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Abstract 

This paper deals with the existence of chaos in the fractional 

order unified system. In an earlier published work, based on 

the numerical simulation results it is claimed that the lowest 

effective dimension in the fractional order unified system in 

order to present chaotic behaviors is 2.76. In this paper, it is 

analytically shown that the fractional order unified system 

can be chaotic for effective dimensions lower than the 

claimed lowest effective dimension. Also, the lowest effective 

dimension for existence of chaos in such a system is 

analytically determined. Computer simulation results, 

obtained based on a reliable numerical method, are brought 

to back up the presented analytical work in the paper. 

1. Introduction 

In recent years, investigating chaotic behaviors in the 

fractional order systems has attracted increasing attention in 

research studies. In many of published works in this subject, 

existence of chaos in a special fractional order system has been 

reported. The fractional order Chua circuit [1], the fractional 

order Duffing system [2], the fractional order Lorenz system [3], 

the fractional order Rössler system [4], the fractional order Chen 

system [5], the fractional order Ikeda delay system [6] and non-

integer order cellular neural networks [7] are some of chaotic 

fractional order systems introduced in literature. In the most of 

the mentioned papers, a numerical simulation based approach 

has been presented to prove existence of chaos. Since numerical 

methods are not always reliable for detecting chaos [8, 9], use of 

analytical based approaches are requires as well to support the 

claim of existing of chaos in a fractional order system. Taking 

this point in mind, in this paper an approach combining 

mathematical analysis and numerical calculations is presented to 

investigate the existence of chaos in the fractional order unified 

system. Furthermore, the lowest effective dimension for 

existence chaos in such a system is determined, and it is verified 

that the calculated dimension is lower than the one previously 

reported in literature. 

The paper is organized as follows. Section 2 presents some 

remarks on the unified chaotic system introduced by Lü and his 

colleagues in [10]. In Section 3, a necessary condition for 

existence of chaos in the fractional order counterpart of the 

unified system is derived. This condition is used to obtain the 

lowest effective dimension in which the fractional order unified 

system could exhibit chaotic behaviors. The related numerical 

simulation results are brought in Section 4. Finally, the paper is 

concluded in Section 5. 

2. Some Remarks on the Unified System 

The unified system, introduced by Lü and his colleagues in 

[10] represents the continued transition from the Lorenz system 

to the Chen system. This system is described by 
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where δ  is an arbitrary value in range [0, 1] . System (1) has 

three fixed points as follows. 
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One can easily show that the linearized model of system (1) 

around the fixed point O  has the following characteristic 

polynomial [10]. 
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Since 0 1δ≤ ≤ , we have (41 11 ) /3 0δ− − <  and 

(25 10)(6 27) 0δ δ+ − < . Hence, the linearized model of system 

(1) around the fixed point O  has two negative and one positive 

eigenvalues. This means that the fixed point O  is a saddle point 

of index 1 for the unified system. In a 3D nonlinear dynamical 

system, a saddle point is an equilibrium point on which the 

equivalent linearized model has two eigenvalues with negative 

real parts and one eigenvalue with positive real part. In the same 

system, an equilibrium point is called saddle point of index 2 if 

one of its corresponding eigenvalues has negative real part and 

the real parts of other eigenvalues are positive. 

The characteristic polynomial for the linearized model of system 

(1) around fixed points S ±  is given as follows [10]. 
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Fig. 1 shows the root locus of characteristic polynomial (4) 

when δ  continuously changes form 0 to 1. According to this 
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figure, it concluded that the fixed points S ±  are saddle points of 

index 2 for system (1). In 3D chaotic systems, it is shown that 

scrolls are generated only around the saddle points of index 2. 

Moreover, saddle points of index 1 are responsible for 

connecting scrolls [11-13]. Therefore, the two scrolls available 

in the chaotic attractor of unified system surround the fixed 

points S ±  and the fixed point O  is responsible to connect these 

scrolls. 

