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Abstract

In this paper, we propose time-frequency jammer exci-
sion techniques for direct sequence spread spectrum com-
munications. One method is based on the estimation of
the instantaneous frequency (IF) of each of the chirp jam-
mer components using a combination of the discrete evolu-
tionary and the Hough transforms. The second method is
based in Wiener masking, and reduces the interference in a
mean-square fashion. In the first method, the jammer is syn-
thesized and subtracted from the baseband received signal,
while in the second method a mean-square estimate of the
message is obtained. The IF-based method applies equally
well to multi-component chirp jammers with constant or
time-varying amplitudes, and instantaneous frequencies not
necessarily parametrically modeled. A statistical analysis
of this method is developed based on the signal to interfer-
ence and noise ratio. We will show that the Wiener masking
method is a general method requiring the spectrum of the
spreading function. The two methods are illustrated by sim-
ulations.

1 Introduction

Direct sequence spread spectrum (DSSS) communica-
tions offer advantages such a code division multiple ac-
cess (CDMA), low probability of intercept, communication
over channels affected by multi-path propagation, and ro-
bustness to intentional jamming or interference from other
users [1]. This is achieved by spreading the message so
that it ocuppies a bandwidth in excess of the minimum
needed for transmission. Despreading at the receiver with a
synchronized replica of the spreading function permits not
only recovery of the message but reduction of interferences

added in the transmission. But the performance of DSSS
communication systems degrades as the power of the inter-
ferences increases, especially in the case of non-stationary
jammers. Excision of the jamming signals from the re-
ceived signal before despreading is known to enhance the
interference robustness of the system. Due to ease in track-
ing jammers in the time-frequency domain, different time-
frequency methods have been recently proposed for jam-
ming excision [2, 3, 4, 5, 7, 6]. When transmitting ak th

data bit using DSSS, the received baseband signal is given
by

rk(n) = dkp(n) +

QX
q=1

jkq (n) + �(n) 0 � n � (L� 1);

where the data bit isdk, p(n) is a pseudo-noise signal of
lengthL chips, the jamming signal hasQ chirpsjkq (n), and
�(n) is white noise. These two signals are added during
transmission. Possible excision approaches consist of pro-
jecting the received signal either onto the signal-plus-noise
space and use time-varying filtering to excise, or onto the
jamming subspace to synthesize and subtract the jamming
signals. Likewise, the excision can be viewed as a non-
stationary Wiener filtering problem where a mean-square
estimator for thedp(n) is sought. To deal with the excision
and estimation we use the Discrete Evolutionary Transform
(DET) [8] to represent the non-stationary received signal
and its corresponding time-varying spectrum.

2 The Discrete Evolutionary Transform

The Discrete Evolutionary Transform (DET) [8] pro-
vides a representation for a non-stationary signal to which
a time-dependent evolutionary spectrum is associated. A



non-stationary signal,x(n), can be represented by either of
the following Wold-Cramer representations:

x(n) =

K�1X
k=0

X(n; !k)e
j!kn; (1)

which uses a sinusoidal basis, or a more general representa-
tion based on chirp basis

x(n) =

P�1X
p=0

K�1X
k=0

Xp(n; !k)e
j(!kn+�p(n)): (2)

In these representations,!k = 2�k=K with K the num-
ber of frequency samples,P is the number of chirps and
�p(n) can be considered a very general function ofn. The
functionsX(n; !k) andXp(n; !k) are the evolutionary ker-
nels for the two representations. ExpressingX(n; !k) and
Xp(n; !k) in terms ofx(n) can be accomplished by con-
sidering a conventional representation forx(n). In [8] we
considered the Gabor and the Malvar wavelet, representa-
tions. The evolutionary kernels are given by

X(n; !k) =

N�1X
`=0

x(`)Wk(n; `)e
�j!k`; (3)

