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ABSTRACT 
 

In this paper, a new realization of Fractional-Order 
Differentiator (FOD) using Switched-Capacitor circuits is 
presented. Schneider Operator based half-differentiator 
discretization is suggested. The z-domain discretized models 
are realized using SC circuits and simulated using OrCAD 
Pspice. A comparision of the OrCAD and MATLAB results 
for second and third order half differentiators are 
presented.  
 

I. INTRODUCTION 
 

Differentiators are useful in the processing of signals in 
various fields, such as digital control, digital image 
processing, communication and bio-medical applications 
[1]. 
 
In control systems, it is a common practice to use 
controllers, to obtain the desired output and to ensure that 
the system stability is not affected by external 
disturbances. To further enhance the system control 
performance, Fractional Order Controllers (FOC) are 
used [2],[3]. 
 
The fractional order system is represented by a fractional 
differential equation given by eqn. (1). 

)(0)(1.....)(     

)(0)(1.....)(

01

01

tutDbtutDbtutDmb

tytDatytDatytDna

m

n

βββ

ααα

+++=

+++
         (1) 

where βk, αk (k=0,1,2,….)  are real numbers and ak , bk, 
(k=0,1,…,n) are arbitrary constants.  
For obtaining the discrete model of the fractional–order 
system of eqn. (1), discrete approximations of the 
fractional-order operators are used. Then a general 

expression for the discrete transfer function of the system 
is obtained as in eqn. (2). 
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 (2) 
where )1( −zω denotes the discrete operator, expressed as 
a function of the complex variable z or the shift operator 
z-1. In general the discretization of the fractional-order 
differentiator p±r, can be expressed by a generating 

function . This generating function and its 
expansion determine both the form of the approximation 
and the coefficients [4].  
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The fractional order PIλDδ controller can be described by 
the fractional order differential equation [4] given in eqn. 
(3). 
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The discrete approximation of the fractional-order 
controller is expressed as  
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where λ is an integral order, δ is a derivation order, K is a 
proportional constant, Ti is an integration constant and Td 
is a derivation constant. 
Taking λ=1 and δ=1, we obtain the classical PID 
controller. 
 
This paper presents a new realization of half 
differentiator s1/2. The digital implementation of the 



fractional order differentiator involves discretization of 
the half differentiator using the Schneider Operator 
[5],[6]. This new model of the FOD is then realized using 
Switched Capacitor circuits and simulated using OrCAD 
Pspice. The proposed discretization scheme exhibits a 
very good magnitude fit as that of the original continuous 
fractional order differentiator s1/2. The MATLAB 
implementation of proposed fractional order 
differentiators of second and third order is also given. It 
is observed that the magnitude response in both the cases 
match with each other and also with that of the 
continuous FOD. 
 
II. PROPOSED SCHNEIDER OPERATOR BASED 

DISCRETIZATION TECHNIQUE 
 
Schneider [7,8] has proposed higher order mapping 
functions. These higher order mapping functions exhibit 
increased accuracy in digitizing linear, time invariant, 
continuous time filters for real applications. 
The s-to-z transformations are based on Adams-Moulton 
Numerical Integration formulae. 
Suppose we have a continuous-time filter as shown in Fig 
1, consisting a pure integrator with input u(t), output y(t) 
and state x(t). The continuous-time transfer function of 
the resulting filter is:  
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Taking z-transforms of both sides we get 
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Multiplying by z2 on both sides we get 
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So the resulting discrete-time transfer function is  

)2(

)1825(

12
 

)(

)(

zz

zzT

zU

zY

−

−+
= ⎟

⎠
⎞

⎜
⎝
⎛  (11) 

 
Comparing the discrete-time transfer function of eqn. 
(11) with the continuous-time transfer function of eqn. 
(5), the s-to-z mapping function representing Schneider 
rule is obtained as 
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For a half differentiator 
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With T=0.001s, the approximate mathematical models 
for half differentiator are obtained as:  

s
1    

u(t)=x(t) x(t)=y(t) 

U(s) X(s)=Y(s) 
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Fig 1: Input-Output relations for a pure integrator     

     

rom Fig 1,            (6) yxux ==     and   &

his represents an integrator, which can be implemented 
igitally using the Adams-Moulton Numerical Integration 
ormulae. 

or integration of third order, Adams-Moulton Numerical 
ntegration formulae is  

)2185(*)12/(1 −−−++−= kxkxkxTkyky &&&      (7) 

eplacing we get, ux =&

)2185(*)12/(1 −−−++−= kukukuTkyky        (8) 
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                                                                          (15) 
where n is the order of the expansion. 
 
III. CONTINUED FRACTION EXPANSION (CFE) 

TECHNIQUE [9] 
 
A digital transfer function of order n is expressed as  
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where ai’s & bi’s are the coefficients of numerator and 
denominator  polynomials for i=0,1,….n. 
This transfer function Gn(z) can be expanded in the 
general form given in eqn. (17).   
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where A0 is a constant and  

pAzPBzpg ±=)(  
where Ap & Bp are coefficients of CFE for p=1,2…n and  
A0=an/bn.   
Each ladder of the transfer function of eqn. (17) can be 
represented by any one of the two eqns. (18a,b)  
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These are transfer functions of leaky inverting and non-
inverting integrators and hence can be realized using 
Switched Capacitor circuits.  
 
IV. REALIZATIONS OF SCHNEIDER OPERATOR 

BASED HALF DIFFERENTIATOR USING 
SWITCHED CAPACITOR CIRCUITS [10] 

 
Based on the second order and third order approximate 
models of half differentiator developed in Section II, the 
switched capacitor realizations are as follows: 
 
a) The Continued Fraction Expansion of the Schneider 
based second order model for half differentiator of eqn. 
(14) is: 
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The Switched Capacitor realization [11] of equation (19) 
is shown in Fig 2. 
The symbols e and o represent non-overlapping clocks as 
shown in Fig 3. 
b) Similarly the CFE expansion of the Schneider based 
third order model for half differentiator of   eqn. (15) is: 
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Fig 3: Non-overlapping even (e) and odd (o) clocks
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Fig 2: Second Order Schneider Based SC Half Differentiator



The circuits are implemented using OrCAD 9.1 with 
transmission gates as switches. Level – 3 Pspice models 
of MOSFETS with 2µ technology have been used for 
implementing transmission gates. The op-amps used are         
LF 411. The clock frequency for the circuits simulated 
using OrCAD and MATLAB is chosen as 1 kHz. 
 

V. RESULTS AND CONCLUSIONS 
 

This paper proposes a novel discretization method using 
Schneider operator, which is a second order mapping 
function for the half-differentiator s1/2.  The proposed 
discretization method is then implemented using 
Switched Capacitor circuits and simulated on OrCAD 
Pspice and MATLAB. The simulation results reveal a 
very good magnitude fit response for the second and third 
order Schneider Operator based half differentiator. Fig 4 
(a) shows the OrCAD results and 4 (b) shows the 
MATLAB results for these differentiators. The Pspice 
simulation results and the MATLAB results for the 
discretization method presented in this paper match with 
each other and also with the theoretical result of half 
differentiator in continuous-time domain.  
It is observed that a phase compensation G(z) is required 
for achieving a phase of 45˚ as that of the continuous-
time domain.  
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Fig 4: Simulation Results of Schneider Based
Second and Third Order Half Differentiator using
(a) OrCAD Pspice and  (b) MATLAB. 


	II. PROPOSED SCHNEIDER OPERATOR BASED DISCRETIZATION TECHNIQ
	REFERENCES