 

Fig. 1: Root locus of characteristic polynomial (4) when δ  

continuously changes form 0 to 1. 

3. A Necessary Condition for Existence of Chaos in the 

Fractional Order Unified System 

As mentioned before, finding chaotic behaviors by numerical 

simulations in different fractional order systems is subject of 

many papers published in the recent years. For instance, 

existence of chaos in fractional order unified system has been 

shown in [14]. The fractional order unified system is described 

by 
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where 0 1α< ≤  is the fractional order of involved derivatives. 

The effective dimension (sum of the orders of all involved 

derivatives) of system (5) is equal to 3α . The fixed points of 

this system are same as those of the integer-order unified 

system. Suppose that a jb
δ δ

±  ( , 0a b
δ δ

> ) are the 

corresponding unstable eigenvalues of fixed points S ±  of 

system (1) for a given δ . It can be shown that a necessary 

condition for fractional order system (5) to remain chaotic is 

remaining the eigenvalues a jb
δ δ

±  in the unstable region, 

otherwise these fixed points becomes asymptotically stable and 

then attracts the nearby trajectories (For more details see [15, 

16]). This means that system (5) can be chaotic only when the 

following condition is satisfied. 
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Therefore, for a given δ , system (5) has the necessary 

condition to exhibit chaotic behavior if its effective dimension 

be more than 16tan ( / ) /b a
δ δ

π
− . Fig. 2 demonstrates the region 

in which system (5) can be chaotic. 

 

Fig. 2: The shadow region shows the region in which the system 

(5) may exhibit chaos. 
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Fig. 3: Simulation results for fractional order unified system 

when 1δ =  and 0.825α =  (The effective dimension is 2.475). 

4. Numerical Simulations 

According to Fig. 2, the maximum effective dimension in 

which the system (5) may be chaotic has a direct relation with 

system parameter δ . For the maximum value of parameter δ , 

i.e. 1δ = , the fractional order α  for which the fixed points S ±
 

become stable is calculated from (6) as 0.8244. Fig. 3 shows 

numerical simulation results for fractional order unified system 

when 1δ =  and 0.825α = . This figure confirms existence of 

chaos in fractional order unified system for the lowest effective 

dimension 3 0.825 2.475× = . The largest Lyapunov exponent 

for this case is estimated as 0.968. Also, Fig. 4 shows numerical 

simulation results for fractional order unified system when 

1δ =  and 0.81α = . In this case, the system trajectories 

converge to stable fixed points and consequently the system is 

not chaotic. The simulations of this section have been performed 

using the method introduced in [17] to find the solution of a 

Caputo definition based fractional differential equation. This 

method is an improved version of Adams-Bashforth-Moulton 

algorithm and is proved to be reliable for simulating the chaotic 

fractional order systems [8]. 

For other values of system parameter δ , the maximum 

effective dimension for which the system (5) may exhibit 

chaotic behavior can be determined using equation (6). For 

instance, if 0.8δ = , the maximum fractional order for which the 

chaotic behavior exists is equal to 0.843, or equivalently the 

maximum effective dimension is equal to 3 0.843 2.529× = . 

Fig. 5, which gives numerical simulation results for fractional 

order unified system when 0.8δ =  and 0.843α = , confirms the 

existence of chaos in the fractional-order unified system with 

effective dimension 2.529. In this case, the largest Lyapunov 

exponent is estimated as 0.553. 

5. Conclusions 

In this paper, we analytically found a lowest limit for the 

effective dimension in which the fractional-order unified system 

in parametric range 0 1δ≤ ≤  can be chaotic. This lowest limit 

is about 2.475. Numerical simulations confirmed the existence 

of chaos in the fractional-order unified system with this 

effective dimension. This order is less than the order found in 

paper [14], i.e. 2.76. Therefore, it seems the lowest order found 

in [14] should be modified. 

 

 

 

 

Fig. 4: Simulation results for fractional order unified system 

when 1δ =  and 0.81α =  (The effective dimension is 2.43). 
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