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ABSTRACT 
This paper presents experimental application of polynomial 
robust H∞∞∞∞ explicit adaptive control for the speed control of a 
dc motor. Explicit identification of the plant presented with 
ARMAX  is achieved using recursive extended least squares 
(RELS) estimation method. The robust H∞∞∞∞ adaptive 
controller ensures that the system remains asymptotically 
stable and it provides excellent tracking. Experimental 
results are compared with the results obtained from 
adaptive PID control. The results show the significance and 
feasibility of the approach and the factors involved in 
proposed robust adaptive control design.  
 

I. INTRODUCTION 
Until recently, robust control and adaptive control have 
been viewed as two techniques that compete with each 
other for use in controller design in the presence of plant 
model uncertainty [1]. The robust control deals in general 
with designing the controller in the presence of bounded 
plant uncertainties [2]. This simultaneously covers 
parameter variations that are effective at low- and mid-
frequency ranges and unstructured model uncertainties 
which are often located in the high frequency range. On 
the other hand, the adaptive control handles the 
parametric variations, but the problem of handling 
unstructured model uncertainties remains. It has been 
recognized by the recent studies that there is a strong 
interaction between robust control design and adaptive 
control such that using these two design methods 
simultaneously in a control problem improves system 
performance significantly [3]. In addition, combining 
robust control theory with adaptive control has been an 
interesting research subject such that adaptive control 
further reduces the system with bounded uncertainty with 
robust control [4].  
 
H∞ design method, first proposed by Zames [5], is a 
methodology to handle performance and robustness 
objectives. The method has been improved using state-
space approach [6] and polynomial approach [7]. The 
method has been applied to many industrial problems such 

as turbine speed control [2], water level control for steam 
generators [8], robot arm control [9], gas turbine control 
[10], but very limited real-time implementations such as 
induction motor control [11]. The main problem in the 
implementation of the method is that there are several 
calculations and steps in the design algorithm. 
Developments in semiconductor and computer technology 
have provided fast data processing for on-line and adaptive 
control applications [12], for example, there has been a 
considerable development in adaptive control of the servo 
systems of the dc motors [13], since these machines are 
more easier to control than some other electrical machines 
such as induction motor [9] and widely used in several 
industrial applications[13 - 20].   
 

II. POLYNOMIAL H∞∞∞∞ CONTROL PROBLEM 
The polynomial H∞ controller design method [10] can be 
considered for the speed control problems of the 
electrical machines, since this method has several 
advantages and applications [2, 21]. The polynomial 
solution approach is used to solve the problem. Desired 
system performance is obtained using dynamic 
weighting functions. The controller is designed to 
eliminate low frequency disturbances and to attenuate 
high frequency disturbances and measurement noise. For 
example, the high frequency roll-off property can be 
included in the controller to obtain sufficient attenuation 
of measurement noise. The design algorithm is suitable 
for on-line adaptive control applications.  
 
The H∞ cost function to be minimized is [10]: 
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Pe and Fc are minimum phase, strictly Hurwitz error and 
control dynamic weighting functions, Pe,Fc∈ R+(z-1), Φee 
and Φuu are the power spectral densities of the error and 



 

 2 

control signals, Φeu and Φue are the cross-power spectral 
densities of the error and control signals and vise versa, 
respectively. The real rational dynamic weighting 
functions can be represented in terms of polynomials: 
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where Ped(z-1) and Fcd(z-1) are monic and strictly Hurwitz 
polynomials, Ped(0)=1, Fcd(0)=1, Pen,Ped,Fcn,Fcd∈ R+[z-1]. 
The dynamic weighting functions are chosen to obtain 
desired performance specifications and robustness. The 
main point is that the dynamic weighting elements may 
be chosen to penalize the error and control signal peak 
powers in selected frequency ranges. [2]. The optimal H∞ 
cost function in Eq. (1) is minimized to 2

minmin λ=−∞J , 
where minλ  is a positive real constant. The H∞ optimal 
controller is 
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where G(z-1) and H(z-1), G(z-1),H(z-1)∈ R+[z-1], are 
calculated from a couple of diophantine equations.  
 

