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Abstract 
 

The electric field distribution in an axially symmetric 
inhomogeneous dielectric body illuminated by a 
homogeneous plane wave is investigated by using a 
generalized analytical technique. The problem is formulated 
through the dyadic Green's function technique and solved by 
using the Method of Moments (MoM), which models an 
arbitrarily shaped dielectric body in terms of cubic elements. 
The singularity appearing in Green's functions is eliminated 
through a procedure which shapes the elements of MoM 
matrix into surface integrals that can be computed 
effectively. The numerical solutions are compared to 
analytical reference solutions for the special cases of 
homogeneous and concentric homogeneous spheres and the 
required size of the MoM matrix is observed to be quite 
small providing a rapid convergence. The convergence and 
the range of validity of the general analytical technique 
under consideration is tested for the first time for certain 
canonical problems of practical interest. 

1. Introduction 

Dyadic Green’s functions are indispensable in the 
investigation of scattering by 3-D dielectric bodies of arbitrary 
shape (cf. [1]). The Green’s function technique describes the 
total scattered field as a volume integral over the dielectric body. 
The fundamental difficulty with this technique is the singularity 
of the volume integral that occurs when the observation point 
falls into the region occupied by the scatterer. Many different 
procedures are available in literature for handling such 
singularities. For instance, [2] extracts a small region that 
includes the point of singularity and provides an analytical result 
for the singular term by integration in the Cauchy sense. [3-4] 
represents the electric field inside and outside the source region 
by generalized electric dyadic Green’s functions which 
constitute a conventional dyadic determined outside and a 
source dyadic determined inside the region of singularity. [5] 
describes the derivatives of Green’s functions in the 
distributional sense, whereas [6] uses these results to define a 
new formula which expresses the second derivative of Green’s 
functions in the source region. While it is impractical to provide 
a satisfactory list of all such papers in the area, most relevant to 
our present investigation is a general analytical technique 
introduced by [7] in which the volume integrations are 
converted to surface integrations through an integral theorem, 
thereby eliminating the pole singularity. 

Numerical solutions for the problem of scattering by 
dielectric objects were initiated by [8]. The Method of Moments 
(MoM) [9], which transforms integrodifferential equations to 

systems of linear equations, has been incorporated as a standard 
method in investigating such problems. Alternative geometrical 
models have been tested in modeling an arbitrary dielectric body 
with MoM. For instance, [10] uses MoM with cubic elements, 
whereas [11] uses tetrahedral elements and [12] uses hexahedral 
elements for modeling the scattering objects. 

In this study, the procedure given in [7] for eliminating the 
singularity of dyadic Green’s function is adopted for the 
problem of plane wave scattering by an arbitrary 
inhomogeneous dielectric body as depicted in Fig. 1.  

 
 

Fig. 1. An arbitrary inhomogeneous dielectric body illuminated 
by a homogeneous plane wave 

The numerical solutions are obtained through the MoM and 
compared to analytical reference solutions for the special cases 
of homogeneous and concentric homogeneous spheres. The 
elements of the MoM matrix are in the form of surface integrals 
written over the faces of each cube. The required size of the 
MoM matrix is observed to be quite small providing a rapid 
convergence. 

A time factor i te ω−  is adopted and suppressed throughout 
the paper.  

2. Formulation 

Based on the volume equivalence principle the induction 
current density induced inside the inhomogeneous lossy 
dielectric body with arbitrary constitutive parameters 

0( ( ), , ( ))r rε µ σ
� �

 under a plane wave incidence (see Fig. 1) is 

expressed by  

 ( ) ( ) ( )tot
eqJ r r E rτ=
� �� � �

                        (1) 

with 
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 [ ]0( ) ( )cir rτ ω ε ε= −
� �

                         (2) 

where 0 0( , )ε µ are the constitutive parameters of free space and 

( )c rε
�

 is the complex permittivity of the dielectric body. The 

Green’s function technique provides us express the total electric 
field at any point in space as to the sum of the incident electric 

field ( )iE r
� �

 and the scattered field ( )sE r
� �

 generated by the 

induction currents in the form  

 ( ) ( ) ( ) ( ) ( ; )tot i totE r E r r E r G r r d

ϑ

τ ϑ= ′ ′ ′ ′+ ⋅�
� � �� � � � � �

 (3) 

