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Abstract    

Electromagnetic interference effects of transmission lines on nearby metallic structures such as pipelines, communication lines or 
railroads are a real problem, which can place both operator safety and structure integrity at risk. The level of these voltages can be 
reduced to a safe value in accordance with the IEEE standard 80 by designing a proper mitigation system. This paper presents a 
Neural Fuzzy model that can predict the level of the metallic conductor voltage before and after applying a mitigation system. The 
model outlined in this paper is both fast and accurate and can predict the voltage for any change in the system parameters (soil 
resistivity, fault current, lateral distance, mitigated or unmitigated system).  

1. INTRODUCTION          

Circuit conductors do not need to be electrically 
connected for interference to be transferred from one to 
the other. A significant contributing factor is when the 
conductors are installed in close proximity to overhead 
transmission lines without any additional mitigation 
measures to reduce the effect of the electromagnetic 
coupling. 
AC interference can be divided into three main categories 
of coupling mechanisms based on the circuit type and 
they are namely, inductive, conductive and capacitive 
couplings [1-9]. The voltage difference existing between 
the two circuits, overhead line and any nearby metallic 
conductor such as pipeline, results in the establishment of 
an electric field between them. This effect is a 
demonstration of capacitive coupling. The inductive 
coupling is determined by magnetic field, unlike an 
electric field which has a source and end point, magnetic 
field lines have no beginning or end point. Conductive 
coupling results from the soil potential increase due to a large 
amount of currents discharged into the soil at transmission 
line structures, such as power line tower grounds, power 
plant grounding systems and electric substation. In this 
paper, interference levels due to inductive and conductive 
coupling are calculated under fault conditions. Capacitive 
coupling is neglected because the metallic conductor is 
buried in ground.  
The high level of the pipeline voltage can be reduced to a 
safe value in accordance with the IEEE standard 80 by 
designing a proper mitigation system. The gradient 
control wires is one of the best mitigation system that is 
currently used [4].  
Artificial neural networks (ANN) can be used to predict 
the induced voltage in the pipeline [10] because of their 

ability to handle noisy data, associate memory and 
parallel computational architecture. However, the 
robustness and accuracy of ANN based methods depend 
heavily on the choice of the network architecture, the 
convergence speed and the weight adaptation algorithm. 
Due to the implementation simplicity and the feasibility 
in hardware development, fuzzy logic technique has been 
employed in variety of domestic products, industrial 
processes and different power system areas [11-16]. 
There are several papers that talked about the calculation 
and prediction of the pipeline  voltage at a specified 
system parameters, any change in the system parameters 
will required rerunning the software[1-7] , which is time 
consuming,  while the proposal outlined in this paper  are  
both fast and accurate.   
In this paper the Adaptive Network-Fuzzy Inference 
System (ANFIS) is used to model, evaluate, analyze and 
predict the total pipeline voltages taking in consideration 
the different system parameters. The concept of ANFIS 
was proposed and extensively discussed in [17].  
Matlab/Fuzzy toolbox environment has been employed to 
build the current ANFIS model for pipeline voltage 
evaluation and prediction [18]. 

2 . ADAPTIVE NETWORK-FUZZY INFERENCE SYSTEM    

A fuzzy set is a collection of objects with membership values 
between 0 (complete exclusion) and 1 (complete 
membership). The membership values express the degrees to 
which each object is compatible with the properties or 
features distinctive to the collection. A membership function 
is a curve that defines how each point on the input space is 
mapped to a membership value (or degree of membership) 
between 0 and 1 [19-20]. There are many types of 
membership functions such as the triangular membership 
function, the trapezoidal membership function and the 
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Gaussian  membership function.  The fuzzy system without 
fuzzifier and defuzzifier is called pure fuzzy system. The 
main problem with the pure fuzzy system is that its inputs 
and outputs are fuzzy sets, whereas in engineering 
systems the inputs and outputs are real-valued variables. 
In order to use pure fuzzy system in engineering systems, 
a simple method is to add a fuzzifier, which transforms a 
real-valued variable into a fuzzy set, to the input and a 
defuzzifier, which transforms a fuzzy set into a real-
valued variable, to the output. Fuzzy system with a 
fuzzifier and defuzzifier is shown in Fig.1 
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Fig.1: Basic configuration of fuzzy system with a 
fuzzifier and defuzzifier. 

There are many methods of  defuzzifiers to obtain the 
crisp output V from the fuzzy inference engines and the 
required crisp output denoted by (y*) such as the centroid 
method which is given by Equation 1 and the Weighted 
average method which is given by Equation 2.  
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where: 

MfB is the membership function for the set B  

Zn is the peak value 

Yn is value of the corresponding factor at the peak position     

The Fuzzy Logic Toolbox allows us to create and edit fuzzy 
inference systems. We can create these systems using 
graphical tools or command-line functions, or we can 
generate them automatically using either clustering or 
adaptive network-fuzzy techniques. Matlab/(Simulink - 
Fuzzy toolbox) can easily build and test our fuzzy system in 
a block diagram simulation environment. This is made 
possible by a stand-alone Fuzzy Inference Engine that reads 
the fuzzy systems saved from a MATLAB session.   

2.1   System Modeling 

The system under study is presented in Fig. 2. It consists of 
132kV transmission lines and a neighboring pipeline. The 
length of the parallelism (transmission lines and pipeline) is 

10 km; the pipeline is placed at the central site with burial 
depth of 0.6m. The parallel scenario produces maximum 
coupling between power line and pipeline as a result higher 
induced voltage is expected to be produced. The following  
presents the system model parameters used in this study. 