ROBUSTNESS 
In practice, many components of a plant model are never 
precisely known. Furthermore, most plants are inherently 
non-linear, and can be approximated by linear models 
only in the neighbourhood of the operating point. These 
and other factors lead to the presence of uncertainty. A 
controller whose design is based on the nominal model of 
the plant should provide stability and performance 
requirements in the presence of uncertainty [18, 22, 23]. 
 
In robust control, the true plant (W) is covered by a set of 
plants Π which can be represented by the nominal plant 
Wn and a set of stable norm bounded uncertainties ∆, 
∆∈ R+(z-1): 
  
         ),( ∆nWf=∏    ∏∈W      (4) 
 
For robust controller synthesis, the finite-dimensional 
controller C is designed to stabilise all plants within the 
set. The set of uncertainties ∆k, ∆k∈ ∆, represents 
uncertainties associated with either a parameter or a 
component of the plant (e.g. unmodelled dynamics or 
non-linearity). Norm bounds on these uncertainties are 
such that ∆k(jω)<=1. Nominal system M is assumed to be 
stable, M∈ R+(z-1). Using the Nyquist D contour the 
closed loop system in Figure 1 is stable for all 
uncertainties ∆ if the following condition is satisfied [2]: 
 

      1<∞∆M  for  R∈∀ ω   (5) 
 

The Eq. (5) is also valid for the open loop unstable plants 
[23].  

 M

∆

 
 

Figure 1. Uncertain system. 
 

 
III. PLANT IDENTIFICATION 

Discrete-time ARMAX model is considered for many 
plants, since the model is the most often used in the 
adaptive controller design algorithms: 
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where y(k) is the plant output, u(k) is the plant input, d is 
the discrete dead time, z-1 is the time shift operator, e(k) is 
assumed to be zero mean, unmeasurable and statistically 
independent noise sequence with { } 0)( =keE  of variance 

2eσ . The parameters ai, bi and ci are the real coefficients, 
ai, bi, ci∈ R, ai and bi are the plant model parameters and 
ci is the noise model parameters. Eq. (6) can be written in 
terms of the parameters and input-output data: 
 

                          )()1()()( kekkky T +−= θφ               (7) 
 

where φ(k) is the data vector that includes the past values 
of the input and output data, θ is the parameter vector:  
 

[    )(...)2(    )1()( ankykykyk −−−−−−−=φ  
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[ ]Tnnn cba cccbbbaaa   ...        ...          ...      212121=θ      (9)     
 

The objective is that the parameters, ai, bi, ci are assumed 
to be unknown and should be estimated recursively. The 
estimated parameter vector can then be represented as: 
 

[ ]Tnnon cba cccbbbaaa �  ...  �  �  �  ...  �  �  �    ...   �   ��
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where the symbol �∧ � denotes an estimated parameter. In 
order to estimate the noise model parameters, 

cnccc �  ...,  ,�  ,� 21 , knowledge of e(k-1), e(k-2),..., e(k-nc) is 
required. However, these are unknown and must be 
replaced in the data vector by the estimates [24]: 
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IV. CONTROL SET-UP 
Block diagram of the experimental set-up of explicit 
adaptive control scheme is illustrated in Figure 2. The 
communication between the computer (Pentium IV, 2 
GHz in speed, 256 MB RAM) and the dc motor is 
achieved using a ADVANTECH-PCL-1800 interface 
card (130 kHz in speed and A/D conversion in 2.5 µsec). 
The card permits user defined program to be used within 
Matlab communicated with the real-time plant. The dc 
motor under the experiment operates within the range of 
±10 volt with a permissible speed of 2400 rpm. 
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Figure 2. Adaptive control diagram. 
 
Physical plant has been identified over a range of 
operating points. The identification experiments yield 
multiple models. Thus, the overall system will be defined 
by the multiple model representation or family of models. 
One of the models is chosen as the nominal model for 
moment control design and for choosing of the dynamic 
weighting functions. An uncertainty bound is developed 
by using the information contained in the models: 
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The tuning parameters of the dynamic weighting 
functions need to be experienced using the chosen 
nominal model to obtain the robust controller. The model 
corresponding to the operating point where the motor 
runs at a speed of 1200 rpm is chosen as the nominal 
model. The robust controller design is achieved to satisfy 
Eq. (5) and design objectives before real-time adaptive 
experiments are implemented. Therefore, the dynamic 
weighting functions here are aimed to be used in the 
adaptive control algorithm. 