In (3) 0ˆ( ) ik ziE r xe=
� �

 with 0 0 0k ω ε µ= denoting the free 

space wavenumber and 

 0 2
0

1
( ; ) ( ; )G i gr r I r r

k
ωµ=

� �
′ ′+ ∇∇� �� �

� �

� � � �
               (4) 

is the well known 3-D dyadic Green’s function of free space 
expressed through the 3-D scalar Green’s function of free space 

 
0

( ; )
4

ik r r
e

g r r
r rπ

′− −

′ =
′−

� �

� �

� �                              (5) 

with ∇  denoting the standard nabla operator. Due to the double 

gradiant operation on ( ; )g r r′
� �

, the dyad ( ; )G r r′
� �

 possesses a 

third order singularity, which renders the volume integral in (3) 
improper. In what follows we will employ the analytical integral 
evaluation technique of [7] to remedy this deficiency in the 
MoM procedure using 3-D pulse basis functions, which requires 
computing the dyad 

 ( ; ) ( ; )r r G r r d

ϑ

ϑ′ ′ ′Ω = �
� � � �

                               (6) 

at discrete values of the observation point. The technique 
introduced in [7] converts the volume integration in (6) into 

 

ˆ( ; ) ( ) ( ; ) ( )

ˆ                  ( ; ) ( )

ϑ

ϑ

ε
∂

∂

′ ′ ′ ′Ω = − + ∇ ⋅

′ ′ ′− ∇

�

�

� � � � � �

� � �

�

�

c r r D r I I g r r n r dS

g r r n r dS
     (7) 

with n̂  being the outward normal of the enclosure of the region 

ϑ , denoted by ϑ∂ . The relation (7) can also be expressed in 
the matrix form 

yy zz xy xz

c yx xx zz yz

zyzx xx yy

D v v v v

v D v v v

vv D v v

ε

�− + + −	 −

�

Ω = − − + + − 
�

� −− − + + 
� 

    (8) 

for the special case of a single cubic element, where 

 
1

( )
0

r
D r

r

ϑ

ϑ

∈�
= �

∉�

�
�

�                                   (9) 

is the characteristic function of the dielectric cube. The rest of 

the elements of Ω  are calculated as 

( ) ( )

( ) ( )

0 ,11, 2,

1, 2,

0 ,2

, 0 ,1

3
,1

, 0 ,2

2 13
,2

1
4 ( )

1
                

π
⊕ ⊕

⊕ ⊕

+ +

− −

⊕ ⊕

	 − − −
�=
�
��

�− + −

 ′ ′−





� �
�

xii n i n

i

i i

ii n i n

xi

i

i

ik Rx a x a
i i n x

x x

xx a x a

ik R

i i n x

i i

x

x x a e ik R
v r

R

x x a e ik R
dx dx

R

(10) 

( )
( )

( )

0 ,11, 2,
1

1

1, 2,

0 ,21
1

1

0 ,1

3
,1

0 ,2

23
,2

1
4 ( )

1
                    

π
⊕⊕

⊕

⊕

⊕⊕

⊕

⊕

⊕

+ +

− −

⊕

	 −
�′= −
�
��

�−

 ′ ′−





� �
�

xii n i n

i

i i

ii n i n

xi

i

i

ik Rx a x a
x

x x i i

xx a x a

ik R

x

i i

x

e ik R
v r x x

R

e ik R
dx dx

R

 (11) 

( )
( )

( )

0 ,12, 1,
2

2

2, 1,

0 ,22
2

2

0 ,1

3
,1

0 ,2

13
,2

1
4 ( )

1
                     

π
⊕⊕

⊕

⊕

⊕⊕

⊕

⊕

⊕

+ +

− −

⊕

	 −
�′= −
�
��

�−

 ′ ′−





� �
�

xii n i n

i

i i

ii n i n

xi

i

i

ik Rx a x a
x

x x i i

xx a x a

ik R

x

i i

x

e ik R
v r x x

R

e ik R
dx dx

R

 (12) 

with 

( ) ( ) ( )( ) ( ) ( )( )
1 22 22

,1 1 1 2 2ix i in i i i iR x x a x x x x⊕ ⊕ ⊕ ⊕

	 �′ ′= − − + − + −� 
��
 (13) 