Xp(n; !k) =

N�1X
`=0

xp(`)Wk(n; `)e
�j(!k`+�p(`)); (4)

where the windowWk(n; `) is a time and frequency de-
pendent window found from the expansion used. Once the
windows are defined, one can compute the DET directly
using equations (1) and (3), or (2) and (4). These equa-
tions can be seen as extensions of the Short-time Fourier
transform. For the sinusoidal representation, it can be
shown thatjX(n; !k)j

2 is a time-frequency energy density,
and as such the evolutionary spectrum ofx(n) is given by
S(n; !k) = jX(n; !k)j

2. Likewise, for the chirp expan-
sion, the evolutionary spectrum is given byS(n; !k) =���PP�1

p=0 Xp(n; !k � !p(n))
���2 :

3 Jammer Excision via Projection and Syn-
thesis

We attempt to synthesize the jammer by finding esti-
mates of the instantaneous frequencies (IFs) of each of the
jammer components, and then estimating their amplitudes
by linear filtering or singular value decomposition. The syn-
thesized jammer is subtracted from the received signal. We
have shown [7] that a combination of the discrete evolution-
ary and the Hough transforms can be efficiently used to find
initial piecewise-linear estimates of the instantaneous fre-
quencies of multi-component signals, and then recursively

corrected using the DET representation of the signal. This
provides a great advantage not shared by other IF estimation
methods, using only spectral information. When using the
the Malvar-based DET, the signal is partitioned into com-
ponents represented by sinusoids or chirps. The proposed
discrete evolutionary Hough (DEH) transform tracks the in-
stantaneous frequencies of sinusoids or chirps and approx-
imates them linearly, and indicates the number of compo-
nents present locally – for each of which we obtain sequen-
tially a linear IF estimate.

The Hough transform maps an imageI(x; y) into a para-
metric space(�; �) to infer the presence of lines or curves
by means of clusterings in the parameter space. The appli-
cation of the DEH transform is simplified by consider its
application to segments of the received signalr(n)wi(n),
and obtaining a linear approximation for each of the IFs of
the jammer components. The following is the definition of
the local DEH transform forr(n)wi(n):

DEHT(�; �; i) =
X
n;k

S(n; !k)wi(n)�(�� n cos � � !k sin �):

This transform tracks lines in the windowed evolutionary
spectrumS(n; !k)wi(n), by means of clusters created in
the parameter space(�; �). The number of clusters corre-
sponds to the number of lines detected. Unlike the Wigner-
Hough transform [2], the DEH transform does not assume a
parametric model for the IFs, and does not have the problem
of cross terms introduced by the Wigner distribution.

The initial estimates can be improved by using the DET
representation of the jammer. Consider the windowed re-
ceived signal

xwi
(n) = r(n)wi(n)

=

QiX
p=1

Aip(n)e
j�ip(n) + �i(n) + dpi(n);

where the DET representation of theQi jammers present in
this window is given, and�i(n) anddpi(n) are the win-
dowed noise and DS signals. To improve the estimate
�̂iq(n) (the instantaneous phase of theqth jammer compo-
nent in theith window) we use it to dechirpxwi

(n):

yiq(n) = xwi
(n)e�j�̂iq(n)

= Aiq(n)e
j ~�iq(n) +

X
p 6=q

Aip(n)e
j ~�

p

iq
(n)

+ (�i(n) + dpi(n))e
�j�̂iq(n);

where~�iq(n) = �iq(n) � �̂iq(n) and ~�piq(n) = �ip(n) �

�̂iq(n). The first term above corresponds to a lowpass sig-
nal, thus if we passyiq(n) through a narrow-band low-pass
filter we obtain an analytic signal

ziq(n) = [Aiq(n) + "iq(n)] e
j ~�iq(n);
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Figure 1. Block diagram of the exciser

where"iq(n) is the effect of other jammers, as well as the
windowed noise and DS signals, and~�iq(n) is the instanta-
neous phase of the analytic signalziq(n). The above indi-
cates we can use a new estimator

�̂niq(n) = �̂iq(n) + ~�iq(n): (5)

The above process is repeated until the difference between
the old and the new estimates is insignificant.