 
V. ADAPTIVE CONTROL RESULTS 

As the design objectives, overshoot is not allowed in the 
output speed. High frequency roll-off controller is 
needed to eliminate high frequency disturbance and 
measurement noise. Integral action in the controller is 
also needed to reject low frequency disturbance and to 
achieve desired steady-state response. The dynamics 
weighting functions are chosen to satisfy the 
requirements as: 
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It was investigated from the pre-test studies of the dc 
motor that the rise time was about 0.321 s. The sample 
frequency is chosen to be Hzfs  50= ) 20( msts = . This 
satisfies the requirement for the sample frequency for 
adaptive control applications [25]. The initial values of 
parameters are also chosen to be zero. The initial 
covariance matrix diagonal values are IP 10)0( =  with a 
forgetting factor of 975.0=λ . 
 
Several experiments were performed under constant load 
conditions. The results of one of the experiments were 
given in the present paper. A wide range of operating 
point was chosen such that the motor runs with a 
variable speed of between 240 rpm and 2040 rpm. Such 
speed variations were achieved by applying a square 
wave signal with periods of 3 s from the reference. The 
test is performed 80 s such that a set of 4000 data is 
processed. The set point speed variations and the output 
speed responses for adaptive H∞ control and adaptive 
PID control at between 30 s and 47 s after starting are 
illustrated in Figure 3. The method given in [26] is used 
for PID adaptive control. The responses of the PID 
control are not acceptable, since a significant overshoot 
in speed and oscillatory responses are obtained. Such 
overshoot and slower response is not desired, especially 
in precision control applications of robotic systems. On 
the other hand, significant performance and excellent 
tracking is obtained with the proposed control. The 
corresponding control signals (armature voltage) are 
shown in Figure 4. The minimum cost value, λmin is 
illustrated in Figure 5 for the moment of control that 
satisfies the recommendation J∞-min=λ2

min<1 [10]. The 
estimated parameters for a fourth-order model are shown 
in Figure 6, Figure 7 and Figure 8 and these converge 
after a certain sample. The speed of parameter 
convergence depends on the forgetting factor used. More 
faster parameter convergence can be obtained if the 
value of the forgetting factor is reduced, but noise 
amplification. 
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Figure 3. Tracking of H∞ and PID control designs. 
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Figure 4. Control input signal (armature voltage) of H∞ 
control design. 
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Figure 6. Parameters of )(� 1−zai . 
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Figure 7. Parameters of )(� 1−zbi . 
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Figure 8. Parameters of )(� 1−zci . 

 
VI.  CONCLUSIONS 

In this paper adaptive polynomial H∞ control theory was 
successfully applied to the control of the speed of a dc 
motor. The dynamic weighting functions of the control 
design theory were used to achieve certain control actions 
and closed loop performance. Experimental results 
demonstrated good performance and closed loop stability 
over the whole range of plant operation tested. The 
results also showed that the adaptive controller gives very 
good command tracking performance. 
 
From a practical performance point of wiev, experimental 
tests that were conducted successfully for the dc motor 
running in closed loop conditions demonstrated that the 
computer based real-time H∞ adaptive control is practical 
and easy to use. The measured input/output data obtained 
experimentally from the real-time set-up were used by a 
developed software program to generate the optimal 
control input signal (armature voltage). A fourth-order 
discrete-time plant model was shown to be flexible 
enough for the optimal control.  
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Notation 
In the polynomial notation employed, all the polynomials 
are assumed to be functions of the unit delay operator, z-1 
or complex s-plane. For simplicity, the arguments of the 
polynomials are sometimes omitted so that X(z-1) is 
denoted by X. The adjoint of X(z-1)= X*(z-1) is denoted by 

*X . 
 
 

R Set of all real numbers 
R(z-1) Set of all real rational functions in z-1. 
R(s) Set of all real rational functions in complex 

s-plane. 
R+(z-1) Set of all real rational functions whose poles 

lie within the unit circle on the z-plane 
(strictly stable). 

R[z-1] Set of all polynomials of finite degree in z-1 
whose coefficients satisfy 
{ }ni  Rri ,,1; K=∈   

R+[z-1] Set of all polynomials whose zeros lie 
within the unit circle on the z-plane (strictly 
stable polynomials) 
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