( ) ( ) ( )
1 22 2 2

,2 , 1 1 2 2ix i i n i i i iR x x a x x x x⊕ ⊕ ⊕ ⊕

	 �′ ′= − + + − + −� �
 (14) 

for 0,1,2i =  with 0 1 2( , , )x x x  corresponding to ( , , )x y z  and 

0, 1, 2,( , , )n n nx x x  corresponding to the center of n-th cube. ⊕  

symbol denotes sum operation in mod 3 and a  stands for the 
length of one side of the cube. 
    Due to reciprocity, the symmetric nondiagonal matrix 
elements in (8) require to be equal:  

 
1 1

, 0,1,2
i i i ix x x xv v i

⊕ ⊕
= =                  (15) 

 
2 2

, 0,1,2
i i i ix x x xv v i

⊕ ⊕
= =                 (16) 
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When the observation point coincides with the source point 

r r′=
� �

, the nondiagonal elements in the matrix in (8) read zero: 

 
1 2 1 2

0, 0,1,2
i i i i i ix x x x x xv v v i

⊕ ⊕ ⊕ ⊕
= = = =         (17) 

in which case the matrix simplifies into 

1 0 0

0 1 0

0 0 1

s s
yy zz

s s
c xx zz

s s
xx yy

v v

v v

v v

ε

	 �− + +
� 

� 
Ω = − + +
� 


− + +� 

� 

 (18) 

with 

( )
( )0

0

1 22

1

2

xi

i

i i

i

ik R
a a

xs
x x i i

xa a

e ik Ra
v r dx dx

Rπ

−
+ +

⊕ ⊕

− −

	 �−
� 
= −
� 

� 
� 

� �
�

 (19) 

and 

 
1 22 2 2

1 2ix i iR a x x⊕ ⊕
	 �′ ′= + +�                     (20) 

for 0,1,2i = . Then the regular double integrals in (10)-(12) 

and (19) and therefore the electrical field generated by a single 
dielectric cube can be computed effectively. 
     Next we consider the numerical model of a dielectric sphere 
constituting cubic elements as depicted in Fig. 2. For evaluating 
the interaction between two cubic elements with position vectors 

mr
�

 and nr
�

 pointing their centers, ( ; )r r′Ω
� �

 in (8) can be written 

as  

yy zz xy xz
mn

c yx xx zz yz

zx zy xx yy

D v v v v

v D v v v

v v D v v

ε

	 �− + + − −
� 


Ω = − − + + −� 

� 


− − − + +� 
� 

(21) 

where ( ; )mn mn
m nr rΩ = Ω
� �

, ( ; )m nD D r r=
� �

 and 

( ; ) , , 0,1, 2
i j i jx x x x m nv v r r i j= =

� �
. The standard MoM 

procedure reduces (3) into the linear system of equations 

 
 

Fig. 2. The dielectric sphere partitioned into cubic elements 

3

1 1

( ) ( )
= =

= −��
� �

i j j i

N
mn tot i
x x x n x m

j n

S E r E r , 1, 2,...,=m N , 1,2,3=n  (22) 

with 

 ( )
i j i j

mn mn
x x n x x ij mnS rτ δ δ= Ω −

�
                (23) 

i j

mn
x xS  in (23) has different representations for the following four 

special cases depending on the relation between indices ( , )i j  

and ( , )m n : 

Case I: m n≠  and i j≠  

 
( ) ( ; )

i j

i j

n x x m nmn
x x

c

r v r r
S

τ

ε
= −

� � �

                           (24) 

Case II: m n≠  and i j=  

1 1 2 2

( )
( ; ) ( ; )

ì i i i i i

mn n
x x x x m n x x m n

c

r
S v r r v r r

τ

ε ⊕ ⊕ ⊕ ⊕
	 �= +� 

�
� � � �

       (25)  

Case III: m n=  and i j=  

1 1 2 2

( )
1 ( ; ) ( ; ) 1

i i i i i i

mm s sn
x x x x m n x x m n

c

r
S v r r v r r

τ

ε ⊕ ⊕ ⊕ ⊕

− 	 �= − − −
� 

�
� � � �

(26) 

Case IV: m n=  and i j≠  

 0
i j

mm
x xS =                                          (27) 

In all four cases the reciprocity principle requires  

 
i j j i

mn mn
x x x xS S=                                    (28) 