Figure 1 depicts the proposed exciser. Dechirping the
windowed received signal using one of the estimated IFs
gives us a low-frequency stationary signal –corresponding
to the desired jammer component– along with other non-
stationary components corresponding to the other jammer
components, the noise and the DS signal. To separate the
low-frequency stationary signal from the others we con-
sider three different methods: arithmetic averaging (AVE),
low-pass filtering (LPF) and singular value decomposition
(SVD). This provides estimates of the amplitudes of the
jammer components. Chirping back, with the same IF used
to dechirp before, the resulting signal gives a synthesized
jammer component which we subtract from the received
signal. We have observed in simulations that the arithmetic
averager performs consistently better in the cases of con-
stant or slowly varying amplitudes of the jammer compo-
nents, while the low-pass filtering and the singular value
decomposition methods do better for wider windows or in
global processing.

3.1 Statistical Performance Analysis

At the receiver, after the jammer is excised from the re-
ceived baseband signal, the resulting signal is despreaded
and correlated. The decision variabley used to determine,
after thresholding, whether the sent bit was1 or�1 is

y = dL+

L�1X
n=0

�(n)p(n)+

L�1X
n=0

 
I�1X
i=0

QiX
q=1

~jiq(n)wi(n)

!
p(n);

(6)

where~jiq(n) is the difference between the actual jammer
and the synthesized one. This decision variable is for a bit
d, of lengthL chips and partitioned intoI segments, each
havingQi jammer components. To measure the effect of
the jammer interference and the channel noise in the trans-
mission, we consider the receiver signal to interference and
noise ratio (SINR) given by

SINR =
E2fyg

�2y
: (7)

Assuming the white noise and the pseudo-noise are zero
mean, and uncorrelated, it can be shown thatE[y] = dL

and the variance�2y = �2�L + �, where the first term is the
contributions of the channel noise, while

� =
L�1X
n=0

I�1X
i=0

E

8<
:
�����
QiX
q=1

~jiq(n)

�����
2

wi(n)

9=
; (8)

is due to the residual jammer. Thus, we have Eq. (7) be-
comes:

SINR =
L

�2� + �=L
: (9)

When(� = 0), either because no jammers are present or
because they were excised completely, we obtain the upper
bound of the SINR. The lower bound corresponds to when
no excision is performed, and�=L equals the total power of
the jamming signal.

To compare our results with those from [9], we consider
the special case of a single component jammer with a con-
stant amplitudea. The arithmetic average exciser gives as
estimate of the amplitude of the jammer:

�Ai1 =
a

N

L�1X
m=0

wi(m)e�j
~�i1(m);

and it can be shown that

� = a2L

�
1�

1

N

�
(1� e��

2

1 );

where�21 is the variance of the phase error. Thus, the SINR
for the arithmetic averager exciser when there is a single
jammer with constant amplitude is then given by

SINRa =
L

�2� + a2(1� 1
N
)(1� e��

2

1 )
: (10)

Amin’s projection method gives [9]

SINRp =
L(1� 1

N
)

�2� +
2
N

+ a2(1� e��
2

1 )
: (11)

It can also be shown thatSINRa > SINRp. As we will
see in the simulations, there is hardly any difference be-
tween these two values.



