality constraints are used as penalty functions.
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The main goal of penalty function is to maintain the system
security. When power flow problem has too many constraints,
sometimes a feasible solution cannot be obtained. To avoid this
situation, some constraints are not enforced completely.

In this study, bus voltages, active power generations and line
power flow capacities were chosen as penalty functions.
Although constraints at penalty function can be violated, this
violation should be very small and when violation at constraint
increases, penalty function should increase quickly. Thus,
quadratic penalty functions more suitable for ORPF problems
are used in this study. The most significant advantage of
quadratic penalty function is to control importance of constraint
in ORPF by simply chancing value of penalty factor. Their
equations are given in below as follows (13), (14), (15) and (16).

Qy

Np
p Z{max(O, Vil = [V *])}?
=1

N i 2
+p 22, {max (0, [V — |ViD} (13)
Ng
2
Qs=p Z{maX(O, Pg; — P}
i=1
N i 2
+p ;.5 {max (0, PZ™ — P )} (14)
Qs = p Xt {max(0,S; — S"*)}? (15)
QT=QV+QG+QS (16)
where;
Qy is the penalty function for bus voltages
Q¢ is the penalty function for active power generations
Qg is the penalty function for line power flow capacities
Qr is the summation of three penalty functions
Ng is the total number of generators.

3. Improved Particle Swarm Optimization for Optimal
Reactive Power Flow

PSO is a population-based optimization search algorithm. It
was first introduced by Kennedy and Eberhart in 1995 [9]. PSO
is based on the behavior of individuals of swarm. In PSO,
potential solutions are called particles and the population of
particles is called swarm. In research space, each particle in PSO
changes its position with time and moves to optimum position
by updated velocity. To find the position and velocity of each
particle, the equations are given in (17) and (18):

v = wo, ™ + o11y (Ppest — ™)

+Czr2(gbest - xi(m)) (17)
xi(m+1) — xi(m) + 1]i(m+1) (18)
where;
v;™ s the velocity of i particle at m™ iteration,

w is inertia weight of the particle,

€1,Cy are positive constants having values between [0, 2.5],

ry, Iy are randomly generated numbers between [0, 1],

Dbest  is the best position of the i particle obtained based
upon its own experience,

Ibest is global best position of the particle in the population

x;™ s the position of i particle at m™ iteration,



m is the iteration index.

Suitable selection of inertia weight provides good balance
between global and local explorations. It can be formulated as
follows in (19):

— _ Wmax=Wmin
W= Wnax T — iter (19)
where;
Winax is the value of inertia weight at the beginning of

iteration

Wnin is the value of inertia weight at the end of iteration
iter is the current iteration number
iterg, 1s the maximum number of iterations.

The process of particle swarm optimization algorithm can be
summarized as shown in Fig. 1. As it can be seen from equation
(18) and flowchart, velocity and position have major role on this
optimization technique.

START

l

Generate an inital swarm

l
f

Calculate the objective
function for each particle

l m=m-+]

Check constraints T

l Update each velocity and

Update personal best and SwAi

global best

}

Is stopping criteria No
satisfied 7

l Yes

End

Fig. 1. Flowchart of PSO Process

In PSO algorithm, better results are obtained by following
each iteration depending on particles’ optimum position. If
logical position for a particle is added to the initial swarm, the
value of objective function starts with better values and moves
to much better values with each iteration. Thus, improvement is
done on initial position of swarm by adding chosen control
variables as a particle to the swarm while PSO algorithm
remained same in this study. These chosen values are obtained
by computing the power flow via Matpower package function
runpf [10]. By doing so, not only reduced initial transmission
power loss was obtained, but also optimization process was
resulted with better values.
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4. Test and Results

In this study, simulations were performed by using Matpower
package via Matlab software. For comparison purposes, both
conventional particle swarm optimization and the proposed
scheme, which is improved particle swarm optimization, were
applied to solve test cases.