3. Numerical Implementations 

In this section we test the numerical scheme the general 
analytical technique (GAT) presented in Section 2 with the 
comparison results obtained through Principle Volume 
Technique (PVT) of [10] and the analytical reference solutions 
obtained through Mie Series expansion (cf.[13]) for a 
homogeneous and a coated sphere. The scattering mechanism 
from a homogeneous dielectric sphere has two distinct 
characteristics according to the electrical radius of a sphere 
being much smaller than unity or not. In the former (quasistatic) 

case 0 1k a <<  the total electric field in a homogeneous sphere 

(see Fig.3) with radius a  and relative permittivity 0rε ε ε=  

yields [8] a static amplitude given by the approximate relation  

 
3

( ) ( )
( 2)

tot i

r

E r E r
ε

≅
+

� �� �
                       (29) 
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Fig. 3. The dielectric sphere illuminated by a plane wave 

An illustration of the accuracy of the numerical schemes 
corresponding to this case are given in Table 1.  

Table 1.  Electric field calculated for low frequencies at the 
center of the homogeneous sphere under plane wave 

illumination 
 

f  

[Hz] 
rε  ελ  [m] 3 ( 2)

r
ε +  

| |totE
�

 

[V/m] 

(PVT) 

| |totE
�

 

[V/m] 

(GAT) 

7
10  5.0 1

1.342 10⋅  0.4286 0.4172 0.4120 

6
10  5.0 2

1.342 10⋅  0.4286 0.4172 0.4120 

3
10  5.0 5

1.342 10⋅  0.4286 0.4172 0.4120 

3
10  

20.

0 
4

6.708 10⋅  0.1364 0.112 0.1398 

3
10  

51.

7 
4

4.172 10⋅  0.0559 0.0503 0.0589 

    The rotational symmetry of the sphere suffices the 
calculations to be done only on the quarter of the entire volume. 
In Fig.s 4-6 we employ 4 cubes to fit along the radius of the 
sphere so that 70 cubes are used for modeling the geometry, 
which brings along 210 unknown electric field components. As 
expected, an increase in the number of cubes improves 
numerical convergence while at the same time increasing the 
total computation time regularly. 
     The relative errors in PVT and GAT results with reference to 
Mie series solution for the parameterization in Fig. 4 are 
depicted in Fig. 5.  

 
 

Fig. 4. Total field along z-axis inside a lossless dielectric sphere 

with 5
r

ε = , 0 0.1257k a = . 

 
 

Fig. 5. Relative error for the total field inside a lossless 

dielectric sphere with 5
r

ε = , 0 0.1257k a = . 

 

In Fig. 6 the absorbed power (density) inside the sphere 

( 2| | 2Eσ ) for 0.39σ =  is depicted for the three methods 

under the same parameterization.  

 
 

Fig. 6. Absorbed power along z-axis inside dielectric sphere 

with 5
r

ε = , 0.39σ = , 0 0.1257k a = . 

 

Next we consider the problem of scattering by a concentric 
homogeneous dielectric sphere as in Fig. 7 with 

parameterization 1 5rε = , 2 16rε =  and 0 1 0.1257k a = , 

0 2 0.2322k a =  and again with 4 cubes to fit along the outer 

radius. 
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Fig. 7. The coated dielectric sphere illuminated by a plane wave 

For this model the fields calculated inside the sphere are 
depicted in Fig. 8. 

 
 

Fig. 8. Electric field along z-axis inside lossless coated 

dielectric sphere with 
1

5
r

ε = , 0 1 0.1257k a = , 
1

16
r

ε = , 

0 2 0.2322k a =  

4. Conclusion 

The GAT given by [7] for eliminating the singularity of dyadic 
Green’s function is applied to the problem of plane wave 
scattering by an arbitrary inhomogeneous dielectric body. The 
main feature of GAT is to avoid any exclusion volume and 
operations for removing the singularity of dyadic Green’s 
function in source region which makes its application easier in 
practice. Calculations are compared to analytical expressions for 
the special cases of homogeneous and concentric homogeneous 
spheres under plane wave incidence. The total scattered field 
inside the objects and relative error in calculations as compared 
to analytical Mie series solutions are provided. In each case 
rapid convergence is observed with a relatively small number of 
cubes, while the developed GAT algorithms converge much 
faster than the PVT algorithms as expected theoretically. The 
numerical efficiency (rapid convergence and relative error) of 
GAT algorithms provide a reliable option for extending the 
methodology to the investigation of scattering by dielectric 
bodies of arbitrary shape. 
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