Pipeline 
Coating Resistance: 20000 2.mΩ ( m.15665 Ω ) 
Coating thickness: 0.0036m 
Outer Diameter: 0.4064 m 
Inner Diameter: 0.39923 m 
Burial depth:  0.5 m 
Relative Resistivity: 17 (with respect to annealed 
copper).    
Relative permeability: 250 (with respect to free 
space).   
Grounding:  None 

Overhead Transmission line 

 AAAC (single-ELM) 132 kV  

G.M.R: 0.7122 cm 
Conductor outer radius: 0.94 cm 
Outer strand radius: 0.188 cm 
Number of strands: 19 
Fault current (phase-to-ground fault): 5 KA  

System 

Length of parallel corridor: 10 km 
Soil Resistivity ρ:  100 m.Ω  
Separation distance:  100 m 
 

Mitigation System 
 Gradient control wire: Zinc ribbon with diamond-
shaped 12.7x14.28 mm (1/2 x9/6 inch). 
Mitigation wire resistivity: 3.47  

Mitigation wire permeability: 1 
The level of the pipeline voltage, owing to each type of 
coupling, depends on different factors (power lines 
voltage level, length of parallelism, separation distance, 
soil resistivity, load current magnitude, configuration of 
the power lines, pipeline coating and mitigation system 
used). The effects of these factors are discussed in [9]; 
some factors such as the fault current level, separation 
distance and soil resistivity are found to exhibit a large 
influence on the induced pipeline voltage. The Fuzzy 
model used in this work consists of 4 input nodes 
representing fault current (If), soil resistivity (ρ), 
separation distance (D) and mitigation system  while the 
output node is one, representing the total pipeline voltage 
as shown in Fig.3. This Model of prediction is trained 
using the data obtained from CDGES [21] software for a 
practical system The membership functions (MFs) of 
each input and the rules set have been designed carefully 
for building the model parameters as shown in Fig. 4 and 
simply presented in Table 1. 
The defuzzification method used was the weighted 
average while the aggregation method employed was the 
Maximum..  
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The Fuzzy model is trained in the training stage and then 
the Fuzzy is tested with the whole data to get a very 
precise output relative to the given data. The fault current 
is represented with four trapezoidal and triangle 
membership functions to cover the continuity of the 
current values over some studied cases while the others 
inputs are represented with triangle membership function 
only due to the frequent symmetry variation of the input. 
The number of rules developed as (IF then Else) were 
found to be 168(7x4x3x2) rules. 

During the accuracy analysis of the model, if one of the 
factor are dropped the pipeline voltage will be affected 
depending on the weight of each factor contribution and it 
varies from 20% to 40% according the range of each input 
variation. The type, boundaries and the degree of overlap of 
the membership functions for the algorithm output are tuned 
carefully using the try and error method to smoothly obtain 
the minimum deviation between the fuzzy output and the 
given data. Definitely this method depends on the 
programmer experience.

 

  Phase a 

 Phase b 

  Phase c 

Buried Pipeline 

 Fig.2: Circuit model

                        Fig.3: Simple layout of the prediction model for pipeline voltage based on fuzzy logic. 
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                                             Fig.4: The different developed membership functions for the different inputs 
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.   Table 1: Design parameters of the Developed Fuzzy   
model 

Input Range No. of 
 MFs 

Type of 
 MFs 

If  (kA) [2   5] 4 Trapezoidal 

ρ(Ω.m) [100   300] 3 Triangle 

Mitigation * [0   1] 2 Triangle 

D(m) [100  1000] 7 Triangle 

              Mitigation*: 1    without mitigation,    0   with mitigation              

3.  RESULTS AND DISCUSSIONS  

The validity of the fuzzy model was verified by 
comparing the simulation results with the corresponding 
given results obtained from the CDEGS software [21]. 
Figures 5 and 6 present a comparison between the given 
and predicted total pipeline voltages at different fault 
currents and different soil resistivities for a range of 
separation distances. It is clear that there is good 
agreement between the actual and predicted results.   

Moreover, it is clear from Fig. 6 that the voltage on the 
pipeline is reduced when a mitigation system (gradient 
control wire) is connected to the pipeline.  Hence, the 
Fuzzy-based model developed in this work can predict 
the total voltage with high accuracy. 

4. CONCLUSIONS   

Adaptive network-fuzzy inference system model has 
been developed for predicting the total voltage on 
pipeline built in overhead power lines right-of-way. The 
actual system parameters (mitigation system, fault 
current, soil resistivity, and separation distance) were 
the Fuzzy input and conductor voltages was the output. 
Prior to the training process, a training data set 
consisting of a full range of typical system parameters 
and the pre-calculated voltage are first compiled. The 
network is then trained using these patterns until a good 
agreement between predicted voltage and given voltage 
is reached.  Once the ANFIS is adequately trained, the 
network is then tested to insure that it can adequately 
predict the correct voltage, given system parameters that 
are not included in the training data set. The results 
demonstrate that the fuzzy-based model developed in 
this work can predict the total pipeline voltage with and 
without a mitigation system with high accuracy. 
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Fig. 5: Total pipeline voltages at different fault currents and soil resistivities, without mitigation. 
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Fig.6: Total pipeline voltages at different fault currents and soil resistivities, with mitigation
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