4 Jammer Excision via Wiener Masking

The above method assumes the TF spectrum clealy dis-
plays the jammer. When the JSR is low, or the jammer is
not composed of chirps the above method fails. However
for each bit, the information about the spreading sequence
does not change and so we can computea priori its evo-
lutionary spectrum, we will see that this spectrum and the
spectrum of the received baseband signalr(n) can be used
to obtain a mean-square estimate for the DS signal. This
is a special case of the non-stationary Wiener filtering [10]
that consists in obtaining a linear time–varying estimator
for a signalx(n) embedded in a non-stationary interference
 (n). The data is thus given by

y(n) = x(n) +  (n):

The filtering estimate can be found by minimizing a mean-
square error

"(n) = Ejx(n)� x̂(n)j2; (12)

wherex̂(n) is the output of a linear time-varying filter or
mask. The masking estimator has the Wold-Cramer repre-
sentation

x̂(n) =

Z �

��

Y (n; !)B(n; !)ej!ndZy(!); (13)

where Y (n; !) is the evolutionary kernel ofy(n), and
B(n; !) is a masking function. The minimization of"(n)
requires, according to the orthogonality principle, that

E [x(n) � x̂(n)] x̂�(n) = 0

which can be shown to be equivalent toZ �

��

�
Sx(n; !)

Y �(n; !)
�G(n; !)

�
G�(n; !)d! = 0; (14)

whereG(n; !) = Y (n; !)B(n; !). To minimize the above
equation we let

G(n; !) = Y (n; !)B(n; !) =
Sx(n; !)

Y �(n; !)
; (15)

so that the mask is given by

B(n; !) =
Sx(n; !)

Sy(n; !)
(16)

or the ratio of the evolutionary spectra ofx(n) to that of the
datay(n). This result is analogous to the non-causal station-
ary Wiener filter. The optimal estimator and the minimum
mean square error are found to be

x̂(n) =

Z �

��

Sx(n; !)

Y �(n; !)
dZy(!);

"min(n) =

Z �

��

Sx(n; !)S (n; !)

Sy(n; !)
d!: (17)

When applying the above procedure to the estimation of the
message bit, the data is given byr(n), which consists of the
desired signaldp(n) and the interference isj(n) + �(n).
The Wiener masking, using a DET implementation, is given
by the ratio of the spectrum ofdp(n) and that ofr(n). No-
tice the evolutionary spectrum ofdp(n) is the same inde-
pendent ofd, and that the spectrum of the received signal
is available for every bit transmitted. Finally, we obtain the
estimated message signal as the inverse discrete evolution-
ary transform of the kernelR(n; !)B(n; !). The above is
only possible because of the connection between the evolu-
tionary kernel and the signal, and note there is no condition
imposed on the form of the jammer, as long as its DET can
be computed. Thus these results apply to a large class of
jammers. Moreover, in theory this procedure is valid for
any value of the jammer to signal ratio.

5 Simulations

IF Estimation. Consider a jammer composed of a linear and
a sinusoidal FM components, and embedded in Gaussian
noise (SNR 5.2 dB). Figure 2 shows the initial local IF lin-
ear and the corrected estimates.
Projection and Synthesis. We simulate the DSSS signals for
a constant jammer to signal ratio (JSR), and perform104

Monte Carlo trials for each SNR. Averaging the bit errors
we obtain the corresponding bit error rate (BER). In the
SINR simulations, we perform 100 Monte Carlo trials at
each SNR to obtain the jamming error� for the AVE ex-
ciser and Amin’s projection method, and the variance of the
noise, to compute the SINR with the formulas obtained be-
fore. The results are shown in Figs. 3 and 4.
Wiener Masking. We perform104 Monte Carlo trials at
each SNR to compute the BER when using the Wiener
masking approach. The jammer is composed of arbitrary
sinusoids and chirps, with an JSR of35(dB). The results in-
dicate that the masking Wiener works very well for the case
of a jammer whose composition is not known. The evolu-
tionary spectrum of the pseudo noise sequence is known.
The results are shown in Fig. 5.

6 Conclusions

In this paper, we propose two methods to excise jammers
in DSSS: one that uses the DET and the Hough transform to
synthesize the jammer and excise it, and the other based in
a Wiener mask to estimate the message signal. The Wiener
masking method is more general, but requires the spreading
sequence. On the other hand, the synthesis method takes
advantage of the nature of the jammer to synthesize it. Both
methods show very good performance.
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