Each method was challenged by solving a given optimal
reactive power flow problem of 40 trials randomly. To confirm
the efficiency of IPSO, firstly IEEE 118 bus system as shown in
Fig. 2 was tested. Related information about the test system is
given in Table 1.

System deseription:
118 buses

186 branches

91 load sides

54 thermal units

Fig. 2. IEEE 118 bus system

Table 1. IEEE 118 system data

Type of device | Number of devices
Bus 118
Generator 54
Branch 186
Transformer 9

Control variable limits used as system constraints during the
simulations are given in Table 2.

Table 2. Variable limits for the IEEE 118 bus system

Limits
Variables
Min. | Max.
Generator Bus Voltage (p.u.) 0.94 | 1.06
Tap Ratio 0.95 | 1.05
Reactive Power Source (MVAr) | -40 20




For IEEE 118 bus system, best values of test results
depending on two different particle numbers are shown in Table
3.

Table 3. IEEE 118 bus system power transmission losses

Power Transmission Losses (MW)
Method Number of the Particle
15 50
PSO(iternqx=25) 118.8 118
IPSO(iten,qx=25) 116.3 116.2
PSO(iter,qx=100) 118.3 117.7
IPSO(iter;,4,=100) 115.6 115.3

To better understand positive effects of IPSO, IEEE 300 bus
system was also tested and not only the best value of test results,
but also worst and average values were calculated. IEEE 300
bus system information and control variable limits for the
system are given in Table 4 and Table 5 respectively.

Table 4. IEEE 300 system data

Type of device | Number of devices
Bus 300
Generator 69
Branch 411
Transformer 107

Table 5. Variable limits for the IEEE 300 bus system

. Limits
Variables Min. | Max.
Generator Bus Voltage (p.u.) 0.94 | 1.06
Tap Ratio 0.95 | 1.05
Reactive Power Source (MVAr) | -300 | 325

Depending on two different particle numbers, best, worst and
average values of test results are shown in Table 6 and Table 7.

Table 6. IEEE 300 bus system power transmission losses for 15

particles
Power Transmission Losses (M
Method Worst Average ges?/)
PSO(iter,q .=25) 441.8 429.6 420.3
IPSO(iter;,q,=25) 406.4 403.1 397.6
PSO(iter,,,=100) 424.6 419.4 405.9
IPSO(iter;,4,=100) 401.7 399 391.7

Table 7. IEEE 300 bus system power transmission losses for 50

particles
Power Transmission Losses (M
Method Worst Average %es?])
PSO(iteryqx=25) 427.8 424.2 416.7
IPSO(iteryqax=25) 405.7 400.4 391.3
PSO(iterqa,x=100) 423.6 4153 404.4
IPSO(iter;,q,=100) 400.1 398.5 390.2

Fig. 3 and Fig.4 show the comparison between PSO and
IPSO in terms of power transmission losses for IEEE 300 bus
system.
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Fig. 3. The comparison between PSO and IPSO in terms
of power transmission losses for 15 particles on IEEE

300 bus system
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Fig. 4. The comparison between PSO and IPSO in terms
of power transmission losses for 50 particles on IEEE
300 bus system

When IPSO method is used on the solution of the problem
instead of PSO method, it takes less iteration to reach the
minimum power loss. It means that [PSO method not only has
the shorter solution time but also ensures the minimum power
loss for OPRF problem. IPSO solution was utilized on the
systems with increased size and as expected, better values in
terms of power loss were obtained.

6. Conclusions

In this paper, IPSO and PSO methods have been used for
solving ORPF problem. Both of these methods have been
formulated with minimization of transmission power loss and
they have been tested on IEEE 118 and IEEE 300 bus systems.
The results show that IPSO method is constantly outperforming
when compared to conventional PSO in terms of value of power
loss. Thus IPSO for computing ORPF problems has better
solution efficiency. In addition to this advantage, the better
solution is obtained in the less iteration number. When system
size is increased, the benefits of the IPSO method on ORPF
problem are seen more obviously.
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